

V = 4553.7 (8) Å³

Mo $K\alpha$ radiation

 $0.30 \times 0.05 \times 0.01 \text{ mm}$

16488 measured reflections

6329 independent reflections

5310 reflections with $I > 2\sigma(I)$

 $\mu = 4.35 \text{ mm}^{-1}$

T = 173 (2) K

 $R_{\rm int} = 0.048$

Z = 2

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Tetrakis(dihydrogen pefloxacinium) di- μ_2 -chlorido-bis[tetrachloridobismuthate(III)] tetrachloride octahydrate

A. V. Polishchuk, A. V. Gerasimenko,* K. A. Gayvoronskaya and E. T. Karaseva

Institute of Chemistry, FEB RAS, Prospekt 100-letiya Vladivostoka 159, Vladivostok 690022, Russian Federation Correspondence e-mail: gerasimenko@ich.dvo.ru

Received 2 June 2008; accepted 11 June 2008

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.004 Å; Hatom completeness 93%; disorder in solvent or counterion; R factor = 0.034; wR factor = 0.077; data-to-parameter ratio = 20.9.

The title compound {systematic name: tetrakis[4-(3-carboxy-1ethyl-6-fluoro-4-hydroxonio-1,4-dihydro-7-quinolyl)-1-methvlpiperazin-1-ium] di- μ_2 -chlorido-bis[tetrachloridobismuthate(III)] tetrachloride octahydrate}, (C₁₇H₂₂FN₃O₃)₄[Bi₂Cl₁₀]-Cl₄·8H₂O, is composed of edge-shared centrosymmetric dinuclear [Bi₂Cl₁₀]⁴⁻ anions, Cl⁻ anions, dihydrogen pefloxacinium cations and water molecules. The Bi^{III} coordination polyhedron is a distorted octahedron. There are four short terminal Bi-Cl bonds [2.5037 (10)-2.6911 (7) Å] and two longer bridging bonds [2.8834 (8) and 3.0687 (9) Å] in each octahedron. Two sets of chloride ions and water molecules are disordered over the same sites with site occupancies of 1/3 and 2/3, respectively. Anions, cations and water molecules are linked by $O-H \cdots O$, $O-H \cdots Cl$ and $N-H \cdots Cl$ hydrogen bonds, forming a three-dimensional framework. There are also $\pi - \pi$ stacking interactions between quinoline ring systems [centroid–centroid distance = 3.575(1) Å].

Related literature

For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental

Crystal data

 $\begin{array}{l} ({\rm C}_{17}{\rm H}_{22}{\rm FN}_{3}{\rm O}_{3})_{4}[{\rm Bi}_{2}{\rm Cl}_{10}]{\rm Cl}_{4}{\cdot}8{\rm H}_{2}{\rm O}\\ M_{r}=2399.89\\ {\rm Monoclinic, \ }C2/m\\ a=14.4201\ (14)\ {\rm \AA}\\ b=25.305\ (3)\ {\rm \AA}\\ c=12.6359\ (12)\ {\rm \AA}\\ \beta=99.028\ (2)^{\circ} \end{array}$

Data collection

Bruker SMART 1000 CCD areadetector diffractometer Absorption correction: Gaussian (*XPREP*, *SADABS*; Bruker, 2003) $T_{\rm min} = 0.606, T_{\rm max} = 0.958$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.034$	H atoms treated by a mixture of
$wR(F^2) = 0.077$	independent and constrained
S = 1.08	refinement
6329 reflections	$\Delta \rho_{\rm max} = 1.23 \text{ e } \text{\AA}^{-3}$
303 parameters	$\Delta \rho_{\rm min} = -1.17 \text{ e } \text{\AA}^{-3}$
3 restraints	

Table 1

Selected interatomic distances and short contacts to water molecules (Å).

Bi-Cl2	2.5037 (10)	Bi-Cl3 ⁱ	2.6911 (7)
Bi-Cl4	2.5737 (11)	Bi-Cl1	2.8834 (8)
Bi-Cl3	2.6910 (7)	Bi-Cl1 ⁱⁱ	3.0687 (9)
$O6 \cdots O6^i$	2.822 (6)	$O6 \cdot \cdot \cdot O3^v$	3.091 (4)
O6···Cl6 ⁱⁱⁱ	2.863 (5)	$O7 \cdot \cdot \cdot Cl7^{vi}$	2.888 (7)
$O6 \cdots O5^{iv}$	2.961 (4)	$O7 \cdot \cdot \cdot O7^{vi}$	3.146 (14)
$O6 \cdots O6^{iii}$	3.074 (6)		

Symmetry codes: (i) x, -y + 1, z; (ii) -x + 1, -y + 1, -z + 2; (iii) -x + 2, y, -z + 1; (iv) x + 1, -y + 1, z; (v) $-x + \frac{3}{2}, y + \frac{1}{2}, -z + 1$; (vi) -x, -y + 1, -z + 2.

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
O2−H4···Cl5 ^{vii}	0.84	2.18	3.014 (2)	174
O3−H3···O1	0.84	1.96	2.675 (3)	143
O3−H3···Cl6 ^{viii}	0.84	2.06	2.559 (5)	118
$O5-H5B\cdots O1^{ix}$	0.83 (1)	2.009 (18)	2.790 (3)	157 (4)
$O5-H5C\cdots O7^{x}$	0.83 (1)	2.029 (13)	2.851 (5)	173 (3)
$O5-H5C\cdots Cl7^{x}$	0.83 (1)	2.238 (13)	3.056 (4)	170 (3)
$N2-H2\cdots Cl1^{xi}$	0.93	2.52	3.262 (2)	137
$N2-H2\cdots Cl3^{xii}$	0.93	2.77	3.423 (2)	128

Symmetry codes: (vii) x, y, z + 1; (viii) $-x + \frac{3}{2}, y - \frac{1}{2}, -z + 1$; (ix) $-x + \frac{1}{2}, -y + \frac{1}{2}, -z + 1$; (ix) -x, -y + 1, -z + 1; (xi) -x + 1, -y + 1, -z + 1; (xii) -x + 1, y, -z + 1.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 2003); data reduction: *SAINT* ; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine

structure: *SHELXTL*; molecular graphics: *XP* in *SHELXTL*; software used to prepare material for publication: *publCIF* (Westrip, 2008).

The authors thank the Russian Foundation for Basic Research (project No. 08–03–91750) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2612).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.

Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2003). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2008). publCIF. In preparation.

supporting information

Acta Cryst. (2008). E64, m931-m932 [doi:10.1107/S1600536808017674]

Tetrakis(dihydrogen pefloxacinium) di- μ_2 -chlorido-bis-[tetrachloridobismuthate(III)] tetrachloride octahydrate

A. V. Polishchuk, A. V. Gerasimenko, K. A. Gayvoronskaya and E. T. Karaseva

S1. Comment

Pefloxacin (*pfH*) belongs to the second-generation quinolone antimicrobial agents. According to a search of the Cambridge Structural Database (CSD, Version 5.28; Allen, 2002), well determined structures are those where pefloxacin acts as an anion or as a single protonated cation. The present research deals with the synthesis and structure of a chlorido-bismuth complex with the doubly protonated cation of pefloxacin (*pfH*₃)²⁺.

The asymmetric unit of the title compound, (I), contains one Bi atom, seven chlorine atoms (two of them are disordered), one pfH_3 cation and three H₂O molecules (from them a two are disordered). The Bi atoms are coordinated by six Cl atoms in a distorted octahedral geometry. Two Bi-centred octahedra are linked by double Cl bridges to form a centrosymmetric dinuclear [Bi₂F₁₀]⁴⁻ complex (Fig. 1), with a Bi···Bi⁴ distance of 4.4596 (5) Å. In the Bi-octahedra there are four short terminal Bi—Cl bonds [2.5037 (10)-2.6911 (7) Å] and two longer bridging bonds [2.8834 (8) and 3.0687 (9) Å]. These Bi-anions pack up in columns parallel to the [0 0 1] direction (Fig. 2).

The protonation of pfH_3^{2+} is realised on the carbonyl atom O3 and N2 of the piperazine ring (Fig. 3). The hydrogen atom H3 is linked by an intramolecular hydrogen bond with O1 atom of the carboxyl group. Atoms O2 and N2 in the cation act as hydrogen-bond donors, *via* H4 and H2

There are three uncoordinated chlorine atoms (Cl5, Cl6 and Cl7) of which Cl6 and Cl7 are disordered and statistically replaced by atoms O6 and O7 of water molecules, respectively [Wyckoff positions 8j and 4i for Cl6/O6 and Cl7/O7, respectively]. Site occupation factors of these chloride ions were assigned equal to 1/3, and water molecule to 2/3 from the crystal chemistry considerations. The refinement of the Cl6/O6 and Cl7/O7 site occupation factors resulted in the same values with accuracy within 0.04. As the hydrogen atoms were not located for disordered water molecules, probable hydrogen bonds involving these atoms are given in Table 3.

In the crystal structure, the cations are packed along the *a*axis. There exist π - π stacking interactions between quinoline ring systems (Fig.4), with nearest C···C contacts are in the range 3.292 (5)-3.365 (3) Å. Anions, cations and H₂O-molecules are linked by a network of O—H···O, O—H···Cl and N—H···Cl hydrogen bonds into a three-dimensional framework.

S2. Experimental

 $Bi(OH)_3$ (1.00 g, 3.85 mmol) was reacted with *pfH* (1.50 g, 5.77 mmol) in a solution of HCl (35%, 15 ml). Yellow crystals were obtained after evaporation for 72 h at room temperature.

S3. Refinement

H atoms of H₂O were located in a difference map and refined with $U_{iso}(H) = 1.5U_{eq}(O)$ and the O-H distances were restrained to be similar. The other H atoms were positioned with idealized geometry using a riding model with C-H =

0.95, 0.98 and 0.99 Å; N-H = 0.93 Å and O-H = 0.84 Å. All H atoms were refined with U_{iso} set to 1.2 or 1.5 times U_{eq} of the parent atom. Atoms Cl6 and O6, and also Cl7 and O7, are disordered between them with site occupancies of 1/3 and 2/3, respectively. H atoms belonging to the disordered water molecules could not be located. The maximum peak and the deepest hole are located 0.86 Å and 1.13 Å from Bi, respectively.

Figure 1

A view of the dinuclear $[Bi_2F_{10}]^4$ complex, with displacement ellipsoids drawn at the 50% probability level. [Symmetry codes: x, 1-y, z; (ii) 1-x, 1-y, 2-z.]

Figure 2

The crystal structure of the title compound, viewed along the c axis. Dashed lines represent hydrogen bonds.

Figure 3

A view of the pfH_3^{2+} canion, with displacement ellipsoids drawn at the 50% probability level. The intramolecular hydrogen bond is shown as a dashed line.

Figure 4

The crystal structure of the title compound, viewed along the *a* axis. Dashed lines represent hydrogen bonds.

Tetrakis[4-(3-carboxy-1-ethyl-6-fluoro-4-hydroxonio-1,4-dihydro-7-quinolyl)- 1-methylpiperazin-1-ium] di- μ_2 - chlorido-bis[tetrachloridobismuthate(III)] tetrachloride octahydrate

Crystal data	
$(C_{17}H_{22}FN_3O_3)_4[Bi_2Cl_{10}]Cl_4\cdot 8H_2O$ $M_2 = 2399.89$	$V = 4553.7 (8) \text{ Å}^3$ Z = 2
Monoclinic, <i>C</i> 2/ <i>m</i>	F(000) = 2392
Hall symbol: -C 2y	$D_{\rm x} = 1.750 {\rm ~Mg} {\rm ~m}^{-3}$
a = 14.4201 (14) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
b = 25.305 (3) Å	Cell parameters from 897 reflections
c = 12.6359 (12) Å	$\theta = 2.8 - 27.5^{\circ}$
$\beta = 99.028 \ (2)^{\circ}$	$\mu = 4.35 \text{ mm}^{-1}$

T = 173 KPrism, yellow

Data collection

Dura concention	
Bruker SMART 1000 CCD area-detector diffractometer	16488 measured reflections 6329 independent reflections
Radiation source: fine-focus sealed tube	5310 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.048$
Detector resolution: 8.33 pixels mm ⁻¹	$\theta_{\rm max} = 29.5^{\circ}, \theta_{\rm min} = 1.6^{\circ}$
ω scans	$h = -16 \rightarrow 19$
Absorption correction: gaussian	$k = -34 \rightarrow 30$
(SADABS; Bruker, 2003)	$l = -17 \rightarrow 8$
$T_{\min} = 0.606, \ T_{\max} = 0.958$	
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.034$	Hydrogen site location: inferred from
$wR(F^2) = 0.077$	neighbouring sites
S = 1.08	H atoms treated by a mixture of independent
6329 reflections	and constrained refinement
303 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0241P)^2 + 5.6647P]$
3 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.010$
direct methods	$\Delta ho_{ m max} = 1.23 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -1.17 \text{ e } \text{\AA}^{-3}$

 $0.30 \times 0.05 \times 0.01 \text{ mm}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Bi	0.478467 (9)	0.5000	1.170934 (10)	0.01789 (3)	
C11	0.36184 (6)	0.5000	0.96352 (7)	0.02166 (18)	
Cl2	0.32976 (7)	0.5000	1.24998 (8)	0.0332 (2)	
C13	0.46439 (4)	0.39397 (2)	1.16382 (5)	0.02578 (14)	
Cl4	0.58921 (10)	0.5000	1.35173 (9)	0.0501 (3)	
C15	0.5000	0.19810 (4)	0.0000	0.0277 (2)	
Cl6	0.9645 (3)	0.58510 (18)	0.4025 (3)	0.0829 (12)	0.33333
O6	0.9296 (2)	0.55576 (12)	0.3952 (3)	0.0376 (8)	0.66667
C17	0.0257 (3)	0.5000	0.9040 (4)	0.0483 (12)	0.33333
07	0.0152 (4)	0.5000	0.8794 (5)	0.0447 (17)	0.66667
F2	0.69789 (11)	0.22163 (6)	0.19969 (11)	0.0286 (4)	
O1	0.55734 (13)	0.17802 (7)	0.73845 (15)	0.0286 (5)	
O2	0.56440 (14)	0.25726 (7)	0.81762 (14)	0.0302 (5)	

H4	0.5504	0.2396	0.8692	0.045*
O3	0.60949 (13)	0.17118 (7)	0.54491 (15)	0.0283 (5)
H3	0.5969	0.1586	0.6025	0.042*
05	0.05523 (17)	0.41020 (10)	0.2439 (2)	0.0570 (7)
H5B	0.0279 (12)	0.3815 (5)	0.234 (3)	0.085*
H5C	0.0302 (18)	0.4357 (6)	0.210 (2)	0.085*
N1	0.70541 (15)	0.33043 (8)	0.19082 (16)	0.0218 (5)
N2	0.74434 (15)	0.38831 (9)	0.00739 (17)	0.0235 (5)
H2	0.6895	0.4083	-0.0053	0.028*
N3	0.62148 (14)	0.33321 (8)	0.55077 (16)	0.0198 (5)
C1	0.60166 (16)	0.30659 (10)	0.6364 (2)	0.0215 (6)
H1A	0.5905	0.3263	0.6972	0.026*
C2	0.59658 (16)	0.25233 (10)	0.6410(2)	0.0203 (6)
C3	0.61226 (17)	0.22153 (11)	0.5512 (2)	0.0227 (6)
C4	0.63379 (16)	0.25024 (10)	0.45924 (19)	0.0187 (5)
C5	0.65146 (16)	0.22261 (10)	0.36745 (19)	0.0209 (6)
Н5	0.6481	0.1851	0.3656	0.025*
C6	0.67306 (17)	0.24941 (10)	0.28238 (19)	0.0212 (6)
C7	0.67653 (16)	0.30550 (10)	0.27776 (19)	0.0206 (6)
C8	0.65728 (17)	0.33298 (10)	0.36801 (19)	0.0209 (6)
H8	0.6572	0.3705	0.3677	0.025*
C9	0.63802 (16)	0.30572 (10)	0.45928 (19)	0.0191 (5)
C10	0.65575 (17)	0.31800 (11)	0.08222 (19)	0.0220 (6)
H10A	0.5970	0.3388	0.0675	0.026*
H10B	0.6391	0.2800	0.0778	0.026*
C11	0 71759 (18)	0.33095 (11)	0.0000(2)	0.0249(6)
H11A	0 7749	0 3088	0.0126	0.030*
H11B	0.6838	0.3231	-0.0726	0.030*
C12	0.79311 (18)	0.40046 (11)	0.1187 (2)	0.0253 (6)
H12A	0.8084	0.4386	0.1245	0.0200 (0)
H12R	0.8527	0.3804	0.1333	0.030*
C13	0.0327 0.73148 (19)	0 38594 (11)	0.2011 (2)	0.0250 (6)
H13A	0.7657	0.30294 (11)	0.2740	0.0200 (0)
H13B	0.6742	0.3928	0.1904	0.030*
C14	0.0742 0.57170 (17)	0.4001 0.22525 (10)	0.1904	0.030
C15	0.57179(17) 0.62925(18)	0.22323(10) 0.39181(10)	0.75000(19)	0.0214(0) 0.0248(6)
U15A	0.02925 (18)	0.39181 (10)	0.5550 (2)	0.0248 (0)
HIJA HIJA	0.5995	0.4049	0.0139	0.030*
C16	0.3340 0.72072 (10)	0.4070	0.4000	0.030°
	0.72972 (19)	0.41046 (11)	0.5705 (2)	0.0293(7)
	0.7000	0.4031	0.0436	0.044*
	0.7512	0.4480	0.5309	0.044
	0.7033	0.3919 0.40206 (12)	0.3198 -0.0740 (2)	0.044^{+}
	0.8038 (2)	0.40300 (12)	-0.0740(2)	0.0330(/)
П1/А 1117D	0.8394	0.3802	-0.0001	0.050*
	0.8233	0.4400	-0.0635	0.050* 0.050*
HI/C	0.7078	0.398/	-0.1439	0.050*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
Bi	0.02397 (6)	0.01417 (5)	0.01620 (5)	0.000	0.00521 (4)	0.000
Cl1	0.0236 (4)	0.0201 (4)	0.0211 (4)	0.000	0.0032 (3)	0.000
Cl2	0.0413 (4)	0.0254 (4)	0.0391 (5)	0.000	0.0257 (4)	0.000
C13	0.0324 (3)	0.0162 (3)	0.0304 (3)	0.0004 (2)	0.0101 (3)	0.0003 (2)
Cl4	0.0714 (8)	0.0404 (6)	0.0299 (5)	0.000	-0.0188 (5)	0.000
C15	0.0309 (4)	0.0253 (4)	0.0282 (4)	0.000	0.0085 (4)	0.000
Cl6	0.079 (2)	0.088 (3)	0.084 (2)	-0.014 (2)	0.0203 (19)	-0.022 (2)
06	0.058 (2)	0.0163 (14)	0.0394 (17)	0.0067 (14)	0.0099 (15)	0.0009 (13)
Cl7	0.050(2)	0.0267 (17)	0.058 (2)	0.000	-0.0206 (18)	0.000
07	0.042 (3)	0.038 (3)	0.050 (3)	0.000	-0.004 (3)	0.000
F2	0.0418 (8)	0.0238 (8)	0.0208 (7)	0.0034 (7)	0.0070 (6)	-0.0058 (6)
01	0.0358 (10)	0.0205 (9)	0.0294 (10)	0.0011 (8)	0.0042 (8)	0.0024 (7)
02	0.0472 (10)	0.0221 (9)	0.0239 (9)	-0.0025 (8)	0.0138 (8)	-0.0013 (7)
03	0.0393 (10)	0.0200 (9)	0.0267 (9)	-0.0044 (8)	0.0087 (8)	0.0007 (7)
05	0.0548 (14)	0.0491 (15)	0.0700 (17)	-0.0072 (12)	0.0190 (13)	0.0058 (13)
N1	0.0286 (10)	0.0186 (10)	0.0177 (10)	-0.0028 (9)	0.0020 (8)	-0.0021 (8)
N2	0.0248 (10)	0.0225 (11)	0.0235 (10)	0.0054 (9)	0.0047 (8)	0.0037 (8)
N3	0.0231 (9)	0.0181 (10)	0.0188 (9)	0.0037 (8)	0.0052 (8)	-0.0024 (8)
C1	0.0185 (10)	0.0255 (13)	0.0210 (11)	-0.0011 (10)	0.0048 (9)	-0.0041 (10)
C2	0.0162 (10)	0.0235 (12)	0.0212 (11)	-0.0002 (9)	0.0026 (9)	-0.0001 (9)
C3	0.0188 (11)	0.0258 (13)	0.0226 (12)	-0.0009 (10)	0.0005 (10)	-0.0026 (10)
C4	0.0143 (10)	0.0214 (12)	0.0197 (11)	0.0022 (9)	0.0004 (9)	-0.0020 (9)
C5	0.0188 (11)	0.0200 (12)	0.0233 (12)	-0.0019 (9)	0.0016 (9)	-0.0038 (9)
C6	0.0203 (11)	0.0239 (12)	0.0190 (11)	0.0043 (10)	0.0021 (9)	-0.0060 (9)
C7	0.0173 (10)	0.0238 (12)	0.0198 (11)	0.0006 (9)	0.0007 (9)	-0.0009 (9)
C8	0.0233 (11)	0.0156 (11)	0.0223 (12)	0.0027 (9)	-0.0010 (10)	-0.0024 (9)
C9	0.0180 (10)	0.0224 (12)	0.0159 (11)	0.0007 (9)	0.0001 (9)	-0.0029 (9)
C10	0.0236 (11)	0.0260 (13)	0.0157 (11)	0.0008 (10)	0.0009 (9)	-0.0016 (9)
C11	0.0291 (12)	0.0244 (13)	0.0221 (12)	0.0028 (11)	0.0062 (10)	-0.0022 (10)
C12	0.0259 (12)	0.0226 (13)	0.0264 (13)	-0.0001 (10)	0.0012 (10)	0.0034 (10)
C13	0.0306 (13)	0.0228 (13)	0.0204 (12)	-0.0016 (11)	0.0006 (10)	-0.0047 (10)
C14	0.0184 (11)	0.0261 (13)	0.0199 (11)	0.0009 (10)	0.0030 (9)	0.0011 (10)
C15	0.0318 (12)	0.0199 (12)	0.0238 (12)	0.0043 (10)	0.0078 (10)	-0.0025 (10)
C16	0.0367 (14)	0.0227 (13)	0.0297 (13)	-0.0025 (11)	0.0085 (11)	-0.0062 (11)
C17	0.0360 (14)	0.0361 (16)	0.0314 (14)	0.0074 (12)	0.0140 (12)	0.0112 (12)

Geometric parameters (Å, °)

Bi—Cl2	2.5037 (10)	C2—C14	1.480 (4)	
Bi—Cl4	2.5737 (11)	C3—C4	1.445 (4)	
Bi—Cl3	2.6910 (7)	C4—C9	1.405 (3)	
Bi—Cl3 ⁱ	2.6911 (7)	C4—C5	1.411 (3)	
Bi—Cl1	2.8834 (8)	C5—C6	1.348 (4)	
Bi—Cl1 ⁱⁱ	3.0687 (9)	С5—Н5	0.95	
Bi—Bi ⁱⁱ	4.4596 (5)	С6—С7	1.422 (4)	

Cl1—Bi ⁱⁱ	3.0687 (9)	C7—C8	1.400 (4)
F2—C6	1.353 (3)	C8—C9	1.408 (4)
O1—C14	1.214 (3)	C8—H8	0.95
O2—C14	1.323 (3)	C10-C11	1.507 (4)
O2—H4	0.84	C10—H10A	0.99
Q3—C3	1.277 (3)	C10—H10B	0.99
O3—H3	0.84	C11—H11A	0.99
05—H5B	0.828 (10)	C11—H11B	0.99
05—H5C	0.826(11)	C12—C13	1 516 (4)
N1—C7	1.386 (3)	C12—H12A	0.99
N1-C13	1 455 (3)	C12—H12B	0.99
N1-C10	1.139(3) 1 479(3)	C13—H13A	0.99
N2-C17	1 486 (4)	C13—H13B	0.99
N2-C11	1.100(1) 1.501(3)	C15-C16	1 507 (4)
N_2 C12	1.501(3) 1 503(3)	C15—H15A	0.99
N2—H2	0.93	C15—H15B	0.99
N3	1 343 (3)	C16—H16A	0.99
N3-C9	1.343(3) 1 401 (3)	C16—H16B	0.98
N3	1.401(3) 1 488(3)	C16—H16C	0.98
C_1 C_2	1.400(5) 1.377(4)	C17 H17A	0.98
C1H1A	0.95	C17_H17B	0.98
$C_2 = C_3$	1.424(4)	C17—H17C	0.98
62–63	1.424 (4)	01/	0.98
$\Omega 6 \cdots \Omega 6^{i}$	2 822 (6)	06···03 ^v	3 091 (4)
06···C16 ⁱⁱⁱ	2.822 (0)	0.00 C	2888(7)
0605 ^{iv}	2.803(5) 2.961(4)	$07 \cdot 07^{vi}$	2.000(7) 3 146(14)
06···06 ⁱⁱⁱ	2.901 (4)	07 07	5.140 (14)
00 00	3.074 (0)		
Cl2—Bi—Cl4	95.56 (4)	N1—C7—C8	122.8 (2)
Cl2—Bi—Cl3	87.046 (14)	N1—C7—C6	120.2 (2)
Cl4—Bi—Cl3	93.594 (14)	C8—C7—C6	116.7 (2)
Cl2—Bi—Cl3 ⁱ	87.046 (14)	C7—C8—C9	120.9 (2)
Cl4—Bi—Cl3 ⁱ	93.594 (14)	С7—С8—Н8	119.6
Cl3—Bi—Cl3 ⁱ	171.10 (3)	С9—С8—Н8	119.6
Cl2—Bi—Cl1	87.06 (3)	N3—C9—C4	118.9 (2)
Cl4—Bi—Cl1	177.38 (4)	N3—C9—C8	120.9 (2)
Cl3—Bi—Cl1	86.529 (14)	C4—C9—C8	120.2 (2)
Cl3 ⁱ —Bi—Cl1	86.529 (14)	N1-C10-C11	109.9 (2)
Cl2—Bi—Cl1 ⁱⁱ	170.06 (3)	N1—C10—H10A	109.7
Cl4—Bi—Cl1 ⁱⁱ	94.38 (4)	C11—C10—H10A	109.7
Cl3—Bi—Cl1 ⁱⁱ	92.335 (14)	N1-C10-H10B	109.7
$C13^{i}$ Bi $C11^{ii}$	92.335 (14)	C11—C10—H10B	109.7
Cl1—Bi—Cl1 ⁱⁱ	83.00 (3)	H10A—C10—H10B	108.2
Cl2—Bi—Bi ⁱⁱ	130.14 (2)	N2—C11—C10	110.0 (2)
Cl4—Bi—Bi ⁱⁱ	134.31 (3)	N2—C11—H11A	109.7
Cl3—Bi—Bi ⁱⁱ	89.364 (14)	C10—C11—H11A	109.7
Cl3 ⁱ —Bi—Bi ⁱⁱ	89.364 (14)	N2—C11—H11B	109.7
Cl1—Bi—Bi ⁱⁱ	43.076 (18)	C10—C11—H11B	109.7
	- (-)		

Cl1 ⁱⁱ —Bi—Bi ⁱⁱ	39.921 (15)	H11A—C11—H11B	108.2
Bi—Cl1—Bi ⁱⁱ	97.00 (2)	N2—C12—C13	110.8 (2)
С14—О2—Н4	109.5	N2—C12—H12A	109.5
С3—О3—Н3	109.5	C13—C12—H12A	109.5
H5B—O5—H5C	117 (3)	N2—C12—H12B	109.5
C7—N1—C13	118.3 (2)	C13—C12—H12B	109.5
C7—N1—C10	118.5 (2)	H12A—C12—H12B	108.1
C13—N1—C10	111.7 (2)	N1—C13—C12	110.1 (2)
C17—N2—C11	111.8 (2)	N1—C13—H13A	109.6
C17—N2—C12	111.1 (2)	C12—C13—H13A	109.6
C11—N2—C12	109.50 (19)	N1—C13—H13B	109.6
C17—N2—H2	108.1	C12—C13—H13B	109.6
C11—N2—H2	108.1	H13A—C13—H13B	108.2
C12—N2—H2	108.1	O1—C14—O2	123.6 (2)
C1—N3—C9	120.1 (2)	O1—C14—C2	122.4 (2)
C1—N3—C15	119.4 (2)	O2—C14—C2	114.0 (2)
C9—N3—C15	120.5 (2)	N3—C15—C16	112.5 (2)
N3—C1—C2	123.6 (2)	N3—C15—H15A	109.1
N3—C1—H1A	118.2	C16—C15—H15A	109.1
C2—C1—H1A	118.2	N3—C15—H15B	109.1
C1—C2—C3	119.7 (2)	C16—C15—H15B	109.1
C1—C2—C14	121.2 (2)	H15A—C15—H15B	107.8
C3—C2—C14	119.1 (2)	C15—C16—H16A	109.5
O3—C3—C2	126.0 (2)	C15—C16—H16B	109.5
O3—C3—C4	117.4 (2)	H16A—C16—H16B	109.5
C2—C3—C4	116.5 (2)	C15—C16—H16C	109.5
C9—C4—C5	118.8 (2)	H16A—C16—H16C	109.5
C9—C4—C3	121.1 (2)	H16B—C16—H16C	109.5
C5—C4—C3	120.1 (2)	N2—C17—H17A	109.5
C6—C5—C4	120.0 (2)	N2—C17—H17B	109.5
С6—С5—Н5	120.0	H17A—C17—H17B	109.5
C4—C5—H5	120.0	N2—C17—H17C	109.5
C5—C6—F2	118.5 (2)	H17A—C17—H17C	109.5
C5—C6—C7	123.3 (2)	H17B—C17—H17C	109.5
F2—C6—C7	118.1 (2)		

Symmetry codes: (i) x, -y+1, z; (ii) -x+1, -y+1, -z+2; (iii) -x+2, y, -z+1; (iv) x+1, -y+1, z; (v) -x+3/2, y+1/2, -z+1; (vi) -x, -y+1, -z+2.

II. J		18	0)
Hyarogen-bona	geometry	(A,)

D—H···A	<i>D</i> —Н	H…A	D··· A	D—H···A	
02—H4…Cl5 ^{vii}	0.84	2.18	3.014 (2)	174	
O3—H3…O1	0.84	1.96	2.675 (3)	143	
O3—H3····Cl6 ^{viii}	0.84	2.06	2.559 (5)	118	
O5— $H5B$ ···O1 ^{ix}	0.83 (1)	2.01 (2)	2.790 (3)	157 (4)	
O5—H5 <i>C</i> ···O7 ^x	0.83 (1)	2.03 (1)	2.851 (5)	173 (3)	
O5—H5 <i>C</i> ···Cl7 ^x	0.83 (1)	2.24 (1)	3.056 (4)	170 (3)	

N2—H2···Cl1^{xi} 0.93 2.52 3.262 (2) 137 N2—H2···Cl3^{xii} 0.93 2.77 3.423 (2) 128

Symmetry codes: (vii) x, y, z+1; (viii) -x+3/2, y-1/2, -z+1; (ix) -x+1/2, -y+1/2, -z+1; (x) -x, -y+1, -z+1; (xi) -x+1, -y+1, -z+1; (xii) -x+1, y, -z+1.