Acta Crystallographica Section E
 Structure Reports
 Online
 ISSN 1600-5368
 Hexakis(dimethyl sulfoxide- κ O)chromium(III) trichloride

Yuliya M. Mikhaylichenko, ${ }^{\text {a }}$ Matti Haukka, ${ }^{\text {b }}$ Vadim O. Pavlenko, ${ }^{\text {a }}$ Igor O. Fritsky ${ }^{\text {a }}$ and Turganbay S. Iskenderov ${ }^{\text {c }}$ *
${ }^{\text {a }}$ National Taras Shevchenko University, Department of Chemistry, Volodymyrska Street 64, 01601 Kiev, Ukraine, ${ }^{\mathbf{b}}$ Department of Chemistry, University of Joensuu, PO Box 111, 80101 Joensuu, Finland, and ${ }^{\mathbf{c}}$ Department of Chemistry, Karakalpakian University, Universitet Keshesi 1, 742012 Nukus, Uzbekistan
Correspondence e-mail: turgiskend@freemail.ru
Received 30 April 2008; accepted 2 June 2008
Key indicators: single-crystal X-ray study; $T=120 \mathrm{~K}$; mean $\sigma(\mathrm{S}-\mathrm{C})=0.004 \AA$; R factor $=0.042 ; w R$ factor $=0.135$; data-to-parameter ratio $=22.7$.

In the title compound, $\left[\mathrm{Cr}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OS}\right)_{6}\right] \mathrm{Cl}_{3}$, each $\mathrm{Cr}^{\mathrm{III}}$ ion is located on a three-fold inversion axis and is coordinated by six dimethylsulfoxide ligands $[\mathrm{Cr}-\mathrm{O}=1.970$ (2)-1.972 (2) \AA; $\mathrm{O}-\mathrm{Cr}-\mathrm{O}=88.19$ (9) and $\left.91.81(9)^{\circ}\right]$ in a slightly distorted octahedral geometry. The Cl^{-}anions take part in the formation of weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds, which contribute to the crystal packing stabilization.

Related literature

For related literature, see: Chan et al. (2004); Desiraju \& Steiner (1999); Öhrström \& Svensson (2000); Persson et al. (1995, and references therein); Reynolds (1970).

$3 \mathrm{Cl}^{-}$

Experimental

Crystal data

$$
\left.\mathrm{Cr}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OS}\right)_{6}\right] \mathrm{Cl}_{3} \quad M_{r}=627.12
$$

Trigonal, $R \overline{3}$
$a=10.5499$ (6) \AA
$c=21.1370(13) \AA$
$V=2037.4(2) \AA^{3}$
$Z=3$
Data collection
Nonius KappaCCD diffractometer Absorption correction: multi-scan (North et al., 1968)
$T_{\text {min }}=0.688, T_{\text {max }}=0.795$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042 \quad 46$ parameters
$w R\left(F^{2}\right)=0.135$
$S=1.14$
1044 reflections

Mo $K \alpha$ radiation
$\mu=1.20 \mathrm{~mm}^{-1}$
$T=120(2) \mathrm{K}$
$0.34 \times 0.29 \times 0.20 \mathrm{~mm}$

> 10865 measured reflections 1044 independent reflections 855 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.051$

H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.82 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.48 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1-\mathrm{H} 1 B \cdots \mathrm{Cl} 1$	0.98	2.75	$3.647(3)$	153
$\mathrm{C} 1-\mathrm{H} 1 A \cdots \mathrm{Cl}{ }^{\mathrm{i}}$	0.98	2.64	$3.614(4)$	176
Symmetry code: (i) $x+\frac{1}{3}, y+\frac{2}{3}, z-\frac{1}{3}$				

Data collection: APEX2 (Bruker, 2004); cell refinement: DENZO/ SCALEPACK (Otwinowski \& Minor, 1997); data reduction: DENZOISCALEPACK; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2410).

References

Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. \& Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.
Chan, E. J., Cox, G., Harrowfield, M., Ogden, I., Skelton, B. W. \& White, A. H. (2004). Inorg. Chim. Acta, 357, 2365-2372.

Desiraju, G. R. \& Steiner, T. (1999). The Weak Hydrogen Bond, pp. 40-107. Oxford University Press.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Öhrström, L. \& Svensson, G. (2000). Inorg. Chim. Acta, 305, 157-163.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Persson, I., Sandström, M., Yokoyama, H. \& Chaudhry, M. (1995). Z. Naturforsch. Teil A, 50, 21-30.
Reynolds, W. L. (1970). Prog. Inorg. Chem. 12, 1-29.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2008). E64, m904 [doi:10.1107/S1600536808016784]

Hexakis(dimethyl sulfoxide-кO)chromium(III) trichloride
 Yuliya M. Mikhaylichenko, Matti Haukka, Vadim O. Pavlenko, Igor O. Fritsky and Turganbay S. Iskenderov

S1. Comment

Dimethylsulfoxide (dmso) has often been used as solvent and a ligand in inorganic chemistry since the beginning of the 1960th. Dimethylsulfoxide is a monodentate O-,S-donor ligand (Reynolds, 1970). Solvates of some transition metal ions have been prepared and structurally charaterized (Persson et al., 1995 and references therein).
The title compound, (I), is composed of $\left[\mathrm{Cr}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OS}\right)_{6}\right]^{3+}$ cations and chloride anions. $\mathrm{The} \mathrm{Cr}(\mathrm{III})$ ion is located on a 3fold inversion axis being coordinated by the six dimethylsulfoxide ligands in a slightly distorted octahedral geometry (Fig. 1), with $\mathrm{Cr}-\mathrm{O} 1.970$ (2)-1.972 (2) \AA interatomic distances and $\mathrm{O}-\mathrm{Cr}-\mathrm{O} 88.19$ (9), 91.81 (9) ${ }^{\circ}$ bond angles. A search in the Cambridge Structural Database revealed 14 reports of compounds containing transition metal hexakis(dimethylsulfoxide) cations, of which two described the structure of the $\left[\mathrm{Cr}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OS}\right)_{6}\right]^{3+}$ cation in $\left[\mathrm{Cr}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OS}\right)_{6}\right]\left(\mathrm{ClO}_{4}\right)_{3}$ (Chan et al., 2004) and $\left[\mathrm{Cr}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OS}\right)_{6}\right]\left(\mathrm{NO}_{3}\right)_{3}($ Ohrstrom \& Svensson, 2000). The $\mathrm{S}=\mathrm{O}$ bond lengths in the aforementioned compounds are almost identical, 1.542 (3) \AA versus 1.543 (2) \AA for the title compound, as well as the O $-\mathrm{Cr}-\mathrm{O}$ angles, $87.9 / 92.2^{\circ}$ versus $88.19-91.81^{\circ}$. In the present structure the average value of $\mathrm{Cr}-\mathrm{O}-\mathrm{S}$ angles $\left(121.9^{\circ}\right)$ is somewhat smaller than that in $\left[\mathrm{Cr}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OS}\right)_{6}\right]\left(\mathrm{NO}_{3}\right)_{3}\left(123.6^{\circ}\right)$. All other angles and bonds of the title compound are very similar to the above mentioned structures.
In (I), the Cl anions take part in formation of weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds (Table 1), which contribute to the crystal packing stabilization.

S2. Experimental

Complex (I) was synthesized during the attempt to prepare chromium (III) complex with $1 H$-pyrazole-3,5dicarbohydrazide (Fig. 2) by adding $\mathrm{CrCl}_{3} .6 \mathrm{H}_{2} \mathrm{O}(0.3 \mathrm{mmol}, 3 \mathrm{ml}$ of 0.1 M aqueous solution) to the 1 H -pyrazole-3,5dicarbohydrazide ($0.0552 \mathrm{~g}, 0.3 \mathrm{mmol}$) in dimethylsulfoxide solution (6 ml). The mixture was stirred for 30 min at ambient temperature. The resulting green solution was filtered and the filtrate was left to stand at room temperature. Slow evaporation of the solvent during 2 weeks yielded green crystals of (I).

S3. Refinement

The H atoms were positioned geometrically $(\mathrm{C}-\mathrm{H} 0.98 \AA)$ and allowed to ride on their parent atoms, with $\mathrm{U}_{\text {iso }}(\mathrm{H})=$ $1.5 \mathrm{U}_{\mathrm{eq}}(\mathrm{C})$.

Figure 1
The molecular structure of (I), showing the atom-numbering scheme and displacement ellipsoids at the 60% probability level [symmetry codes: (i) $-x+y, 1-x, z$; (ii) $2 / 3+x-y, 1 / 3+x, 1 / 3-z$; (iii) $1-y, 1+x-y, z$; (iv) $-1 / 3+y, 1 / 3-x+y, 1 / 3-$ z; (v) $2 / 3-x, 4 / 3-y, 1 / 3-z$.]

Figure 2
1H-pyrazole-3,5-dicarbohydrazide

Hexakis(dimethyl sulfoxide- κ O)chromium(III) trichloride

Crystal data

$\left[\mathrm{Cr}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OS}\right)_{6}\right] \mathrm{Cl}_{3}$
$M_{r}=627.12$
Trigonal, $R \overline{3}$
Hall symbol: -R 3
$a=10.5499$ (6) \AA
$c=21.1370$ (13) \AA
$V=2037.4$ (2) \AA^{3}
$Z=3$
$F(000)=981$

Data collection

Nonius KappaCCD
diffractometer
Radiation source: fine-focus sealed tube
Horizontally mounted graphite crystal monochromator
Detector resolution: 9 pixels mm^{-1}
φ scans and ω scans with κ offset
Absorption correction: multi-scan
(North et al., 1968)

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.135$
$S=1.14$
1044 reflections
46 parameters
0 restraints
Primary atom site location: structure-invariant
direct methods

$$
\begin{aligned}
& D_{\mathrm{x}}=1.533 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo Ka radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 6073 \text { reflections } \\
& \theta=1.0-27.5^{\circ} \\
& \mu=1.20 \mathrm{~mm}^{-1} \\
& T=120 \mathrm{~K} \\
& \text { Block, green } \\
& 0.34 \times 0.29 \times 0.20 \mathrm{~mm}
\end{aligned}
$$

$$
T_{\min }=0.688, T_{\max }=0.795
$$

$$
10865 \text { measured reflections }
$$

$$
1044 \text { independent reflections }
$$

$$
855 \text { reflections with } I>2 \sigma(I)
$$

$$
R_{\mathrm{int}}=0.051
$$

$$
\theta_{\text {max }}=27.6^{\circ}, \theta_{\text {min }}=2.4^{\circ}
$$

$$
h=-13 \rightarrow 13
$$

$$
k=-13 \rightarrow 13
$$

$$
l=-26 \rightarrow 27
$$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}{ }^{2}\right)+(0.0789 P)^{2}+3.3338 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.82 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.48$ e \AA^{-3}

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Cr1	0.3333	0.6667	0.1667	$0.0214(3)$
C11	0.0000	0.0000	0.0000	$0.0324(5)$
C12	0.0000	0.0000	$0.25064(7)$	$0.0416(4)$
S1	$0.24193(8)$	$0.38772(8)$	$0.08860(4)$	$0.0261(3)$
O1	$0.3687(2)$	$0.5325(2)$	$0.11455(10)$	$0.0270(5)$

C1	$0.3083(4)$	$0.3721(4)$	$0.01371(16)$	$0.0336(7)$
H1A	0.3141	0.4485	-0.0145	0.050^{*}
H1B	0.2416	0.2757	-0.0044	0.050^{*}
H1C	0.4058	0.3834	0.0186	0.050^{*}
C2	$0.2577(4)$	$0.2497(4)$	$0.12936(18)$	$0.0384(8)$
H2A	0.3576	0.2670	0.1248	0.058^{*}
H2B	0.1883	0.1538	0.1116	0.058^{*}
H2C	0.2360	0.2518	0.1743	0.058^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cr1	$0.0165(4)$	$0.0165(4)$	$0.0311(6)$	$0.00824(19)$	0.000	0.000
C11	$0.0245(6)$	$0.0245(6)$	$0.0480(11)$	$0.0123(3)$	0.000	0.000
C12	$0.0421(6)$	$0.0421(6)$	$0.0405(9)$	$0.0211(3)$	0.000	0.000
S1	$0.0221(4)$	$0.0207(4)$	$0.0346(5)$	$0.0099(3)$	$-0.0004(3)$	$-0.0004(3)$
O1	$0.0202(10)$	$0.0222(10)$	$0.0374(12)$	$0.0096(9)$	$-0.0015(8)$	$-0.0045(8)$
C1	$0.0339(17)$	$0.0279(16)$	$0.0331(17)$	$0.0111(13)$	$0.0028(13)$	$-0.0017(13)$
C2	$0.045(2)$	$0.0278(16)$	$0.044(2)$	$0.0196(15)$	$-0.0007(16)$	$0.0063(14)$

Geometric parameters ($\AA,{ }^{\circ}$)

Cr1-O1 ${ }^{\text {i }}$	1.972 (2)	S1-C1	1.772 (3)
$\mathrm{Cr} 1-\mathrm{Ol}^{\text {ii }}$	1.971 (2)	C1-H1A	0.9800
Cr1-O1 ${ }^{\text {iii }}$	1.971 (2)	C1-H1B	0.9800
Cr1-O1	1.970 (2)	C1-H1C	0.9800
Cr1-O1 ${ }^{\text {iv }}$	1.971 (2)	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9800
Cr1-O1 ${ }^{\text {v }}$	1.971 (2)	C2-H2B	0.9800
S1-O1	1.542 (2)	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	0.9800
S1-C2	1.770 (3)		
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Cr} 1-\mathrm{O} 1^{\mathrm{ii}}$	180.0	$\mathrm{O} 1-\mathrm{S} 1-\mathrm{C} 1$	102.86 (14)
$\mathrm{O} 1{ }^{\text {i }}-\mathrm{Cr} 1-\mathrm{O} 1^{\text {iii }}$	91.81 (9)	C2-S1-C1	98.87 (17)
$\mathrm{O} 1^{\text {ii- }}-\mathrm{Cr} 1-\mathrm{O} 1^{\text {iii }}$	88.19 (9)	$\mathrm{S} 1-\mathrm{O} 1-\mathrm{Cr} 1$	121.86 (12)
$\mathrm{O} 1{ }^{\text {i }}-\mathrm{Cr1}-\mathrm{O} 1$	91.81 (9)	$\mathrm{S} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.5
$\mathrm{O} 1 \mathrm{ii}-\mathrm{Cr} 1-\mathrm{O} 1$	88.19 (9)	$\mathrm{S} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.5
$\mathrm{O} 1 \mathrm{iii}-\mathrm{Cr} 1-\mathrm{O} 1$	91.81 (9)	$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.5
$\mathrm{O} 1-\mathrm{Crl}-\mathrm{Ol}^{\mathrm{iv}}$	88.19 (9)	$\mathrm{S} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5
$\mathrm{O} 1^{\text {ii- }} \mathrm{Cr} 1-\mathrm{Ol}^{\text {iv }}$	91.81 (9)	$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5
$\mathrm{O} 1^{\text {iii }}-\mathrm{Cr} 1-\mathrm{O} 1^{\text {iv }}$	180.0	$\mathrm{H} 1 \mathrm{~B}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5
$\mathrm{O} 1-\mathrm{Cr} 1-\mathrm{Ol}^{\text {iv }}$	88.19 (9)	$\mathrm{S} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.5
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Cr} 1-\mathrm{Ol}^{v}$	88.19 (9)	$\mathrm{S} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.5
$\mathrm{O} 1^{\mathrm{ii}}-\mathrm{Cr} 1-\mathrm{O}^{\mathrm{v}}$	91.81 (9)	$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.5
$\mathrm{O} 1^{\text {iii }}-\mathrm{Cr} 1-\mathrm{O}^{\text {v }}$	88.19 (9)	$\mathrm{S} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.5
$\mathrm{O} 1-\mathrm{Cr} 1-\mathrm{Ol}^{\text {v }}$	179.999 (1)	$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.5
$\mathrm{O} 1^{\text {iv }}-\mathrm{Cr} 1-\mathrm{Ol}^{\mathrm{v}}$	91.81 (9)	$\mathrm{H} 2 \mathrm{~B}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.5
O1-S1-C2	104.46 (15)		

$\mathrm{C} 2-\mathrm{S} 1-\mathrm{O} 1-\mathrm{Cr} 1$	$-112.64(17)$	$\mathrm{O}^{\mathrm{ii}}-\mathrm{Cr} 1-\mathrm{O} 1-\mathrm{S} 1$	$140.87(18)$
$\mathrm{C} 1-\mathrm{S} 1-\mathrm{O} 1-\mathrm{Cr} 1$	$144.52(16)$	$\mathrm{O}^{\mathrm{iii}}-\mathrm{Cr} 1-\mathrm{O} 1-\mathrm{S} 1$	$-131.00(10)$
$\mathrm{O} 1-\mathrm{Cr} 1-\mathrm{O} 1-\mathrm{S} 1$	$-39.13(18)$	$\mathrm{O}^{\mathrm{iv}}-\mathrm{Cr} 1-\mathrm{O} 1-\mathrm{S} 1$	$49.00(10)$

Symmetry codes: (i) $-x+y,-x+1, z$; (ii) $x-y+2 / 3, x+1 / 3,-z+1 / 3$; (iii) $-y+1, x-y+1, z$; (iv) $y-1 / 3,-x+y+1 / 3,-z+1 / 3$; (v) $-x+2 / 3,-y+4 / 3,-z+1 / 3$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1 — \mathrm{H} 1 B \cdots \mathrm{Cl1}$	0.98	2.75	$3.647(3)$	153
$\mathrm{C} 1 — \mathrm{H} 1 A \cdots \mathrm{Cl2}{ }^{\text {vi }}$	0.98	2.64	$3.614(4)$	176

[^0]
[^0]: Symmetry code: (vi) $x+1 / 3, y+2 / 3, z-1 / 3$.

