metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Triaquabis(1*H*-imidazole)bis[μ_2 -2-(oxaloamino)benzoato(3–)]dicopper(II)calcium(II) heptahydrate

Chongzhen Mei,* Kaihui Li and Peng Zhang

Institute of Environmental and Municipal Engineering, North China University of Water Conservancy and Electric Power, Zhengzhou 450011, People's Republic of China

Correspondence e-mail: meichongzhen@ncwu.edu.cn

Received 19 November 2007; accepted 18 December 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.009 Å; R factor = 0.063; wR factor = 0.122; data-to-parameter ratio = 12.8.

In the title heterotrinuclear coordination compound, $[CaCu_2(C_9H_4NO_5)_2(C_3H_4N_2)_2(H_2O)_3]$ -7H₂O, the Ca²⁺ cation is in a pentagonal–bipyramidal geometry and bridges two (1*H*-imidazole)[2-(oxaloamino)benzoato(3–)]copper(II) units in its equatorial plane. Each Cu^{II} atom has a normal square-planar geometry. The molecule has approximate local (non-crystallographic) mirror symmetry and 23 classical hydrogen bonds are found in the crystal structure.

Related literature

For related literature, see: Zang et al. (2003).

Experimental

Crystal data	
[CaCu ₂ (C ₉ H ₄ NO ₅) ₂ (C ₃ H ₄ N ₂) ₂ -	b = 24.011 (3) Å
$(H_2O)_3]$ ·7H ₂ O	c = 21.161 (3) Å
$M_r = 895.75$	$\beta = 93.511 \ (3)^{\circ}$
Monoclinic, $P2_1/n$	V = 3498.7 (8) Å ³
a = 6.8988 (9) Å	Z = 4
$a = 6.8988 (9) \text{ \AA}$	Z = 4

Mo $K\alpha$ radiation $\mu = 1.45 \text{ mm}^{-1}$

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2000) $T_{min} = 0.75, T_{max} = 0.76$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.063$ $wR(F^2) = 0.122$ S = 0.996119 reflections 478 parameters 17203 measured reflections 6119 independent reflections 3486 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.093$

T = 293 (2) K

 $0.2 \times 0.2 \times 0.2$ mm

7 restraints H-atom parameters constrained
$$\begin{split} &\Delta\rho_{max}=0.59\ e\ \mathring{A}^{-3}\\ &\Delta\rho_{min}=-0.48\ e\ \mathring{A}^{-3} \end{split}$$

Table 1 Hydrogen-bond geometry (Å, °).

 $D - H \cdot \cdot \cdot A$ D - H $H \cdot \cdot \cdot A$ $D \cdots A$ $D = H \cdots A$ $O20-H20D\cdots O2^{i}$ 2.950 (7) 0.85 2.11 172 O20−H20C···O19 0.85 2.09 2.749 (11) 134 O19−H19D···O18 0.85 2.34 2.887 (12) 123 2.758 (11) $O19 - H19C \cdot \cdot \cdot O17^{i}$ 0.85 1.91 180 2.50 3.070 (7) O18−H18D···O6 0.85 125 $O18 - H18D \cdots O7$ 0.85 2.203.049 (7) 179 O18-H18C···O14ⁱⁱⁱ 0.85 2.042.887 (10) 178 O17−H17C···O14^{iv} 0.85 2.17 2.974 (12) 158 2.850 (6) O16-H16A···O10 0.85 2.10148 O15−H15D···O16 0.85 2.01 2.845 (7) 167 0.85 $O15 - H15A \cdots O9$ 2.42 3.131 (6) 141 O15-H15A···O4 0.85 2.38 3.121 (7) 146 O14−H14D···O15 0.85 2.08 2.798 (7) 142 O14-H14C···O3 0.85 2.21 3.045 (7) 169 O13−H13B···O19 2.963 (9) 0.85 2.15 160 $O13 - H13A \cdots O6^{v}$ 0.85 1.95 2.780(6)164 $O12-H12B\cdots O1^{vii}$ 0.85 1.86 2.706 (6) 180 O12-H12A···O6^v 0.85 1.87 2.725 (5) 180 O11−H11C···O15ⁱⁱ 0.85 2.37 2.778 (6) 110 $O11 - H11A \cdots O1^{viii}$ 0.85 1.96 2.780 (6) 163 $N6 - H6A \cdots O9^{ii}$ 0.86 2.958 (7) 2.13 161 $N6-H6A\cdots O4^{iii}$ 0.86 2.483.018 (6) 122 $N4 - H4A \cdots O20^{iii}$ 0.86 2.03 2.888 (9) 178

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Bruker, 2000); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *publCIF* (Westrip, 2008).

The authors express their thanks to the Natural Science Foundation of Henan Province for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2057).

References

Bruker (2000). SADABS, SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

Westrip, S. P. (2008). publCIF. In preparation.

Zang, S.-Q., Tao, R.-J., Wang, Q.-L., Hu, N.-H., Cheng, Y.-X., Niu, J.-Y. & Liao, D.-Z. (2003). *Inorg. Chem.* 42, 761–766.

Acta Cryst. (2008). E64, m278 [doi:10.1107/S1600536807067517]

Triaquabis(1*H*-imidazole)bis[µ₂-2-(oxaloamino)benzoato(3–)]dicopper(II)calcium(II) heptahydrate

Chongzhen Mei, Kaihui Li and Peng Zhang

S1. Comment

The "complex as ligand" approach, *i.e.* using metal cations to link reactively stable coordination compounds that contain potential bridging blocks, is particularly suitable for designing heteropolymetallic compounds.

In the title compound, Cu^{II} adopts square planar geometry, coordinating to the oxamato-N-benzoate and the imidazole ligand to afford a Cu-containing "ligand". Ca^{II} then bridges two Cu-ligands together.

The molecule has a local (non-crystallographic) mirror plane containing Ca and three aqueous ligands O11, O12 and O13. In addition, 23 classic hydrogen bonds are found in the structure (Table 1).

S2. Experimental

2-(Oxaloamino)benzoic acid (0.232 g, 1 mmol; Zang *et al.*, 2003) and ? (0.12 g, 3 mmol) were dissolved in water (20 ml). To this solution, CuCl₂.2H₂O (0.17 g, 1 mmol) and imidazole (0.068 g, 1 mmol) were added. After stirring for an hour, CaCl₂ (0.111 g, 1 mmol) was added. The solution was filtered after stirring for another hour. Evaporation of the filtrate gave green single crystals of the title compound after one week. Elemental analysis found (calculatedd) for $C_{24}H_{36}CaCu_2N_6O_{20}$ (%): C 32.26 (32.18); H, 3.92 (4.05); N 9.52 (9.38); Ca 4.45 (4.47); Cu 14.14 (14.19). The analyses were performed on a Perkin–Elmer 240 C elemental analyzer. The abundance of Cu is determined by spectrophotometry while the abundance of Ca is obtained from edta titration.

S3. Refinement

The structure was solved by direct methods. All the H atoms were fixed geometrically and constrained with a riding model. d(C-H) = 0.93 Å, $U_{iso}=1.2U_{eq}$ (C) for aromatic 0.97 Å, $U_{iso}=1.2U_{eq}$ (C) for CH₂ and 0.96 Å, $U_{iso}=1.5U_{eq}$ (C) for CH₃ atoms; 0.85 Å, $U_{iso}=1.5U_{eq}$ (O) for H₂O atoms.

Figure 1

Asymmetric unit of the title compound. Hydrogen atoms are omitted for clarity. Displacement ellipsoids are drawn at the 50% probability level.

$Triaquabis (1H-imidazole) bis [\mu_2-2- (oxaloamino) benzoato (3-)] dicopper (II) calcium (II) heptahydrate$

Crystal data

 $[CaCu_2(C_9H_4NO_5)_2(C_3H_4N_2)_2(H_2O)_3]$ ·7H₂O F(000) = 1840 $M_r = 895.75$ $D_{\rm x} = 1.701 {\rm ~Mg} {\rm ~m}^{-3}$ Monoclinic, $P2_1/n$ Mo *K* α radiation, $\lambda = 0.71073$ Å Hall symbol: -P 2yn Cell parameters from 1959 reflections *a* = 6.8988 (9) Å $\theta = 2.7 - 20.5^{\circ}$ $\mu = 1.45 \text{ mm}^{-1}$ b = 24.011 (3) Å T = 293 Kc = 21.161 (3) Å $\beta = 93.511 (3)^{\circ}$ Block, green V = 3498.7 (8) Å³ $0.2 \times 0.2 \times 0.2$ mm Z = 4Data collection Bruker SMART CCD area-detector 17203 measured reflections diffractometer 6119 independent reflections Radiation source: fine-focus sealed tube 3486 reflections with $I > 2\sigma(I)$ Graphite monochromator $R_{\rm int} = 0.093$ $\theta_{\rm max} = 25.0^\circ, \ \theta_{\rm min} = 2.0^\circ$ φ and ω scans $h = -8 \rightarrow 8$ Absorption correction: multi-scan $k = -28 \rightarrow 28$ (SADABS; Bruker, 2000) $T_{\rm min} = 0.75, T_{\rm max} = 0.76$ $l = -15 \rightarrow 25$ Refinement Refinement on F^2 Primary atom site location: structure-invariant Least-squares matrix: full direct methods $R[F^2 > 2\sigma(F^2)] = 0.063$ Secondary atom site location: difference Fourier $wR(F^2) = 0.122$ map S = 1.00Hydrogen site location: inferred from 6119 reflections neighbouring sites 478 parameters H-atom parameters constrained

7 restraints

$w = 1/[\sigma^2(F_o^2) + (0.03P)^2]$	$\Delta ho_{ m max} = 0.59$ e Å ⁻³
where $P = (F_o^2 + 2F_c^2)/3$	$\Delta \rho_{\rm min} = -0.48 \text{ e } \text{\AA}^{-3}$
$(\Delta/\sigma)_{\rm max} = 0.018$	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used

only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

$=$ \cdot	Fractional atomic coordinates and	' isotropic o	r equivalent	isotropic	displacement	parameters	(A^2))
---	-----------------------------------	---------------	--------------	-----------	--------------	------------	---------	---

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cal	0.57052 (19)	0.21723 (5)	0.36790 (5)	0.0305 (3)	
Cul	0.42034 (12)	0.15913 (3)	0.10945 (3)	0.0365 (2)	
Cu2	0.40057 (12)	0.12870 (3)	0.60805 (3)	0.0303 (2)	
N1	0.4528 (7)	0.20197 (17)	0.57516 (19)	0.0223 (12)	
N2	0.4559 (7)	0.22668 (18)	0.1570 (2)	0.0275 (12)	
C1	0.4976 (10)	0.2460 (3)	0.0207 (3)	0.0400 (17)	
C2	0.4626 (8)	0.2899 (2)	0.0672 (3)	0.0273 (15)	
C3	0.4444 (9)	0.3438 (3)	0.0446 (3)	0.0405 (17)	
H3	0.4611	0.3502	0.0019	0.049*	
C4	0.4034 (10)	0.3877 (3)	0.0816 (3)	0.0460 (19)	
H4	0.3903	0.4232	0.0645	0.055*	
C5	0.3812 (10)	0.3788 (3)	0.1455 (3)	0.0422 (18)	
Н5	0.3532	0.4085	0.1716	0.051*	
C6	0.4004 (9)	0.3262 (2)	0.1701 (3)	0.0326 (16)	
H6	0.3856	0.3206	0.2131	0.039*	
C7	0.4416 (8)	0.2810 (2)	0.1321 (2)	0.0260 (14)	
C8	0.4955 (9)	0.2169 (2)	0.2188 (3)	0.0278 (15)	
C9	0.4692 (9)	0.1558 (2)	0.2362 (3)	0.0294 (15)	
N3	0.3548 (9)	0.0899 (2)	0.0656 (3)	0.0497 (16)	
C10	0.3866 (13)	0.0390 (3)	0.0854 (4)	0.070 (3)	
H10	0.4524	0.0299	0.1236	0.084*	
N4	0.3135 (12)	0.0024 (3)	0.0442 (4)	0.091 (3)	
H4A	0.3211	-0.0332	0.0478	0.109*	
C11	0.2251 (14)	0.0305 (4)	-0.0043 (4)	0.083 (3)	
H11	0.1579	0.0154	-0.0397	0.099*	
C12	0.2529 (12)	0.0841 (4)	0.0084 (4)	0.070 (2)	
H12	0.2098	0.1133	-0.0177	0.084*	
C13	0.4628 (9)	0.1977 (3)	0.7176 (3)	0.0309 (16)	
C14	0.4633 (8)	0.2491 (2)	0.6780 (3)	0.0268 (15)	
C15	0.4633 (9)	0.2996 (3)	0.7113 (3)	0.0417 (18)	
H15	0.4738	0.2986	0.7553	0.050*	
C16	0.4481 (10)	0.3508 (3)	0.6814 (3)	0.0451 (19)	

H16	0.4443	0.3836	0.7046	0.054*
C17	0.4390 (10)	0.3517 (2)	0.6165 (3)	0.0422 (18)
H17	0.4291	0.3857	0.5954	0.051*
C18	0.4441 (9)	0.3035 (2)	0.5821 (3)	0.0352 (17)
H18	0.4390	0.3057	0.5382	0.042*
C19	0.4568 (8)	0.2516 (2)	0.6106 (3)	0.0258 (15)
C20	0.4908 (8)	0.2006 (2)	0.5142 (3)	0.0247 (14)
C21	0.4483 (9)	0.1434 (2)	0.4842 (3)	0.0305 (16)
N5	0.3638 (8)	0.05199 (19)	0.6339 (2)	0.0339 (14)
C22	0.2829 (10)	0.0326 (3)	0.6870 (3)	0.0466 (19)
H22	0.2244	0.0544	0.7169	0.056*
C23	0.3020 (12)	-0.0230 (3)	0.6888 (4)	0.061 (2)
H23	0.2597	-0.0466	0.7199	0.074*
N6	0.3947 (9)	-0.0383 (2)	0.6367 (3)	0.0591 (18)
H6A	0.4251	-0.0716	0.6261	0.071*
C24	0.4289 (10)	0.0077 (3)	0.6058 (3)	0.0468 (19)
H24	0.4919	0.0088	0.5682	0.056*
01	0.5537 (7)	0.26049 (18)	-0.03227 (19)	0.0528 (13)
O2	0.4690 (7)	0.19479 (18)	0.03125 (17)	0.0415 (12)
O3	0.4352 (7)	0.12114 (15)	0.19170 (18)	0.0423 (12)
O4	0.4854 (7)	0.14343 (15)	0.29325 (19)	0.0436 (13)
05	0.5407 (6)	0.24986 (15)	0.26216 (17)	0.0347 (11)
O6	0.5085 (6)	0.20180 (16)	0.77547 (17)	0.0420 (12)
07	0.4140 (7)	0.15086 (16)	0.69376 (17)	0.0418 (12)
08	0.5517 (6)	0.23713 (15)	0.47962 (17)	0.0315 (10)
09	0.4621 (7)	0.13889 (15)	0.42624 (17)	0.0401 (12)
O10	0.4020 (6)	0.10426 (15)	0.51994 (17)	0.0372 (12)
O11	0.8768 (6)	0.17246 (16)	0.37391 (18)	0.0466 (12)
H11A	0.9524	0.1891	0.4009	0.070*
H11C	0.8666	0.1385	0.3846	0.070*
O12	0.2690 (6)	0.26068 (18)	0.36776 (18)	0.0590 (14)
H12A	0.1876	0.2723	0.3390	0.089*
H12B	0.2011	0.2541	0.3991	0.089*
O13	0.7663 (6)	0.29991 (15)	0.37573 (18)	0.0492 (13)
H13A	0.8576	0.2976	0.3507	0.074*
H13B	0.6965	0.3282	0.3663	0.074*
O14	0.2004 (10)	0.0229 (2)	0.2365 (3)	0.117 (2)
H14C	0.2560	0.0500	0.2192	0.175*
H14D	0.1710	0.0263	0.2747	0.175*
O15	0.1196 (7)	0.08557 (18)	0.3431 (2)	0.0766 (17)
H15A	0.2257	0.1036	0.3467	0.115*
H15D	0.1356	0.0662	0.3767	0.115*
O16	0.1226 (8)	0.02987 (18)	0.4619 (2)	0.0818 (18)
H16A	0.1659	0.0551	0.4871	0.123*
H16B	0.2171	0.0074	0.4592	0.123*
O17	0.1399 (16)	0.0127 (4)	0.8469 (4)	0.252 (5)
H17C	0.0609	-0.0057	0.8226	0.378*
H17D	0.2441	0.0153	0.8276	0.378*

O18	0.6065 (16)	0.0784 (2)	0.7980 (4)	0.265 (7)	
H18C	0.6615	0.0481	0.7884	0.397*	
H18D	0.5511	0.0987	0.7693	0.397*	
019	0.9605 (13)	0.1133 (3)	0.8665 (4)	0.198 (4)	
H19C	1.0155	0.0822	0.8607	0.296*	
H19D	0.9021	0.1202	0.8308	0.296*	
O20	0.6630 (11)	0.1175 (2)	0.9470 (3)	0.149 (3)	
H20C	0.7636	0.1334	0.9343	0.224*	
H20D	0.5978	0.1372	0.9715	0.224*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cal	0.0384 (9)	0.0344 (7)	0.0194 (7)	-0.0010 (7)	0.0075 (6)	0.0025 (6)
Cu1	0.0455 (6)	0.0401 (5)	0.0245 (4)	-0.0008 (4)	0.0074 (4)	-0.0051 (4)
Cu2	0.0427 (5)	0.0282 (4)	0.0208 (4)	-0.0017 (4)	0.0095 (4)	0.0012 (4)
N1	0.028 (3)	0.025 (3)	0.015 (3)	-0.007(2)	0.004 (2)	-0.004(2)
N2	0.035 (3)	0.028 (3)	0.020 (3)	0.000 (3)	0.007 (2)	0.004 (2)
C1	0.035 (5)	0.059 (5)	0.026 (4)	0.007 (4)	0.003 (3)	0.012 (4)
C2	0.021 (4)	0.039 (4)	0.022 (3)	-0.002 (3)	0.003 (3)	0.011 (3)
C3	0.038 (5)	0.055 (5)	0.030 (4)	-0.006 (4)	0.009 (3)	0.007 (4)
C4	0.050 (5)	0.033 (4)	0.055 (5)	-0.015 (4)	0.001 (4)	0.020 (4)
C5	0.053 (5)	0.029 (4)	0.046 (4)	-0.013 (4)	0.009 (4)	0.001 (3)
C6	0.033 (4)	0.036 (4)	0.029 (4)	-0.004 (3)	0.006 (3)	0.007 (3)
C7	0.025 (4)	0.037 (4)	0.016 (3)	-0.008 (3)	0.005 (3)	0.006 (3)
C8	0.026 (4)	0.037 (4)	0.022 (4)	0.006 (3)	0.008 (3)	0.003 (3)
C9	0.030 (4)	0.029 (4)	0.031 (4)	0.003 (3)	0.009 (3)	0.004 (3)
N3	0.074 (5)	0.041 (4)	0.035 (3)	-0.012 (4)	0.010 (3)	-0.009 (3)
C10	0.101 (8)	0.063 (6)	0.049 (5)	-0.011 (6)	0.022 (5)	-0.025 (5)
N4	0.126 (8)	0.059 (5)	0.092 (6)	-0.026 (5)	0.052 (6)	-0.033 (5)
C11	0.088 (8)	0.096 (8)	0.065 (6)	-0.028 (6)	0.015 (6)	-0.036 (6)
C12	0.067 (6)	0.086 (6)	0.057 (5)	-0.005 (5)	0.001 (4)	-0.022 (5)
C13	0.015 (4)	0.054 (5)	0.024 (4)	0.001 (3)	0.003 (3)	-0.005 (3)
C14	0.025 (4)	0.031 (4)	0.026 (3)	0.005 (3)	0.009 (3)	-0.003 (3)
C15	0.039 (5)	0.053 (5)	0.034 (4)	-0.002 (4)	0.013 (3)	-0.018 (4)
C16	0.048 (5)	0.028 (4)	0.061 (5)	-0.006 (4)	0.018 (4)	-0.026 (4)
C17	0.052 (5)	0.021 (3)	0.056 (5)	-0.005 (3)	0.023 (4)	0.006 (3)
C18	0.049 (5)	0.030 (4)	0.029 (4)	-0.005 (3)	0.022 (3)	-0.004 (3)
C19	0.019 (4)	0.030 (3)	0.029 (3)	-0.002 (3)	0.008 (3)	-0.001 (3)
C20	0.020 (4)	0.028 (4)	0.027 (4)	0.002 (3)	0.005 (3)	-0.002 (3)
C21	0.032 (4)	0.027 (4)	0.033 (4)	-0.001 (3)	0.003 (3)	-0.002 (3)
N5	0.047 (4)	0.026 (3)	0.029 (3)	0.002 (3)	0.010 (3)	0.005 (2)
C22	0.063 (6)	0.034 (4)	0.044 (5)	0.000 (4)	0.023 (4)	0.003 (4)
C23	0.069 (6)	0.060 (6)	0.057 (5)	-0.012 (5)	0.015 (5)	0.025 (4)
N6	0.075 (5)	0.030 (3)	0.072 (5)	0.002 (3)	0.000 (4)	0.009 (3)
C24	0.070 (6)	0.030 (4)	0.042 (4)	0.006 (4)	0.012 (4)	0.006 (4)
01	0.059 (3)	0.071 (3)	0.031 (2)	0.014 (2)	0.025 (2)	0.010 (2)
O2	0.056 (3)	0.049(3)	0.020(2)	0.004(3)	0.014(2)	-0.003(2)

O3	0.073 (4)	0.029 (2)	0.026 (2)	-0.004 (2)	0.008 (2)	-0.003 (2)
O4	0.075 (4)	0.031 (3)	0.026 (2)	-0.006 (2)	0.004 (2)	0.009 (2)
05	0.054 (3)	0.033 (2)	0.017 (2)	-0.005 (2)	0.004 (2)	0.002 (2)
06	0.042 (3)	0.066 (3)	0.018 (2)	-0.003 (2)	-0.001 (2)	-0.002 (2)
O7	0.066 (4)	0.038 (3)	0.022 (2)	-0.007 (3)	0.007 (2)	-0.002 (2)
08	0.043 (3)	0.029 (2)	0.024 (2)	-0.003 (2)	0.012 (2)	0.0015 (19)
09	0.069 (4)	0.034 (3)	0.018 (2)	-0.009 (2)	0.014 (2)	-0.0050 (19)
O10	0.065 (3)	0.027 (2)	0.022 (2)	-0.013 (2)	0.017 (2)	0.0012 (19)
011	0.046 (3)	0.049 (3)	0.043 (3)	0.000 (2)	-0.005 (2)	-0.003 (2)
012	0.046 (3)	0.100 (4)	0.032 (3)	0.019 (3)	0.009 (2)	0.023 (3)
O13	0.050 (3)	0.046 (3)	0.053 (3)	0.003 (2)	0.016 (2)	-0.005 (2)
O14	0.143 (7)	0.134 (5)	0.076 (4)	0.021 (5)	0.033 (4)	0.015 (4)
015	0.054 (4)	0.061 (3)	0.114 (5)	-0.002 (3)	0.003 (3)	-0.003 (3)
016	0.085 (5)	0.069 (3)	0.092 (4)	-0.007 (3)	0.014 (3)	-0.041 (3)
O17	0.297 (13)	0.352 (13)	0.105 (6)	0.155 (11)	0.000 (7)	-0.011 (8)
O18	0.451 (18)	0.077 (5)	0.236 (10)	0.052 (7)	-0.226 (11)	-0.008 (6)
019	0.199 (10)	0.115 (6)	0.277 (12)	-0.027 (7)	0.002 (8)	0.010 (7)
O20	0.194 (8)	0.105 (5)	0.160 (7)	-0.032 (5)	0.098 (6)	-0.042 (5)

Geometric parameters (Å, °)

Ca1—012	2.327 (4)	C13—O6	1.250 (6)
Ca1—011	2.367 (4)	C13—O7	1.269 (6)
Ca1—O5	2.368 (4)	C13—C14	1.492 (8)
Ca1—09	2.395 (4)	C14—C15	1.403 (7)
Ca1—O13	2.401 (4)	C14—C19	1.425 (7)
Ca1—O4	2.422 (4)	C15—C16	1.384 (8)
Cal—O8	2.423 (4)	C15—H15	0.93
Ca1—H11A	2.7672	C16—C17	1.372 (8)
Ca1—H11C	2.7894	C16—H16	0.93
Cu1—O2	1.911 (4)	C17—C18	1.368 (7)
Cu1—N2	1.917 (4)	C17—H17	0.93
Cu1—N3	1.943 (5)	C18—C19	1.384 (7)
Cu1—O3	1.962 (4)	C18—H18	0.93
Cu2—07	1.887 (4)	C20—O8	1.234 (6)
Cu2—N1	1.934 (4)	C20—C21	1.533 (7)
Cu2—N5	1.943 (5)	C21—O9	1.240 (6)
Cu2010	1.955 (4)	C21—O10	1.260 (6)
N1-C20	1.332 (6)	N5—C24	1.311 (7)
N1-C19	1.409 (6)	N5—C22	1.367 (7)
N2—C8	1.340 (6)	C22—C23	1.342 (8)
N2—C7	1.409 (6)	C22—H22	0.93
C101	1.257 (7)	C23—N6	1.358 (8)
C1—O2	1.266 (7)	C23—H23	0.93
C1—C2	1.473 (8)	N6—C24	1.313 (7)
C2—C3	1.383 (7)	N6—H6A	0.86
C2—C7	1.406 (7)	C24—H24	0.93
C3—C4	1.352 (8)	O11—H11A	0.85

С3—Н3	0.93	O11—H11C	0.85
C4—C5	1.385 (8)	O12—H12A	0.85
C4—H4	0.93	O12—H12B	0.85
C5—C6	1.369 (7)	O13—H13A	0.85
С5—Н5	0.93	O13—H13B	0.85
C6—C7	1.390 (7)	O14—H14C	0.85
С6—Н6	0.93	O14—H14D	0.85
C8—O5	1.237 (6)	O15—H15A	0.85
C8—C9	1.526 (7)	O15—H15D	0.85
С9—О4	1.241 (6)	O16—H16A	0.85
С9—О3	1.268 (6)	O16—H16B	0.85
N3—C10	1.305 (8)	O17—H17C	0.85
N3—C12	1.371 (8)	017—H17D	0.85
C10—N4	1.316 (8)	O18—H18C	0.85
C10—H10	0.93	018—H18D	0.85
N4—C11	1 344 (10)	019—H19C	0.85
N4—H4A	0.86	019—H19D	0.85
C11-C12	1 326 (10)	020 - H20C	0.85
C11—H11	0.93	020 H200	0.85
C12—H12	0.93	020 11200	0.05
	0.75		
O12—Ca1—O11	176.97 (14)	C10—N3—C12	104.7 (6)
O12—Ca1—O5	79.88 (14)	C10—N3—Cu1	128.2 (5)
011—Ca1—05	103.11 (15)	C12—N3—Cu1	127.0 (6)
O12—Ca1—O9	92.60 (16)	N3—C10—N4	111.3 (8)
O11—Ca1—O9	85.50 (15)	N3—C10—H10	124.3
O5—Ca1—O9	137.32 (14)	N4—C10—H10	124.3
O12—Ca1—O13	97.38 (15)	C10—N4—C11	107.9 (7)
O11—Ca1—O13	82.84 (14)	C10—N4—H4A	126.0
O5—Ca1—O13	78.91 (14)	C11—N4—H4A	126.0
O9—Ca1—O13	143.71 (14)	C12—C11—N4	106.2 (8)
O12—Ca1—O4	98.41 (16)	C12—C11—H11	126.9
O11—Ca1—O4	83.26 (14)	N4—C11—H11	126.9
O5—Ca1—O4	67.80 (13)	C11—C12—N3	109.8 (8)
O9—Ca1—O4	71.98 (13)	C11—C12—H12	125.1
O13—Ca1—O4	139.70 (15)	N3—C12—H12	125.1
O12—Ca1—O8	79.15 (14)	O6—C13—O7	120.3 (6)
O11—Ca1—O8	97.93 (14)	O6—C13—C14	118.4 (6)
O5—Ca1—O8	148.21 (13)	O7—C13—C14	121.3 (5)
O9—Ca1—O8	67.35 (12)	C15—C14—C19	117.6 (5)
O13—Ca1—O8	80.40 (13)	C15—C14—C13	115.7 (5)
O4—Ca1—O8	139.05 (14)	C19—C14—C13	126.7 (5)
O12—Ca1—H11A	161.2	C16—C15—C14	122.7 (6)
O11—Ca1—H11A	16.8	C16—C15—H15	118.6
O5—Ca1—H11A	110.2	C14—C15—H15	118.6
O9—Ca1—H11A	90.1	C17—C16—C15	118.1 (6)
O13—Ca1—H11A	70.2	C17—C16—H16	121.0
O4—Ca1—H11A	100.1	C15—C16—H16	121.0

08—Ca1—H11A	84.8	C18—C17—C16	1211(6)
012-01-H11C	162.1	C18 - C17 - H17	119.5
012 Cal H11C	16.5	C16—C17—H17	119.5
$05-C_{21}-H_{11}C$	111.4	C_{17} C_{18} C_{19}	122.3 (6)
$O_{2} C_{2} H_{11} C_{2}$	60.6	$C_{17} = C_{18} = C_{17}$	1122.5 (0)
012 Col H11C	09.0	$C_{10} = C_{10} = H_{10}$	118.9
O_{15} C_{a1} H_{11} C_{a1}	90.J	C19 - C10 - H18	110.9
O^{2} Col U11C	74.5	C18 - C19 - N1	122.1(3)
	95.3	C18 - C19 - C14	118.1 (5)
HIIA—Cal—HIIC	28.9	NI = C19 = C14	119.6 (5)
02—Cul—N2	92.99 (18)	08—C20—N1	130.6 (5)
O2—Cu1—N3	91.0 (2)	08-C20-C21	117.1 (5)
N2—Cu1—N3	173.2 (2)	N1—C20—C21	112.3 (5)
O2—Cu1—O3	166.89 (19)	O9—C21—O10	124.5 (5)
N2—Cu1—O3	85.94 (17)	O9—C21—C20	117.6 (5)
N3—Cu1—O3	91.3 (2)	O10—C21—C20	117.9 (5)
O7—Cu2—N1	95.17 (17)	C24—N5—C22	105.5 (5)
O7—Cu2—N5	89.76 (18)	C24—N5—Cu2	125.9 (4)
N1—Cu2—N5	173.9 (2)	C22—N5—Cu2	128.4 (4)
O7—Cu2—O10	176.73 (19)	C23—C22—N5	108.5 (6)
N1—Cu2—O10	85.29 (16)	C23—C22—H22	125.8
N5—Cu2—O10	89.59 (18)	N5—C22—H22	125.8
C20—N1—C19	122.6 (5)	C22—C23—N6	107.3 (6)
C20—N1—Cu2	112.2 (4)	С22—С23—Н23	126.4
C19—N1—Cu2	125.2 (3)	N6—C23—H23	126.4
C8—N2—C7	122.2 (5)	C_{24} N6 C_{23}	106.6 (6)
C8—N2—Cu1	112.1 (4)	C24—N6—H6A	126.7
C7-N2-Cu1	1257(4)	C_{23} N6—H6A	126.7
01-C1-02	119.1 (6)	N5_C24_N6	112.2 (6)
01 - C1 - C2	118.0 (6)	N5-C24-H24	12.2 (0)
$O_2 C_1 C_2$	122.9(5)	N6 C24 H24	123.9
$C_2 = C_1 = C_2$	122.9(5) 117.9(6)	$C_{1} = C_{2} = C_{11}$	123.7 128 7 (4)
$C_3 = C_2 = C_1$	117.9(0) 117.0(5)	$C_1 = O_2 = C_{u1}$	120.7(4)
C_{3} C_{2} C_{1}	117.0(5) 125.1(5)	$C_{9} = O_{3} = C_{01}$	110.0(3)
C/-C2-C1	123.1(3)	$C_{9} = 04 = Cal$	117.0(4)
C4 - C3 - C2	123.1 (0)	C_{8} C_{7} C_{12} C_{7} C_{12}	119.5 (3)
C4—C3—H3	118.5	C13 = 07 = C12	128.9 (4)
C2—C3—H3	118.5	$C_{20} = 08 = C_{a1}$	118.6 (3)
C3—C4—C5	119.0 (6)	C21—09—Cal	119.1 (4)
C3—C4—H4	120.5	C21—O10—Cu2	111.4 (3)
C5—C4—H4	120.5	Cal—Ol1—H11A	109.4
C6—C5—C4	120.0 (6)	Ca1—O11—H11C	111.2
С6—С5—Н5	120.0	H11A—O11—H11C	109.3
C4—C5—H5	120.0	Ca1—O12—H12A	134.4
C5—C6—C7	121.1 (6)	Ca1—O12—H12B	116.8
С5—С6—Н6	119.4	H12A—O12—H12B	104.4
С7—С6—Н6	119.4	Ca1—O13—H13A	109.8
C6—C7—C2	118.9 (5)	Ca1—O13—H13B	109.7
C6—C7—N2	121.2 (5)	H13A—O13—H13B	109.7
C2—C7—N2	119.8 (5)	H14C—O14—H14D	118.3

O5—C8—N2	129.7 (5)	H15A—O15—H15D	97.9
O5—C8—C9	117.7 (5)	H16A—O16—H16B	104.7
N2—C8—C9	112.6 (5)	H17C—O17—H17D	106.1
O4—C9—O3	124.6 (5)	H18C—O18—H18D	120.4
O4—C9—C8	117.4 (5)	H19C—O19—H19D	103.5
O3—C9—C8	118.1 (5)	H20C—O20—H20D	114.5

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
O20—H20D…O2 ⁱ	0.85	2.11	2.950 (7)	172
O20—H20C…O19	0.85	2.09	2.749 (11)	134
O19—H19D…O18	0.85	2.34	2.887 (12)	123
O19—H19C…O17 ⁱⁱ	0.85	1.91	2.758 (11)	180
O18—H18D…O6	0.85	2.50	3.070 (7)	125
O18—H18D…O7	0.85	2.20	3.049 (7)	179
O18—H18C…O14 ⁱⁱⁱ	0.85	2.04	2.887 (10)	178
O17—H17 <i>C</i> ···O14 ^{iv}	0.85	2.17	2.974 (12)	158
O16—H16A…O10	0.85	2.10	2.850 (6)	148
O15—H15D…O16	0.85	2.01	2.845 (7)	167
O15—H15A····O9	0.85	2.42	3.131 (6)	141
O15—H15A····O4	0.85	2.38	3.121 (7)	146
O14—H14D…O15	0.85	2.08	2.798 (7)	142
O14—H14 <i>C</i> ···O3	0.85	2.21	3.045 (7)	169
O13—H13 <i>B</i> ···O19 ^v	0.85	2.15	2.963 (9)	160
O13—H13A···O6 ^{vi}	0.85	1.95	2.780 (6)	164
O12—H12B···O1 ^{vii}	0.85	1.86	2.706 (6)	180
O12—H12A···O6 ^v	0.85	1.87	2.725 (5)	180
O11—H11C…O15 ⁱⁱ	0.85	2.37	2.778 (6)	110
O11—H11A···O1 ^{viii}	0.85	1.96	2.780 (6)	163
N6—H6A····O9 ⁱⁱⁱ	0.86	2.13	2.958 (7)	161
N6—H6A····O4 ⁱⁱⁱ	0.86	2.48	3.018 (6)	122
N4—H4A····O20 ⁱⁱⁱ	0.86	2.03	2.888 (9)	178

Symmetry codes: (i) *x*, *y*, *z*+1; (ii) *x*+1, *y*, *z*; (iii) -*x*+1, -*y*, -*z*+1; (iv) -*x*, -*y*, -*z*+1; (v) *x*-1/2, -*y*+1/2, *z*-1/2; (vi) *x*+1/2, -*y*+1/2, *z*-1/2; (vii) *x*-1/2, -*y*+1/2, -