Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

catena-Poly[[di-µ-chlorido-dicopper(I)]bis[μ - η^2 , σ^1 -4-(2-allyl-2*H*-tetrazol-5-yl)pyridine]]

Wei Wang

Ordered Matter Science Research Center, Southeast University, Nanjing 210096, People's Republic of China Correspondence e-mail: seu_ww@yahoo.com.cn

Received 7 April 2008; accepted 12 June 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.042; wR factor = 0.100; data-to-parameter ratio = 15.9.

The title polymer, $[Cu_2Cl_2(C_9H_9N_5)_2]_n$, has been prepared by the solvothermal treatment of CuCl with 4-(2-allyl-2H-tetrazol-5-yl)pyridine. The crystal structure shows that the title compound is a homometallic Cu^I-olefin coordination polymer, in which the Cu₂Cl₂ nodes are bridged by two olefin ligands. The asymmetric unit contains one-half of the monomer, the complete monomer having twofold rotation symmetry. The coordination environment of Cu^I is slightly distorted tetrahedral, with coordination sites being two μ_2 -Cl atoms, one pyridine N atom of an organic ligand and one allylic double bond of a symmetry-related ligand. Each organic molecule behaves as a bidentate ligand, connecting two neighboring Cu₂Cl₂ dimers in the polymeric chain, which runs along [010].

Related literature

For the solvothermal synthesis and for related structures, see: Ye et al. (2005, 2007). For related structures, see: Wang (2008a, b, c).

Experimental

Crystal data

$[Cu_2Cl_2(C_9H_9N_5)_2]$	V = 2142.3 (7) Å ³
$M_r = 286.21$	Z = 8
Monoclinic, $C2/c$	Mo $K\alpha$ radiation
a = 17.270 (3) Å	$\mu = 2.27 \text{ mm}^{-1}$
b = 12.040 (2) Å	T = 293 (2) K
c = 13.064 (3) Å	$0.2 \times 0.15 \times 0.1 \text{ mm}$
$\beta = 127.94 \ (3)^{\circ}$	

Data collection

Rigaku Mercury2 diffractometer Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) $T_{\min} = 0.643, T_{\max} = 0.800$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.041$	154 parameters
$wR(F^2) = 0.100$	H-atom parameters constrained
S = 1.06	$\Delta \rho_{\rm max} = 0.33 \ {\rm e} \ {\rm \AA}^{-3}$
2451 reflections	$\Delta \rho_{\rm min} = -0.39 \text{ e } \text{\AA}^{-3}$

10753 measured reflections

 $R_{\rm int} = 0.059$

2451 independent reflections

1814 reflections with $I > 2\sigma(I)$

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003) and XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported by a Start-up Grant from SEU to Professor Ren-Gen Xiong.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2171).

References

Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.

- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Wang, W. (2008a). Acta Cryst. E64, m759
- Wang, W. (2008b). Acta Cryst. E64, m900-m901.
- Wang, W. (2008c). Acta Cryst. E64, m902.
- Ye, Q., Wang, X.-S., Zhao, H. & Xiong, R.-G. (2005). Chem. Soc. Rev. 34, 208-225.
- Ye, Q., Zhao, H., Qu, Z.-R., Xiong, R.-G., Fu, D.-W., Xiong, R.-G., Cui, Y.-P., Akutagawa, T., Chan, P. W. H. & Nakamura, T. (2007). Angew. Chem. Int. Ed. 46, 6852-6856.

supporting information

Acta Cryst. (2008). E64, m930 [doi:10.1107/S1600536808017820]

catena-Poly[[di- μ -chlorido-dicopper(I)]bis[μ - η^2 , σ^1 -4-(2-allyl-2*H*-tetrazol-5-yl)pyridine]]

Wei Wang

S1. Comment

Under hydrothermal or solvothermal conditions, some interesting reactions and compounds can be obtained, while these products could not be synthesized using conventional solution techniques. In sealed tubes, unstable Cu^I salts can exist under reduced pressure, and then interesting Cu^I coordination compounds can be obtained. The title compound is obtained through solvothermal treatment of CuCl and 4-(2-allyl-2*H*-tetrazol-5-yl)pyridine in methanol solvent at 348 K. Colourless block crystals suitable for X-ray diffractions have been isolated.

The Cu^{I} ion is coordinated to two olefin ligands and two bridging Cl atoms in a tetrahedral environment (Fig. 1). Two olefin ligands related by a twofold axis link the neighbouring Cu_2Cl_2 dimers to form an homometallic Cu^{I} olefin coordination polymer, developing along the [010] axis, with the Cu_2Cl_2 dimers acting as nodes. The allyl groups coordinate to Cu^{I} centers through N atoms of pyridine rings and double bonds of allyl groups. Unfortunately, the N atoms of tetrazole rings fail to coordinate Cu^{I} ions (Fig. 2).

S2. Experimental

A mixture of 4-(2-allyl-2*H*-tetrazol-5-yl)pyridine (20 mg, 0.2 mmol), CuCl (36 mg, 0.4 mmol), and methanol (2 ml) sealed in a glass tube were maintained at 348 K. Crystals suitable for X-ray analysis were obtained after 5 days.

S3. Refinement

All H atoms were placed geometrically and treated as riding with C—H = 0.93 (aromatic), 0.97 (methylene) or 0.96 Å (methyl), with $U_{iso}(H) = 1.2U_{eq}(Caromatic, Cmethylene)$ or $U_{iso}(H) = 1.5U_{eq}(Cmethyl)$.

Figure 1

A view of a part of the title polymer, with atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level. Symmetry codes: (A) x, y - 1, z; (B) x, y + 1, z.

F(000) = 1152

 $\theta = 3.2 - 28.8^{\circ}$

 $\mu = 2.27 \text{ mm}^{-1}$

Block, colourless

 $0.2\times0.15\times0.1~mm$

10753 measured reflections

 $\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 3.2^{\circ}$ $h = -22 \rightarrow 22$

2451 independent reflections

1814 reflections with $I > 2\sigma(I)$

T = 293 K

 $R_{\rm int} = 0.059$

 $k = -15 \rightarrow 15$ $l = -16 \rightarrow 16$

 $D_{\rm x} = 1.775 {\rm ~Mg} {\rm ~m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 9724 reflections

Figure 2

The one-dimensional chain structure of the title compound.

catena-Poly[[di- μ -chlorido-dicopper(I)]bis[μ - η^2 , σ^1 -4-(2-allyl-2*H*-tetrazol-5-yl)pyridine]]

Crystal data

[Cu₂Cl₂(C₉H₉N₅)₂] $M_r = 286.21$ Monoclinic, C2/c Hall symbol: -C 2yc a = 17.270 (3) Å b = 12.040 (2) Å c = 13.064 (3) Å $\beta = 127.94$ (3)° V = 2142.3 (7) Å³ Z = 8

Data collection

Rigaku Mercury2 diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 13.6612 pixels mm⁻¹ CCD_Profile_fitting scans Absorption correction: multi-scan (*CrystalClear*; Rigaku, 2005) $T_{min} = 0.643, T_{max} = 0.800$

Refinement

5	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.041$	Hydrogen site location: inferred from
$wR(F^2) = 0.100$	neighbouring sites
<i>S</i> = 1.06	H-atom parameters constrained
2451 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0422P)^2 + 0.6044P]$
154 parameters	where $P = (F_0^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.33 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.39 \text{ e } \text{\AA}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cu1	0.39314 (3)	0.49203 (3)	0.59806 (4)	0.03726 (16)	
Cl1	0.57394 (6)	0.49142 (6)	0.69868 (8)	0.0343 (2)	
N1	0.3855 (2)	0.8479 (2)	0.3785 (3)	0.0460 (7)	

N2	0.40548 (19)	0.91092 (19)	0.5524 (3)	0.0362 (6)	
N3	0.3659 (2)	0.9552 (2)	0.3613 (3)	0.0435 (7)	
N4	0.40899 (19)	0.82409 (19)	0.4924 (3)	0.0345 (6)	
N5	0.36588 (18)	0.33219 (19)	0.5431 (2)	0.0304 (6)	
C1	0.2946 (2)	0.5831 (2)	0.4346 (3)	0.0388 (8)	
H1A	0.2411	0.5472	0.4259	0.068 (12)*	
H1C	0.3062	0.5683	0.3729	0.052 (11)*	
C2	0.3534 (2)	0.6549 (2)	0.5330 (3)	0.0350 (7)	
H2A	0.3419	0.6698	0.5948	0.089 (15)*	
C3	0.4367 (2)	0.7121 (2)	0.5475 (3)	0.0402 (8)	
H3A	0.4545	0.6695	0.5027	0.030 (8)*	
H3B	0.4928	0.7163	0.6374	0.052 (11)*	
C4	0.3685 (2)	0.1086 (2)	0.4905 (3)	0.0273 (6)	
C5	0.3489 (2)	0.2998 (2)	0.4331 (3)	0.0345 (7)	
H5A	0.3356	0.3559	0.3720	0.041 (9)*	
C6	0.3829 (2)	0.1409 (2)	0.6025 (3)	0.0321 (7)	
H6A	0.3937	0.0860	0.6633	0.047 (10)*	
C7	0.3811 (2)	0.2523 (2)	0.6256 (3)	0.0317 (7)	
H7A	0.3911	0.2741	0.7037	0.033 (8)*	
C8	0.3495 (2)	0.1902 (2)	0.4032 (3)	0.0346 (7)	
H8A	0.3371	0.1704	0.3231	0.054 (11)*	
C9	0.3785 (2)	0.9917 (2)	0.4676 (3)	0.0301 (7)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.0528 (3)	0.0168 (2)	0.0349 (2)	-0.00049 (16)	0.0233 (2)	-0.00040 (15)
C11	0.0435 (4)	0.0304 (4)	0.0372 (4)	0.0055 (3)	0.0290 (4)	0.0058 (3)
N1	0.069 (2)	0.0269 (14)	0.0416 (16)	0.0058 (13)	0.0335 (16)	-0.0005 (12)
N2	0.0465 (15)	0.0205 (12)	0.0401 (15)	-0.0013 (11)	0.0259 (13)	0.0008 (11)
N3	0.067 (2)	0.0263 (14)	0.0390 (16)	0.0078 (13)	0.0332 (16)	0.0024 (12)
N4	0.0431 (16)	0.0165 (12)	0.0435 (16)	0.0016 (10)	0.0265 (14)	-0.0001 (11)
N5	0.0371 (14)	0.0179 (12)	0.0321 (13)	-0.0020 (10)	0.0191 (12)	-0.0013 (10)
C1	0.0421 (19)	0.0278 (16)	0.0394 (18)	0.0039 (14)	0.0215 (16)	0.0070 (14)
C2	0.052 (2)	0.0180 (14)	0.0432 (19)	0.0075 (13)	0.0337 (18)	0.0074 (13)
C3	0.043 (2)	0.0164 (14)	0.051 (2)	0.0045 (13)	0.0234 (18)	0.0053 (14)
C4	0.0293 (15)	0.0182 (14)	0.0291 (15)	-0.0021 (11)	0.0153 (13)	-0.0002 (11)
C5	0.0465 (19)	0.0197 (14)	0.0325 (18)	-0.0001 (13)	0.0218 (16)	0.0043 (12)
C6	0.0415 (18)	0.0191 (14)	0.0348 (17)	-0.0026 (12)	0.0229 (15)	0.0023 (13)
C7	0.0423 (18)	0.0228 (15)	0.0328 (17)	-0.0037 (12)	0.0245 (16)	-0.0014 (12)
C8	0.0468 (19)	0.0257 (15)	0.0319 (17)	-0.0024 (13)	0.0246 (15)	-0.0009 (13)
C9	0.0357 (16)	0.0170 (14)	0.0347 (16)	-0.0027 (12)	0.0202 (14)	-0.0002 (12)

Geometric parameters (Å, °)

Cu1—N5	2.006 (2)	C1—H1C	0.9600
Cu1—C1	2.047 (3)	C2—C3	1.497 (4)
Cu1—C2	2.079 (3)	C2—H2A	0.9599

Cu1—Cl1 ⁱ	2.3491 (11)	С3—НЗА	0.9598
Cu1—Cl1	2.5358 (12)	С3—Н3В	0.9599
Cl1—Cu1 ⁱ	2.3491 (11)	C4—C8	1.384 (4)
N1—N4	1.310 (4)	C4—C6	1.381 (4)
N1—N3	1.319 (4)	C4—C9 ⁱⁱ	1.471 (4)
N2—C9	1.325 (4)	C5—C8	1.378 (4)
N2—N4	1.330 (3)	C5—H5A	0.9600
N3—C9	1.341 (4)	C6—C7	1.379 (4)
N4—C3	1.464 (3)	С6—Н6А	0.9599
N5—C5	1.336 (4)	С7—Н7А	0.9600
N5—C7	1.345 (4)	C8—H8A	0.9600
C1—C2	1.351 (4)	C9—C4 ⁱⁱⁱ	1.471 (4)
C1—H1A	0.9600		
N5—Cu1—C1	106.18 (11)	C3—C2—Cu1	109.4 (2)
N5—Cu1—C2	144.35 (12)	C1—C2—H2A	119.7
C1—Cu1—C2	38.23 (12)	C3—C2—H2A	119.1
N5—Cu1—Cl1 ⁱ	104.01 (8)	Cu1—C2—H2A	91.1
C1—Cu1—Cl1 ⁱ	130.46 (11)	N4—C3—C2	111.3 (3)
C2—Cu1—Cl1 ⁱ	104.77 (10)	N4—C3—H3A	108.8
N5—Cu1—Cl1	97.23 (8)	С2—С3—НЗА	108.7
C1—Cu1—Cl1	120.78 (11)	N4—C3—H3B	109.4
C2—Cu1—Cl1	101.90 (10)	С2—С3—Н3В	110.4
Cl1 ⁱ —Cu1—Cl1	92.81 (5)	НЗА—СЗ—НЗВ	108.2
Cu1 ⁱ —Cl1—Cu1	87.19 (5)	C8—C4—C6	118.1 (3)
N4—N1—N3	106.1 (3)	C8—C4—C9 ⁱⁱ	120.6 (3)
C9—N2—N4	101.8 (2)	C6—C4—C9 ⁱⁱ	121.2 (3)
N1—N3—C9	106.4 (3)	N5—C5—C8	123.4 (3)
N1—N4—N2	113.7 (2)	N5—C5—H5A	118.0
N1—N4—C3	122.7 (3)	C8—C5—H5A	118.6
N2—N4—C3	123.6 (3)	C7—C6—C4	119.5 (3)
C5—N5—C7	117.3 (2)	С7—С6—Н6А	120.5
C5—N5—Cu1	120.90 (19)	С4—С6—Н6А	119.9
C7—N5—Cu1	120.8 (2)	N5—C7—C6	122.6 (3)
C2—C1—Cu1	72.17 (18)	N5—C7—H7A	118.4
C2—C1—H1A	120.4	С6—С7—Н7А	119.0
Cu1—C1—H1A	90.3	C4—C8—C5	119.0 (3)
C2—C1—H1C	119.6	C4—C8—H8A	120.2
Cu1—C1—H1C	107.9	C5—C8—H8A	120.8
H1A—C1—H1C	120.0	N2—C9—N3	112.0 (3)
C1—C2—C3	121.1 (3)	N2C9C4 ⁱⁱⁱ	123.9 (3)
C1—C2—Cu1	69.60 (17)	N3—C9—C4 ⁱⁱⁱ	124.0 (3)

Symmetry codes: (i) -*x*+1, *y*, -*z*+3/2; (ii) *x*, *y*-1, *z*; (iii) *x*, *y*+1, *z*.

Hydrogen-bond geometry (Å, °)

$\overline{D-H\cdots A}$	<i>D</i> —Н	H…A	D····A	<i>D</i> —H··· <i>A</i>

supporting information

C7—H7A····Cl1 ⁱ	0.96	2.81	3.459 (3)	126	

Symmetry code: (i) -x+1, y, -z+3/2.