metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2,2'-(p-Phenylene)bis(1,4,5,6-tetrahydropyrimidinium) bis[dicyanidoargentate(I)]

Zhi-Yu Jiang,^a Hua-Ze Dong,^b Gong Zhang^b and Lin Cheng^a*

^aDepartment of Chemistry and Chemical Engineering, Southeast University, Nanjing, People's Republic of China, and ^bDepartment of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, People's Republic of China

Correspondence e-mail: cep02chl@yahoo.com.cn

Received 24 May 2008; accepted 26 May 2008

Key indicators: single-crystal X-ray study; T = 273 K; mean σ (C–C) = 0.006 Å; R factor = 0.038; wR factor = 0.093; data-to-parameter ratio = 14.9.

The asymmetric unit of the title compound, (C14H20N4)[Ag(CN)2]2, contains one-half of a centrosymmetric 2,2'-(*p*-phenylene)bis(1,4,5,6-tetrahydropyrimidinium) (H₂btb) cation and one $[Ag(CN)_2]^-$ anion. In the anions, the Ag^I atoms adopt near linear coordination modes with the two attached cyanide groups $[C-Ag-C = 173.3 (2)^{\circ}]$. In the crystal structure, each H₂btb cation links four [Ag(CN)₂]⁻ anions via $N-H \cdots N$ hydrogen bonds into a one-dimensional ribbon.

Related literature

For related structures, see: Braga et al. (2000); Felix et al. (1998). For related literature, see: Burchell et al. (2004); Holliday & Mirkin (2001).

Experimental

Crystal data

 $(C_{14}H_{20}N_4)[Ag(CN)_2]_2$ $\gamma = 68.066 \ (2)^{\circ}$ $M_r = 564.16$ V = 518.76 (12) Å³ Triclinic, $P\overline{1}$ Z = 1a = 6.6930 (9) Å Mo $K\alpha$ radiation b = 7.276 (1) Å $\mu = 1.91 \text{ mm}^{-1}$ c = 11.4982 (15) Å T = 273 (2) K $\alpha = 89.963 \ (2)^{\circ}$ $0.20 \times 0.18 \times 0.15 \text{ mm}$ $\beta = 87.318 (2)^{\circ}$

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS: Bruker, 1998) $T_{\min} = 0.702, T_{\max} = 0.763$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.037$	H atoms treated by a mixture of
$wR(F^2) = 0.093$	independent and constrained
S = 1.09	refinement
2015 reflections	$\Delta \rho_{\rm max} = 1.07 \ {\rm e} \ {\rm \AA}^{-3}$
135 parameters	$\Delta \rho_{\rm min} = -0.33 \ {\rm e} \ {\rm \AA}^{-3}$

4040 measured reflections

 $R_{\rm int} = 0.015$

2015 independent reflections

1769 reflections with $I > 2\sigma(I)$

Table 1

D-

N1-N2

Hydrogen-bond geometry (Å, °).

-H···A	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$-H1C \cdots N4^{i}$ $-H2C \cdots N3$	0.78 (4) 0.79 (4)	2.13 (4) 2.13 (4)	2.903 (4) 2.905 (5)	175 (4) 168 (3)
maatuu aadaa (i) a	1			

Symmetry code: (i) x - 1, y + 1, z + 1.

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT-Plus (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors thank the Program for Young Excellent Talents in Southeast University for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2718).

References

Braga, D., Maini, L., Grepioni, F., De Cian, A., Felix, O., Fischer, J. & Hosseini, M. W. (2000). New J. Chem. 24, 547-553.

Bruker (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Burchell, T. J., Eisler, D. J. & Puddephatt, R. J. (2004). Chem. Commun. pp. 944-945.

Felix, O., Hosseini, M. W., De Cian, A. & Fischer, J. (1998). New J. Chem. 22, 1389-1393.

Holliday, B. J. & Mirkin, C. A. (2001). Angew. Chem. Int. Ed. 40, 2022-2043. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2008). E64, m858 [doi:10.1107/S1600536808015791]

2,2'-(*p*-Phenylene)bis(1,4,5,6-tetrahydropyrimidinium) bis-[dicyanidoargentate(I)]

Zhi-Yu Jiang, Hua-Ze Dong, Gong Zhang and Lin Cheng

S1. Comment

Supramolecular chemistry has been a rapidly growing field concerning with the construction of supramolecular assemblies held together by non-classical chemical interactions in addition to covalent bonds (Holliday & Mirkin, 2001). A variety of weak forces, such as hydrogen bond, π – π stacking, and metal–ligand coordination, have been extensively used in this field (Burchell *et al.*, 2004). Within the various types of organic ligands utilized in assembly of supramolecular structures, tetrahydropyrimidines have attracted considerable interest for their versatile coordination mode with the protonated or deprotonated moiety and potential to form supramolecular aggregates through hydrogen bonding (Braga *et al.*, 2000; Felix *et al.*, 1998).

Herein, we report the crystal structure of the title compound, $(C_{14}H_{20}N_4).2(C_2AgN_2)$, based on a tetrahydropyrimidine ligand–1,4-bis(1,4,5,6-tetrahydropyrimidin-2-yl)benzene. The asymmetric unit of the title compound, $(C_{14}H_{20}N_4).2(C_2AgN_2)$, contains half a H₂btb cation (btb = 1,4-bis(1,4,5,6-tetrahydropyrimidin-2-yl)benzene) and one Ag(CN)₂ anion. In the compound, each H₂btb cation links four Ag(CN)₂ anions by the N—H···N hydrogen bonds into an one-dimensional ribbon. Meanwhile, each pair of adjacent H₂btb cations are hydrogen-bonded by two parallel Ag(CN)₂ anions. The hydrogen-bonding distances are 2.904 (5) and 2.905 (6) Å. In one chain, the shortest Ag···Ag distance is 4.218 (2) Å. The distance of adjacent H₂btb cations seperated by Ag(CN)₂ anions is 13.655 (3) Å.

S2. Experimental

A mixture of btb (0.024 g, 0.1 mmol), $k[Ag(CN)_2]$ (0.010 g, 0.05 mmol), and water (8 ml) was stirred for 1 h at room temperature, and then filtered. The filtrate was allowed to evaporate slowly at room temperature. After 3 weeks, colorless block crystals were obtained in 60% yield (0.034 g) based on btb.

S3. Refinement

H atoms bonded to N atoms were located in a difference map and they were freely refined. Other H atoms were positioned geometrically and refined using a riding model with C—H = 0.97 Å and with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

Perspective view of the title compound with 30% displacement ellipsoids. H atoms bonded to C atoms have been omitted for clarity. [Symmetry code (A): 3-*x*, -*y*, 1-*z*.]

Figure 2

The hydrogen-bonding pattern of the title compound.

2,2'-(p-Phenylene)bis(1,4,5,6-tetrahydropyrimidinium) bis[dicyanidoargentate(I)]

Crystal data	
$(C_{14}H_{20}N_4)[Ag(CN)_2]_2$	Z = 1
$M_r = 564.16$	F(000) = 278
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.806 {\rm Mg} {\rm m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 6.6930 (9) Å	Cell parameters from 783 reflections
b = 7.276 (1) Å	$\theta = 2.5 - 28.0^{\circ}$
c = 11.4982 (15) Å	$\mu = 1.91 \text{ mm}^{-1}$
$\alpha = 89.963 \ (2)^{\circ}$	T = 273 K
$\beta = 87.318 \ (2)^{\circ}$	Block, colourless
$\gamma = 68.066 \ (2)^{\circ}$	$0.20 \times 0.18 \times 0.15 \text{ mm}$
$V = 518.76 (12) \text{ Å}^3$	
Data collection	
Bruker SMART CCD area-detector	Graphite monochromator
diffractometer	φ and ω scans
Radiation source: fine-focus sealed tube	

Absorption correction: multi-scan $R_{int} = 0.015$ (SADABS; Bruker, 1998) $\theta_{max} = 26.0^{\circ}, \theta_{min} = 3.0^{\circ}$ $T_{min} = 0.702, T_{max} = 0.763$ $h = -8 \rightarrow 7$ 4040 measured reflections $k = -8 \rightarrow 8$ 2015 independent reflections $l = -14 \rightarrow 14$ 1769 reflections with $I > 2\sigma(I)$ $I = 2\sigma(I)$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.037$	Hydrogen site location: inferred from
$wR(F^2) = 0.093$	neighbouring sites
S = 1.09	H atoms treated by a mixture of independent
2015 reflections	and constrained refinement
135 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0523P)^2 + 0.1388P]$
0 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta \rho_{\rm max} = 1.07 \text{ e } \text{\AA}^{-3}$
	$\Delta \rho_{\min} = -0.33 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Ag1	1.75049 (5)	-0.46673 (5)	-0.11338 (2)	0.06556 (17)
C1	0.7736 (6)	0.2925 (7)	0.3110 (3)	0.0600 (10)
H1A	0.7672	0.4129	0.2722	0.072*
H1B	0.6401	0.3208	0.3572	0.072*
C2	0.8010 (7)	0.1333 (8)	0.2228 (4)	0.0702 (12)
H2A	0.6862	0.1799	0.1688	0.084*
H2B	0.7908	0.0185	0.2617	0.084*
C3	1.0154 (6)	0.0746 (6)	0.1567 (3)	0.0589 (10)
H3A	1.0439	-0.0470	0.1127	0.071*
H3B	1.0125	0.1773	0.1023	0.071*
C4	1.1503 (5)	0.1093 (5)	0.3465 (3)	0.0385 (7)
C5	1.3309 (5)	0.0529 (5)	0.4257 (3)	0.0370 (6)
C6	1.3411 (5)	0.1879 (5)	0.5078 (3)	0.0416 (7)
H6A	1.2346	0.3145	0.5128	0.050*
C7	1.4921 (5)	-0.1357 (5)	0.4178 (3)	0.0432 (7)
H7A	1.4869	-0.2265	0.3623	0.052*
C8	1.6530 (7)	-0.3227 (7)	0.0448 (4)	0.0652 (11)
С9	1.8252 (6)	-0.5801 (6)	-0.2799 (3)	0.0536 (9)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

supporting information

N1	0.9572 (4)	0.2250 (5)	0.3863 (3)	0.0459 (7)
H1C	0.934 (5)	0.254 (5)	0.452 (3)	0.040 (9)*
N2	1.1869 (5)	0.0453 (5)	0.2384 (2)	0.0456 (7)
H2C	1.303 (6)	-0.023 (5)	0.214 (3)	0.036 (9)*
N3	1.5816 (7)	-0.2314 (7)	0.1250 (3)	0.0828 (12)
N4	1.8570 (5)	-0.6394 (5)	-0.3728 (3)	0.0616 (9)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ag1	0.0783 (3)	0.0661 (2)	0.0430 (2)	-0.01739 (17)	0.00644 (14)	-0.01324 (14)
C1	0.0390 (18)	0.078 (3)	0.052 (2)	-0.0090 (17)	-0.0110 (16)	0.0055 (19)
C2	0.059 (2)	0.084 (3)	0.067 (3)	-0.024 (2)	-0.028 (2)	0.005 (2)
C3	0.067 (2)	0.068 (2)	0.0389 (19)	-0.0198 (19)	-0.0212 (17)	-0.0030 (17)
C4	0.0378 (16)	0.0433 (17)	0.0334 (15)	-0.0137 (13)	-0.0051 (12)	0.0008 (13)
C5	0.0361 (15)	0.0434 (16)	0.0314 (15)	-0.0144 (13)	-0.0035 (12)	-0.0011 (12)
C6	0.0396 (16)	0.0402 (16)	0.0383 (17)	-0.0071 (13)	-0.0021 (13)	-0.0050 (13)
C7	0.0440 (17)	0.0429 (17)	0.0391 (17)	-0.0119 (14)	-0.0053 (13)	-0.0119 (13)
C8	0.064 (2)	0.074 (3)	0.047 (2)	-0.015 (2)	0.0055 (18)	-0.010 (2)
C9	0.055 (2)	0.056 (2)	0.047 (2)	-0.0178 (16)	0.0016 (16)	-0.0061 (17)
N1	0.0383 (14)	0.0607 (18)	0.0327 (15)	-0.0112 (12)	-0.0053 (11)	-0.0030 (13)
N2	0.0430 (15)	0.0557 (17)	0.0335 (14)	-0.0126 (13)	-0.0065 (12)	-0.0061 (12)
N3	0.085 (3)	0.097 (3)	0.052 (2)	-0.020 (2)	0.0103 (19)	-0.023 (2)
N4	0.0624 (19)	0.071 (2)	0.048 (2)	-0.0220 (17)	0.0042 (15)	-0.0109 (16)

Geometric parameters (Å, °)

Ag1—C9	2.050 (4)	C4—N1	1.312 (4)	
Ag1—C8	2.052 (4)	C4—C5	1.481 (4)	
C1—N1	1.466 (4)	C5—C6	1.385 (4)	
C1—C2	1.493 (7)	C5—C7	1.393 (4)	
C1—H1A	0.9700	$C6-C7^{i}$	1.376 (4)	
C1—H1B	0.9700	C6—H6A	0.9300	
С2—С3	1.503 (6)	C7—C6 ⁱ	1.376 (4)	
C2—H2A	0.9700	С7—Н7А	0.9300	
C2—H2B	0.9700	C8—N3	1.115 (6)	
C3—N2	1.471 (4)	C9—N4	1.133 (5)	
С3—НЗА	0.9700	N1—H1C	0.78 (4)	
С3—Н3В	0.9700	N2—H2C	0.79 (4)	
C4—N2	1.307 (4)			
C9—Ag1—C8	173.24 (15)	N2—C4—C5	119.5 (3)	
N1-C1-C2	108.6 (3)	N1-C4-C5	119.0 (3)	
N1—C1—H1A	110.0	C6—C5—C7	119.6 (3)	
C2-C1-H1A	110.0	C6—C5—C4	120.1 (3)	
N1—C1—H1B	110.0	C7—C5—C4	120.3 (3)	
C2C1H1B	110.0	C7 ⁱ —C6—C5	120.3 (3)	
H1A—C1—H1B	108.3	C7 ⁱ —C6—H6A	119.8	

C1—C2—C3 C1—C2—H2A	111.0 (4) 109.4	C5—C6—H6A C6 ⁱ —C7—C5	119.8 120.1 (3)
C3—C2—H2A	109.4	C6 ⁱ —C7—H7A	120.0
C1—C2—H2B	109.4	С5—С7—Н7А	120.0
C3—C2—H2B	109.4	N3—C8—Ag1	172.6 (4)
H2A—C2—H2B	108.0	N4—C9—Ag1	177.0 (4)
N2—C3—C2	109.8 (3)	C4—N1—C1	121.6 (3)
N2—C3—H3A	109.7	C4—N1—H1C	121 (3)
С2—С3—НЗА	109.7	C1—N1—H1C	117 (3)
N2—C3—H3B	109.7	C4—N2—C3	123.5 (3)
С2—С3—Н3В	109.7	C4—N2—H2C	122 (2)
НЗА—СЗ—НЗВ	108.2	C3—N2—H2C	114 (2)
N2—C4—N1	121.5 (3)		

Symmetry code: (i) -x+3, -y, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H··· A
N1—H1C···N4 ⁱⁱ	0.78 (4)	2.13 (4)	2.903 (4)	175 (4)
N2—H2 <i>C</i> ···N3	0.79 (4)	2.13 (4)	2.905 (5)	168 (3)

Symmetry code: (ii) *x*-1, *y*+1, *z*+1.