

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Poly[[triaquatri- μ_5 -tartratodilanthanum(III)] dihvdrate]

Liu Shi-Zhu

School of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China Correspondence e-mail: liushizhu521@126.com

Received 18 April 2008; accepted 11 June 2008

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.007 Å; disorder in solvent or counterion; R factor = 0.026; wR factor = 0.057; data-toparameter ratio = 11.0.

In the title polymer, ${[La_2(C_4H_4O_6)_3(H_2O)_3]\cdot 2H_2O]_n}$, two symmetry-independent La^{III} ions are nine-coordinated and display a distorted monocapped square-antiprismatic geometry. One is coordinated by seven O atoms from four tartrate ligands and two water molecules, the other by eight O atoms from five tartrate ligands and one water molecule. The three tartrate ligands in the asymmetric unit act identically as μ_5 -ligands, which link lanthanum centres to form a threedimensional coordination framework. An extensive network of hydrogen bonds is observed in the crystal structure, involving two uncoordinated water molecules, one of which is disordered over two positions, with occupancies of 0.550 (13) and 0.450 (13).

Related literature

For related literature, see: Yaghi et al. (1998, 2003); Serre et al. (2004); James et al. (2003).

V = 2148.22 (6) Å³

Mo Ka radiation

 $0.25 \times 0.21 \times 0.18 \text{ mm}$

19115 measured reflections

3771 independent reflections

3226 reflections with $I > 2\sigma(I)$

 $\mu = 4.04 \text{ mm}^{-1}$

T = 296 (2) K

 $R_{\rm int} = 0.047$

Z = 4

Experimental

Crystal data

[La2(C4H4O6)3(H2O)3]·2H2O $M_r = 812.12$ Monoclinic, $P2_1/c$ a = 12.6271 (2) Å b = 12.9273 (2) Å c = 16.6556 (3) Å $\beta = 127.801 (1)^{\circ}$

Data collection

Bruker APEXII area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\rm min}=0.372,\ T_{\rm max}=0.480$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.026$	344 parameters
$wR(F^2) = 0.057$	H-atom parameters constrained
S = 1.05	$\Delta \rho_{\rm max} = 0.87 \ {\rm e} \ {\rm \AA}^{-3}$
3771 reflections	$\Delta \rho_{\rm min} = -0.65 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Hydrogen-bond	geometry	(Å,	°).	
---------------	----------	-----	-----	--

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O3-H3A\cdots O8^{i}$	0.82	1.87	2.677 (4)	169
$O4-H4\cdots O18^{ii}$	0.82	1.80	2.619 (4)	174
O9−H9···O16	0.82	2.46	3.177 (5)	147
$O10-H10A\cdots O8^{iii}$	0.82	1.94	2.745 (4)	167
$O15-H15\cdots O2^{i}$	0.82	1.82	2.632 (4)	175
$O16-H16\cdots O4WA$	0.82	1.89	2.667 (9)	158
$O16-H16\cdots O4WB$	0.82	1.94	2.708 (9)	157
	4 0	,		

Symmetry codes: (i) $-x, y - \frac{1}{2}, -z + \frac{3}{2}$; (ii) $-x, y + \frac{1}{2}, -z + \frac{3}{2}$; (iii) -x, -y + 2, -z + 2.

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The author acknowledges South China Normal University for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2174).

References

- Bruker (2004). SMART and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.
- James, S. L. (2003). Chem. Soc. Rev. 32, 276-288.
- Serre, C., Millange, F., Thouvenot, C., Gardant, N., Pellé, F. & Férey, G. (2004). J. Mater. Chem. 14, 1540-1543.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Yaghi, O. M., Li, H., Davis, C., Richardson, D. & Groy, T. L. (1998). Acc. Chem. Res. 31, 474-484.
- Yaghi, O. M., O'Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M. & Kim, J. (2003). Nature (London), 423, 705-714.

supporting information

Acta Cryst. (2008). E64, m933 [doi:10.1107/S160053680801756X]

Poly[[triaquatri-µ₅-tartrato-dilanthanum(III)] dihydrate]

Liu Shi-Zhu

S1. Comment

The use of multifunctional organic linker molecules to polymerize metal centers into open-framework materials has led to the development of a rich field of chemistry (Yaghi *et al.*, 1998, 2003; Serre *et al.*, 2004; James, 2003) owing to the potential applications of these materials in catalysis, separation, gas storage and molecular recognition. Among such novel open-framework materials, lanthanide oxalates are particularly noteworthy. The wide variety of coordination modes of the tartarate anion permits the use of metal-tartarate units as excellent building blocks to construct a great diversity of frameworks ranging from discrete oligomeric entities to one-, two- and three-dimensional networks. Recently, we obtained the title La^{III} polymer, (I), and its crystal structure is reported here.

In the asymmetric unit of (I), two symmetry independent La^{III} ions are nine-coordinated and display a distorted monocapped square antiprism geometry. One is coordinated by seven O atoms from four tartarate ligands and two coordinated water molecules, the other is defined by eight O atoms from five tartarate ligands and one coordinated water molecule (Fig. 1). All three unique tartarate ligands only act as one type of coordination mode, which link lanthanum centres to form a three-dimensional coordination framework (Fig. 2). The shortest La…La separations in the solid are 6.207 (2), 6.520 (3) and 6.535 (2) Å. The voids between the individual metal complex units are filled with classical hydrogen bonded (Table 1) interstitial disordered water molecules.

S2. Experimental

A mixture of La_2O_3 (0.5 mmol), tartaric acid (1.5 mmol) and H_2O (10 ml) in the presence of $HClO_4$ (0.385 mmol) was stirred vigorously for 20 min and then sealed in a Teflon-lined stainless-steel autoclave (20 ml, capacity). The autoclave was heated to 433 K and maintained at this temperature for 7 days, and then cooled to room temperature at 5 K.h⁻¹. The crystals were obtained in *ca*. 46% yield based on La.

S3. Refinement

Lattice water molecule O4W is disordered over two sites, O4WA and O4WB, with refined occupancies of 0.450 (13) and 0.550 (13), respectively. Water H atoms were located in a difference map and refined isotropically with $U_{iso}(H) = 1.5U_{eq}(O)$ and a regularized geometry: O—H bond lengths were restrained to 0.82 (2)/0.85 (1) Å and H…H separations were restrained to 1.35 (2) Å for coordinated and 1.39 Å for interstitial water molecules. In the final cycles, a riding model was applied for all water H atoms. All other H atoms were placed in calculated positions with a C—H distance of 0.98 Å and O—H distance of 0.82 Å, and refined using a riding model with $U_{iso}(H) = 1.2U_{eq}(C)$ for CH groups and $U_{iso}(H) = 1.5U_{eq}(O)$ for hydroxyl groups.

Figure 1

The structure of (I), showing the atomic numbering scheme. Non-H atoms are shown with 30% probability displacement ellipsoids.

Figure 2

A packing view of (I), showing the inter and intramolecular hydrogen bonds.

Poly[[triaquatri-µ₅-tartrato-dilanthanum(III)] dihydrate]

Crystal data

 $[La_{2}(C_{4}H_{4}O_{6})_{3}(H_{2}O)_{3}]\cdot 2H_{2}O$ $M_{r} = 812.12$ Monoclinic, $P2_{1}/c$ Hall symbol: -P 2ybc a = 12.6271 (2) Å b = 12.9273 (2) Å c = 16.6556 (3) Å $\beta = 127.801$ (1)° V = 2148.22 (6) Å³ Z = 4 F(000) = 1568 $D_x = 2.511 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 15678 reflections $\theta = 1.4-28.0^{\circ}$ $\mu = 4.04 \text{ mm}^{-1}$ T = 296 KBlock, colourless $0.25 \times 0.21 \times 0.18 \text{ mm}$ Data collection

Bruker APEXII area-detector	19115 measured reflections
diffractometer	3771 independent reflections
Radiation source: fine-focus sealed tube	3226 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{int} = 0.047$
φ and ω scans	$\theta_{max} = 25.2^{\circ}, \ \theta_{min} = 2.0^{\circ}$
Absorption correction: multi-scan	$h = -15 \rightarrow 15$
(<i>SADABS</i> ; Sheldrick, 1996)	$k = -15 \rightarrow 14$
$T_{\min} = 0.372, T_{\max} = 0.480$	$l = -19 \rightarrow 19$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.026$	Hydrogen site location: inferred from
$wR(F^2) = 0.057$	neighbouring sites
S = 1.05	H-atom parameters constrained
3771 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0203P)^2 + 3.8165P]$
344 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{max} = 0.001$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 0.87$ e Å ⁻³
direct methods	$\Delta\rho_{min} = -0.65$ e Å ⁻³

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
C1	-0.0900 (4)	0.9566 (4)	0.5698 (3)	0.0155 (10)	
C2	-0.1083 (4)	0.8523 (4)	0.5199 (3)	0.0177 (10)	
H2	-0.0295	0.8416	0.5224	0.021*	
C3	-0.2308 (4)	0.8455 (4)	0.4086 (3)	0.0176 (10)	
Н3	-0.2432	0.9136	0.3782	0.021*	
C4	-0.2140 (4)	0.7672 (4)	0.3482 (3)	0.0174 (10)	
C5	0.0357 (5)	1.0235 (4)	0.9197 (3)	0.0183 (10)	
C6	0.1840 (4)	0.9984 (4)	0.9767 (3)	0.0184 (10)	
H6	0.2249	1.0587	0.9697	0.022*	
C7	0.2635 (4)	0.9782 (3)	1.0918 (3)	0.0165 (10)	
H7	0.2333	1.0265	1.1193	0.020*	
C8	0.4144 (4)	0.9950 (4)	1.1463 (3)	0.0172 (10)	
С9	0.2706 (4)	0.7265 (4)	0.8239 (3)	0.0171 (10)	
C10	0.2636 (4)	0.6536 (4)	0.8918 (3)	0.0152 (10)	
H10	0.2424	0.5841	0.8623	0.018*	
C11	0.3977 (4)	0.6497 (3)	0.9974 (3)	0.0150 (10)	
H11	0.4687	0.6446	0.9899	0.018*	
C12	0.4096 (4)	0.5570 (3)	1.0589 (3)	0.0137 (10)	
La1	-0.02226 (2)	0.81431 (2)	0.77118 (2)	0.01422 (8)	
La2	-0.54797 (2)	0.73846 (2)	0.22545 (2)	0.01381 (8)	
01	-0.0471 (3)	0.9566 (3)	0.6612 (2)	0.0248 (8)	
O2	-0.1144 (3)	1.0376 (2)	0.5208 (2)	0.0207 (7)	
03	-0.1053 (3)	0.7743 (2)	0.5816 (2)	0.0221 (7)	
H3A	-0.0661	0.7267	0.5776	0.033*	
O4	-0.3519 (3)	0.8206 (2)	0.3936 (2)	0.0184 (7)	

H4	-0.3650	0.8645	0.4222	0.028*	
05	-0.3178 (3)	0.7172 (2)	0.2791 (2)	0.0221 (8)	
06	-0.1040 (3)	0.7609 (3)	0.3649 (2)	0.0232 (8)	
07	-0.0495 (3)	0.9637 (3)	0.8484 (2)	0.0255 (8)	
08	0.0074 (3)	1.1045 (2)	0.9438 (3)	0.0226 (8)	
O9	0.1947 (3)	0.9140 (3)	0.9266 (3)	0.0294 (8)	
H9	0.2372	0.8703	0.9710	0.044*	
O10	0.2457 (3)	0.8752 (2)	1.1112 (2)	0.0237 (8)	
H10A	0.1714	0.8711	1.0973	0.036*	
011	0.4892 (3)	0.9167 (2)	1.1844 (2)	0.0214 (7)	
012	0.4517 (3)	1.0853 (2)	1.1460 (2)	0.0213 (7)	
013	0.1759 (3)	0.7910 (3)	0.7713 (3)	0.0256 (8)	
O14	0.3687 (3)	0.7181 (3)	0.8235 (2)	0.0235 (8)	
015	0.1587 (3)	0.6864 (2)	0.8953 (2)	0.0197 (7)	
H15	0.1438	0.6427	0.9228	0.030*	
O16	0.4191 (3)	0.7419 (2)	1.0529 (2)	0.0212 (7)	
H16	0.4526	0.7832	1.0370	0.032*	
O17	0.4440 (3)	0.5724 (2)	1.1455 (2)	0.0238 (8)	
O18	0.3836 (3)	0.4696 (2)	1.0164 (2)	0.0194 (7)	
O1W	-0.2694 (3)	0.8479 (3)	0.6519 (3)	0.0322 (9)	
H1W	-0.3029	0.8425	0.6809	0.048*	
H2W	-0.3074	0.8967	0.6129	0.048*	
O2W	-0.1015 (3)	0.6276 (3)	0.7134 (2)	0.0307 (8)	
H4W	-0.1775	0.6138	0.6932	0.046*	
H3W	-0.0543	0.5815	0.7543	0.046*	
O3W	-0.7660 (3)	0.6479 (3)	0.1489 (3)	0.0363 (10)	
H6W	-0.8076	0.6421	0.1715	0.054*	
H5W	-0.8025	0.6085	0.1004	0.054*	
O5W	0.6940 (6)	0.5141 (5)	0.6746 (7)	0.139 (3)	
H10W	0.6504	0.5618	0.6312	0.208*	
H9W	0.6446	0.4937	0.6900	0.208*	
O4WA	0.4665 (13)	0.9039 (8)	0.9799 (8)	0.056 (5)	0.450 (13)
H4WA	0.4304	0.8494	0.9818	0.084*	0.450 (13)
H4WB	0.4877	0.8889	0.9417	0.084*	0.450 (13)
O4WB	0.5902 (11)	0.8436 (8)	1.0338 (7)	0.072 (4)	0.550 (13)
H4WC	0.5854	0.8295	0.9818	0.108*	0.550 (13)
H4WD	0.5400	0.8961	1.0169	0.108*	0.550 (13)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.008 (2)	0.020 (3)	0.017 (3)	-0.0002 (18)	0.008 (2)	0.000 (2)
C2	0.018 (2)	0.019 (3)	0.019 (2)	-0.0007 (19)	0.013 (2)	0.001 (2)
С3	0.014 (2)	0.018 (3)	0.019 (3)	-0.0001 (18)	0.010(2)	-0.001 (2)
C4	0.018 (3)	0.020 (3)	0.016 (2)	-0.0001 (19)	0.011 (2)	0.002 (2)
C5	0.026 (3)	0.015 (3)	0.017 (2)	0.000 (2)	0.015 (2)	0.005 (2)
C6	0.023 (2)	0.016 (3)	0.018 (2)	-0.0038 (19)	0.013 (2)	-0.003(2)
C7	0.025 (3)	0.010 (2)	0.019 (2)	0.0028 (19)	0.015 (2)	0.003 (2)

C8	0.025 (3)	0.015 (3)	0.013 (2)	0.000 (2)	0.012 (2)	-0.002 (2)
C9	0.019 (3)	0.020 (3)	0.013 (2)	-0.0007 (19)	0.010 (2)	-0.001 (2)
C10	0.015 (2)	0.015 (3)	0.020 (2)	0.0020 (18)	0.013 (2)	0.0033 (19)
C11	0.020 (2)	0.014 (2)	0.016 (2)	0.0004 (18)	0.013 (2)	-0.0021 (19)
C12	0.010(2)	0.016 (3)	0.018 (2)	0.0019 (18)	0.0102 (19)	-0.002 (2)
Lal	0.01520 (14)	0.01340 (16)	0.01582 (14)	0.00137 (10)	0.01041 (12)	0.00210 (11)
La2	0.01507 (14)	0.01329 (15)	0.01485 (14)	-0.00060 (10)	0.01008 (12)	-0.00145 (11)
01	0.035 (2)	0.024 (2)	0.0153 (18)	-0.0022 (15)	0.0153 (16)	-0.0006 (15)
O2	0.0321 (19)	0.0115 (18)	0.0204 (18)	0.0018 (14)	0.0170 (16)	0.0048 (14)
03	0.0296 (19)	0.0142 (18)	0.0211 (18)	0.0049 (14)	0.0148 (16)	0.0042 (14)
04	0.0148 (16)	0.0217 (19)	0.0211 (18)	-0.0020 (13)	0.0123 (14)	-0.0078 (14)
05	0.0188 (18)	0.027 (2)	0.0230 (18)	-0.0058 (14)	0.0140 (15)	-0.0108 (15)
06	0.0202 (18)	0.031 (2)	0.0234 (19)	-0.0026 (14)	0.0158 (15)	-0.0061 (15)
07	0.0218 (18)	0.025 (2)	0.0244 (19)	-0.0017 (14)	0.0116 (16)	-0.0084 (16)
08	0.0267 (18)	0.0119 (18)	0.034 (2)	-0.0001 (14)	0.0208 (16)	-0.0045 (15)
09	0.0268 (19)	0.033 (2)	0.0237 (19)	0.0059 (15)	0.0129 (16)	-0.0087 (16)
O10	0.0199 (17)	0.0202 (19)	0.033 (2)	0.0000 (14)	0.0170 (16)	0.0073 (16)
011	0.0196 (17)	0.0160 (18)	0.0259 (18)	-0.0002 (14)	0.0126 (15)	0.0017 (15)
012	0.0273 (18)	0.0150 (19)	0.0174 (17)	-0.0051 (14)	0.0115 (15)	-0.0027 (14)
013	0.0247 (19)	0.031 (2)	0.028 (2)	0.0126 (15)	0.0197 (16)	0.0147 (16)
O14	0.0207 (18)	0.033 (2)	0.0245 (19)	0.0064 (15)	0.0181 (16)	0.0072 (16)
015	0.0174 (17)	0.0201 (19)	0.0271 (19)	0.0030 (13)	0.0164 (15)	0.0106 (15)
016	0.0309 (19)	0.0135 (18)	0.0235 (18)	-0.0071 (14)	0.0189 (16)	-0.0049 (14)
O17	0.037 (2)	0.0175 (19)	0.0171 (18)	0.0001 (15)	0.0166 (16)	0.0003 (15)
O18	0.0267 (18)	0.0165 (19)	0.0195 (17)	-0.0007 (14)	0.0164 (15)	-0.0011 (14)
O1W	0.0219 (19)	0.051 (2)	0.028 (2)	0.0068 (16)	0.0173 (16)	0.0164 (18)
O2W	0.035 (2)	0.022 (2)	0.0256 (19)	-0.0047 (16)	0.0143 (17)	-0.0026 (16)
O3W	0.027 (2)	0.052 (3)	0.039 (2)	-0.0224 (17)	0.0246 (18)	-0.0308 (19)
O5W	0.117 (5)	0.100 (5)	0.255 (10)	0.012 (4)	0.142 (6)	0.041 (6)
O4WA	0.103 (11)	0.045 (7)	0.053 (7)	-0.036 (7)	0.064 (8)	-0.019 (5)
O4WB	0.090 (9)	0.075 (8)	0.056 (6)	-0.033 (7)	0.047 (6)	0.005 (5)

Geometric parameters (Å, °)

C1—O2	1.245 (5)	La1—O2W	2.563 (3)
C101	1.266 (5)	La1—O9	2.679 (3)
C1—C2	1.525 (6)	La1—O3	2.698 (3)
C2—O3	1.424 (5)	La2—O5	2.478 (3)
C2—C3	1.524 (6)	La2—O14 ⁱⁱ	2.488 (3)
С2—Н2	0.9800	La2—O17 ⁱⁱⁱ	2.496 (3)
C3—O4	1.427 (5)	La2—O3W	2.505 (3)
C3—C4	1.531 (6)	La2—O11 ⁱⁱⁱ	2.529 (3)
С3—Н3	0.9800	La2—O4	2.569 (3)
C4—O6	1.241 (5)	La2—O12 ^{iv}	2.606 (3)
C4—O5	1.269 (5)	La2—O16 ⁱⁱⁱ	2.641 (3)
C5—O8	1.249 (5)	La2—O10 ⁱⁱⁱ	2.730 (3)
C5—O7	1.265 (5)	O3—H3A	0.8187
C5—C6	1.527 (6)	O4—H4	0.8211

C6—O9	1.430 (5)	O6—La1 ^v	2.534 (3)
C6—C7	1.547 (6)	О9—Н9	0.8167
С6—Н6	0.9800	O10—La2 ^{vi}	2.730 (3)
C7—O10	1.420 (5)	O10—H10A	0.8180
С7—С8	1.543 (6)	O11—La2 ^{vi}	2.529 (3)
С7—Н7	0.9800	O12—La2 ^{vii}	2.606 (3)
C8—O11	1.258 (5)	O14—La2 ^{viii}	2.488 (3)
C8—O12	1.260 (5)	O15—H15	0.8188
C9—O14	1.249 (5)	O16—La2 ^{vi}	2.641 (3)
С9—013	1.268 (5)	O16—H16	0.8184
C9—C10	1.516 (6)	O17—La2 ^{vi}	2.496 (3)
C10—O15	1.426 (5)	O1W—H1W	0.8167
C10—C11	1.520 (6)	O1W—H2W	0.8174
C10—H10	0.9800	O2W—H4W	0.8180
C11—O16	1.429 (5)	O2W—H3W	0.8220
C11—C12	1.523 (6)	O3W—H6W	0.8155
C11—H11	0.9800	O3W—H5W	0.8177
C12—O17	1.241 (5)	O5W—H10W	0.8468
C12—O18	1.265 (5)	O5W—H9W	0.8478
La1—O7	2.458 (3)	O4WA—H4WA	0.8498
La1—O1	2.476 (3)	O4WA—H4WB	0.8499
La1—O1W	2.505 (3)	O4WA—H4WD	0.7409
La1—O13	2.519 (3)	O4WB—H4WC	0.8505
La1—O6 ⁱ	2.534 (3)	O4WB—H4WD	0.8503
La1—O15	2.537 (3)		
O2—C1—O1	122.7 (4)	O1—La1—O3	59.64 (10)
O2—C1—C2	119.5 (4)	O1W—La1—O3	72.73 (10)
O1—C1—C2	117.8 (4)	O13—La1—O3	69.61 (10)
O3—C2—C3	113.3 (4)	O6 ⁱ —La1—O3	129.38 (10)
O3—C2—C1	107.7 (4)	O15—La1—O3	109.80 (10)
C3—C2—C1	114.6 (4)	O2W—La1—O3	66.30 (10)
O3—C2—H2	106.9	O9—La1—O3	131.08 (10)
С3—С2—Н2	106.9	O5—La2—O14 ⁱⁱ	131.51 (10)
C1—C2—H2	106.9	O5—La2—O17 ⁱⁱⁱ	75.65 (10)
O4—C3—C2	113.9 (4)	O14 ⁱⁱ —La2—O17 ⁱⁱⁱ	130.47 (10)
O4—C3—C4	107.5 (4)	O5—La2—O3W	144.32 (11)
C2—C3—C4	113.1 (4)	O14 ⁱⁱ —La2—O3W	70.40 (10)
O4—C3—H3	107.3	O17 ⁱⁱⁱ —La2—O3W	69.74 (11)
С2—С3—Н3	107.3	O5—La2—O11 ⁱⁱⁱ	80.05 (10)
С4—С3—Н3	107.3	O14 ⁱⁱ —La2—O11 ⁱⁱⁱ	101.25 (11)
O6—C4—O5	124.2 (4)	O17 ⁱⁱⁱ —La2—O11 ⁱⁱⁱ	126.38 (10)
O6—C4—C3	118.9 (4)	O3W—La2—O11 ⁱⁱⁱ	128.09 (11)
O5—C4—C3	116.8 (4)	O5—La2—O4	61.24 (9)
O8—C5—O7	124.6 (4)	O14 ⁱⁱ —La2—O4	72.79 (10)
O8—C5—C6	117.5 (4)	O17 ⁱⁱⁱ —La2—O4	129.34 (10)
O7—C5—C6	117.8 (4)	O3W—La2—O4	140.56 (10)
O9—C6—C5	108.5 (4)	O11 ⁱⁱⁱ —La2—O4	72.77 (10)

O9—C6—C7	111.8 (4)	O5—La2—O12 ^{iv}	76.47 (10)
C5—C6—C7	115.0 (4)	O14 ⁱⁱ —La2—O12 ^{iv}	78.72 (10)
O9—C6—H6	107.0	O17 ⁱⁱⁱ —La2—O12 ^{iv}	68.33 (10)
С5—С6—Н6	107.0	O3W—La2—O12 ^{iv}	82.92 (11)
С7—С6—Н6	107.0	O11 ⁱⁱⁱ —La2—O12 ^{iv}	147.59 (10)
010	108.0 (3)	$O4$ —La2— $O12^{iv}$	76.44 (10)
010	111.6 (4)	$05-La2-016^{iii}$	76.20 (10)
C8—C7—C6	109.6 (3)	014^{ii} —La2— 016^{iii}	149.60 (10)
010—C7—H7	109.2	017^{iii} —La2— 016^{iii}	60.38 (10)
C8—C7—H7	109.2	O3W—La2—O16 ⁱⁱⁱ	93.63 (10)
С6—С7—Н7	109.2	$O11^{\text{iii}}$ La2 $O16^{\text{iii}}$	67.75 (10)
011 - C8 - 012	125.4 (4)	$04-La2-016^{iii}$	125.67 (9)
011 - C8 - C7	117 3 (4)	012^{iv} La2 010	126.16 (9)
012 - C8 - C7	117.2 (4)	$05-12^{-1}$	136.93(10)
012 - 00 - 013	124 9 (4)	014^{ii} La2 010^{iii}	72.81 (10)
014-09-010	1175(4)	017^{iii} I a2 010^{iii}	11840(10)
013 - C9 - C10	117.6 (4)	$0.3W - La^2 - 0.10^{iii}$	70 51 (11)
015 - 010 - 09	1090(3)	011^{iii} La2 010^{iii}	58 50 (9)
015 - C10 - C11	1115(4)	$04-1.22-010^{iii}$	111.26(10)
C9-C10-C11	110.6(4)	012^{iv} I 2^{2} 010	146.07 (9)
015-010-011	108.6	012 - La2 - 010 $016^{iii} - La2 - 010^{iii}$	77 54 (10)
C9-C10-H10	108.6	C1 - O1 - La1	1310(3)
$C_{11} - C_{10} - H_{10}$	108.6	$C^2 - O^3 - La1$	121.0(3)
016-010 110	110.8 (4)	$C_2 = O_3 = H_3 A$	103.0
016-011-012	108.7(3)	La1—O3—H3A	114 7
C10-C11-C12	112.6 (4)	$C_3 = O_4 = L_a^2$	1198(2)
016—C11—H11	108.2	C3	108.6
C10—C11—H11	108.2	$L_{a2} = 04 = H4$	121.1
C12—C11—H11	108.2	$C4-O5-La^2$	127.0(3)
017 - 012 - 018	125 4 (4)	$C4-O6-La^{v}$	127.0(3) 135.2(3)
017 - C12 - C11	1123.1(1) 118.4(4)	C5-O7-La1	133.2(3)
018 - C12 - C11	116.4 (4)	C6-O9-Ia1	131.5(3) 121.6(2)
07 - 12 - 01	78 94 (11)	C6-09-H9	104.2
07 - 1 = 01	76.88 (11)	$I_{21} = 09 = H9$	104.2
01 - 1 = 01W	75.70 (11)	$C7 - 010 - 1 \cdot 2^{v_i}$	104.9 123 3 (2)
07 - 121 - 013	123 42 (11)	C7 - 010 - H10A	123.3 (2)
01 - 1 = 013	76 42 (10)	$I_{a2^{vi}}$ 010 $H10A$	126.4
$01W - I_{21} - 013$	140.85(11)	$C8 = 011 = Ia2^{vi}$	120.4 131 4 (3)
$07 - 1 = 1 - 06^{i}$	74 88 (11)	$C8 = 012 = La2^{vii}$	131.4(3)
0^{-1}	145 67 (10)	C9 - 013 - 12	135.4(3) 126.5(3)
$O1W$ La1 $O6^{i}$	77.03(10)	$C_{9} = 013 = Lar$	120.5(3)
$O13$ La1 $O6^{i}$	137 11 (10)	$C_{3} = 0.14 = La2$	1+3.0(3) 123.8(2)
$07_{1} = 100$	115 51 (10)	C10-015-H15	123.0 (2)
$O_1 = La1 = O_{13}$	136.82 (10)	10-015-1115	120.2
$\begin{array}{c} 01 \\ 01 \\ 01 \\ 01 \\ 01 \\ 01 \\ 01 \\ 01 $	130.02(10) 145.22(10)	$C_{11} = O_{15} = I_{115}$	120.3 122.1(2)
01_{W} La1 015	143.22(10) 61 51 (10)	C11 O16 H16	122.1 (2)
OI_{3} —La1—OI_{3}	(10)		103.4
$O_{1} = 0$	13.01(10)	$La2 \longrightarrow 010 \longrightarrow \Pi10$	120.4
U/-La1-U2W	142.04 (11)	U12	128.9 (3)

O1—La1—O2W	125.34 (11)	La1—O1W—H1W	111.2
O1W—La1—O2W	81.70 (12)	La1—O1W—H2W	127.1
O13—La1—O2W	92.68 (11)	H1W—O1W—H2W	105.8
O6 ⁱ —La1—O2W	69.95 (11)	La1—O2W—H4W	116.7
O15—La1—O2W	69.01 (10)	La1—O2W—H3W	117.0
O7—La1—O9	60.31 (10)	H4W—O2W—H3W	104.7
O1—La1—O9	87.05 (11)	La2—O3W—H6W	128.7
O1W—La1—O9	136.24 (11)	La2—O3W—H5W	124.9
O13—La1—O9	68.26 (11)	H6W—O3W—H5W	105.5
O6 ⁱ —La1—O9	98.66 (11)	H10W—O5W—H9W	105.7
O15—La1—O9	69.45 (10)	H4WA—O4WA—H4WB	105.2
O2W—La1—O9	138.45 (11)	H4WA—O4WA—H4WD	106.4
O7—La1—O3	133.15 (10)	H4WC—O4WB—H4WD	105.1

Symmetry codes: (i) *x*, -*y*+3/2, *z*+1/2; (ii) *x*-1, -*y*+3/2, *z*-1/2; (iii) *x*-1, *y*, *z*-1; (iv) -*x*, *y*-1/2, -*z*+3/2; (v) *x*, -*y*+3/2, *z*-1/2; (vi) *x*+1, *y*, *z*+1; (vii) -*x*, *y*+1/2, -*z*+3/2; (viii) *x*+1, -*y*+3/2, *z*+1/2.

Hydrogen-bond geometry (Å, °)

	D—H	H···A	D…A	<i>D</i> —H… <i>A</i>
$\frac{1}{\Omega^2} = \frac{1}{12} \frac{1}{12} \frac{1}{\Omega^2} \frac{1}$	0.82	1.97	2 677 (4)	160
O_{3} —H3A····O8··	0.82	1.07	2.077 (4)	109
04—H4…018 ^{***}	0.82	1.80	2.619 (4)	1/4
O9—H9…O16	0.82	2.46	3.177 (5)	147
O10— $H10A$ ···O8 ^{ix}	0.82	1.94	2.745 (4)	167
O15—H15…O2 ^{iv}	0.82	1.82	2.632 (4)	175
O16—H16…O4 <i>WA</i>	0.82	1.89	2.667 (9)	158
O16—H16····O4 <i>WB</i>	0.82	1.94	2.708 (9)	157

Symmetry codes: (iv) -*x*, *y*-1/2, -*z*+3/2; (vii) -*x*, *y*+1/2, -*z*+3/2; (ix) -*x*, -*y*+2, -*z*+2.