

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Di- μ -thiocyanato- $\kappa^4 N$:*N*-bis({2,4-dibromo-6-[2-(methylamino)ethyliminomethyl]phenolato- $\kappa^3 N$,*N'*,*O*}nickel(II))

Hong-Wei Lin

Department of Chemistry, Huaihua University, Huaihua 418008, People's Republic of China

Correspondence e-mail: linhongwei1968@126.com

Received 26 October 2007; accepted 21 December 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.012 Å; *R* factor = 0.067; *wR* factor = 0.151; data-to-parameter ratio = 20.1.

The title complex, $[Ni_2(C_{11}H_{11}Br_2N_2O)_2(NCS)_2]$, is a thiocyanate-bridged dinuclear nickel(II) complex. The asymmetric unit contains two molecules. Both Ni atoms in each molecule have a square-pyramidal coordination geometry, and each center is bound by one O and two N atoms of one Schiff base ligand and by one N atom of a bridging thiocyanate ligand, which define the basal planes. N atoms from the bridging thiocyanate ligands occupy the apical positions.

Related literature

For related literature, see: Arıcı *et al.* (2005); Hebbachi & Benali-Cherif (2005); Henkel & Krebs (2004); Salmon *et al.* (2005); Sarı *et al.* (2006); Tshuva & Lippard (2004); Weston (2005).

 $V = 2927.0 (10) \text{ Å}^3$

Mo $K\alpha$ radiation

 $0.43 \times 0.40 \times 0.38 \text{ mm}$

25095 measured reflections

6938 independent reflections

2858 reflections with $I > 2\sigma(I)$

 $\mu = 6.92 \text{ mm}^{-1}$

T = 293 (2) K

 $R_{\rm int} = 0.139$

Z = 8

Experimental

Crystal data

 $\begin{bmatrix} Ni_{2}(C_{10}H_{11}Br_{2}N_{2}O)_{2}(NCS)_{2} \end{bmatrix}$ $M_{r} = 451.82$ Monoclinic, $P2_{1}/n$ a = 9.2040 (18) Å b = 19.833 (4) Å c = 16.319 (3) Å $\beta = 100.71$ (3)°

Data collection

Bruker SMART APEX CCD areadetector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2000) $T_{min} = 0.155$, $T_{max} = 0.178$ (expected range = 0.063–0.072)

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.066 & 345 \text{ parameters} \\ wR(F^2) &= 0.150 & H\text{-atom parameters constrained} \\ S &= 0.94 & \Delta\rho_{\text{max}} &= 0.65 \text{ e } \text{ Å}^{-3} \\ 6938 \text{ reflections} & \Delta\rho_{\text{min}} &= -0.77 \text{ e } \text{ Å}^{-3} \end{split}$$

Table 1

Hydrogen-bond	geometry	(Å,	°).
---------------	----------	-----	-----

D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
0.91	2.48	3.269 (9)	146
0.91	2.15	3.012 (9)	158
0.91	2.86	3.500 (7)	129
	<i>D</i> -Н 0.91 0.91 0.91	D−H H···A 0.91 2.48 0.91 2.15 0.91 2.86	$D-H$ $H \cdots A$ $D \cdots A$ 0.91 2.48 3.269 (9) 0.91 2.15 3.012 (9) 0.91 2.86 3.500 (7)

Symmetry code: (i) -x + 1, -y, -z + 1.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Bruker, 2000); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

The author acknowledges Huaihua University for a research grant.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RN2034).

References

- Arici, C., Yüzer, D., Atakol, O., Fuess, H. & Svoboda, I. (2005). Acta Cryst. E61, m919-m921.
- Bruker (2000). SMART (Version 5.625), SAINT (Version 6.01). SHELXTL (Version 6.10) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.
- Hebbachi, R. & Benali-Cherif, N. (2005). Acta Cryst. E61, m1188-m1190.

Henkel, G. & Krebs, B. (2004). Chem. Rev. 104, 801-824.

- Salmon, L., Thuéry, P. & Ephritikhine, M. (2005). Acta Cryst. E61, m2607– m2609.
- Sarı, M., Atakol, O., Svoboda, I. & Fuess, H. (2006). Acta Cryst. E62, m563– m565.
- Tshuva, E. Y. & Lippard, S. J. (2004). Chem. Rev. 104, 987-1012.
- Weston, J. (2005). Chem. Rev. 105, 2151-2174.

Acta Cryst. (2008). E64, m295 [doi:10.1107/S1600536807068146]

Di- μ -thiocyanato- $\kappa^4 N$:*N*-bis({2,4-dibromo-6-[2-(methylamino)ethyliminomethyl]phenolato- $\kappa^3 N$,*N'*,*O*}nickel(II))

Hong-Wei Lin

S1. Comment

The design of multidentate ligands and their metallosupramolecular chemistry are of great interest (Henkel & Krebs, 2004; Tshuva & Lippard, 2004; Weston, 2005). Schiff base ligands readily lead to the formation of diverse complexes with most metal ions (Arıcı *et al.*, 2005; Salmon *et al.*, 2005; Hebbachi & Benali-Cherif, 2005; Sarı *et al.*, 2006).

The two Ni centers in the title dinuclear nickel(II) complex are doubly-bridged by thiocyanato ligands. Both Ni atoms are five-coordinate and have square pyramidal geometry but both thiocyanate bridges are asymmetric where the distances are 2.643 (8) and 1.973 (8)Å for Ni1…N6 and Ni1—N3 respectively and 2.589 (8) and 1.978 (7)Å for Ni2…N3 and Ni2—N6 respectively. The Ni…Ni distance is 3.268 (3) Å.

S2. Experimental

3,5-Dibromosalicylaldehyde (1.0 mmol, 280.0 mg), *N*-methylethane-1,2-diamine (1.0 mmol, 74.0 mg), NH₄NCS (1.0 mmol, 76.0 mg), and Ni(NO₃)₂.6H₂O (1.0 mmol, 290.8 mg) were dissolved in a 50 ml me thanol solution. The mixture was stirred at reflux for half an hour to give a green solution. After keeping the solution in air for 15 days to allow slow evaporation, green block-like crystals were formed.

S3. Refinement

H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C—H distances in the range 0.93–0.97 Å, N—H distances of 0.91 Å, and with $U_{iso}(H)$ values set to $1.2U_{eq}(C,N)$ and $1.5U_{eq}(methyl C)$.

Figure 1

The structure of (I) with displacement ellipsoids drawn at the 30% probability level. H atoms have been omitted for clarity.

$Di-\mu$ -thiocyanato- $\kappa^4 N$: N-bis({2,4-dibromo-6-[2- (methylamino)ethyliminomethyl]phenolato- $\kappa^3 N$, N', O}nickel(II))

F(000) = 1760 $D_x = 2.051 \text{ Mg m}^{-3}$

 $\theta = 2.4-24.5^{\circ}$ $\mu = 6.92 \text{ mm}^{-1}$ T = 293 KBlock, green

 $R_{\rm int} = 0.139$

 $h = -12 \rightarrow 12$

 $k = -25 \rightarrow 25$

 $l = -21 \rightarrow 21$

 $0.43 \times 0.40 \times 0.38 \text{ mm}$

 $\theta_{\rm max} = 28.3^{\circ}, \ \theta_{\rm min} = 1.6^{\circ}$

25095 measured reflections

6938 independent reflections

2858 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å Cell parameters from 1344 reflections

Crystal data

$[Ni_2(C_{10}H_{11}Br_2N_2O)_2(NCS)_2]$
$M_r = 451.82$
Monoclinic, $P21/n$
a = 9.2040 (18) Å
b = 19.833 (4) Å
c = 16.319 (3) Å
$\beta = 100.71 \ (3)^{\circ}$
$V = 2927.0 (10) \text{ Å}^3$
Z = 8

Data collection

Bruker SMART APEX CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2000) $T_{\min} = 0.155, T_{\max} = 0.178$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.066$	Hydrogen site location: inferred from
$wR(F^2) = 0.151$	neighbouring sites
S = 0.94	H-atom parameters constrained
6938 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0506P)^2]$
345 parameters	where $P = (F_o^2 + 2F^2)/3$
0 restraints	$(\Delta/\sigma)_{max} < 0.001$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 0.65 \text{ e } \text{Å}^{-3}$
direct methods	$\Delta\rho_{min} = -0.77 \text{ e } \text{Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Ni1	0.59997 (12)	0.01132 (5)	0.24264 (7)	0.0378 (3)	
Ni2	0.61799 (12)	0.12004 (5)	0.77631 (7)	0.0349 (3)	
Br1	0.41051 (12)	0.33151 (5)	0.43009 (7)	0.0685 (4)	
Br2	0.31619 (12)	0.05315 (5)	0.46208 (6)	0.0564 (3)	
Br3	0.36394 (13)	0.17932 (5)	1.00163 (7)	0.0669 (4)	
Br3	0.36394 (13)	0.17932 (5)	1.00163 (7)	0.0669 (4)	

Br4	0.37706 (12)	0.45174 (5)	0.90757 (7)	0.0644 (3)
S1	0.8160 (4)	-0.18127 (14)	0.37004 (19)	0.0779 (10)
S2	0.8415 (4)	-0.07194 (15)	0.8944 (2)	0.0851 (10)
01	0.4903 (6)	0.0452 (3)	0.3223 (4)	0.0440 (16)
O2	0.5198 (6)	0.1600 (3)	0.8571 (3)	0.0468 (16)
N1	0.6349 (8)	0.1003 (3)	0.2016 (4)	0.045 (2)
N2	0.6704 (8)	-0.0212 (4)	0.1394 (4)	0.050(2)
H2A	0.6074	-0.0543	0.1164	0.060*
N3	0.6368 (8)	-0.0765 (4)	0.2996 (5)	0.049(2)
N4	0.6322 (8)	0.2040 (3)	0.7179 (5)	0.047 (2)
N5	0.6960 (8)	0.0799 (3)	0.6800 (4)	0.0449 (19)
H5A	0.6473	0.0404	0.6660	0.054*
N6	0.6537 (9)	0.0353 (4)	0.8409 (5)	0.049(2)
C1	0.5295 (10)	0.1639 (4)	0.3041 (5)	0.041 (2)
C2	0.4755 (10)	0.1078 (4)	0.3426 (5)	0.041 (2)
C3	0.3982 (9)	0.1240 (4)	0.4082 (5)	0.040 (2)
C4	0.3789 (10)	0.1898 (4)	0.4331 (6)	0.047(2)
H4	0.3275	0.1986	0.4759	0.056*
C5	0.4366 (10)	0.2416 (4)	0.3938 (6)	0.045(2)
C6	0.5112 (10)	0.2302 (4)	0.3303 (6)	0.052 (3)
H6	0.5497	0.2662	0.3046	0.062*
C7	0.6038 (10)	0.1557 (4)	0.2333 (6)	0.048 (3)
H7	0.6311	0.1950	0.2088	0.057*
C8	0.7089(11)	0.0998 (5)	0.1295 (6)	0.057 (3)
H8A	0.8153	0.0975	0.1475	0.068*
H8B	0.6848	0.1403	0.0963	0.068*
C9	0.6515 (11)	0.0371 (5)	0.0789 (6)	0.060(3)
H9A	0.5482	0.0426	0.0537	0.072*
H9B	0.7076	0.0293	0.0351	0.072*
C10	0.7144 (10)	-0.1202 (5)	0.3285 (6)	0.045(2)
C11	0.5255 (9)	0.2750 (4)	0.8123 (6)	0.041 (2)
C12	0.4913 (9)	0.2237 (4)	0.8649 (5)	0.037 (2)
C13	0.4210 (10)	0.2452 (4)	0.9302 (5)	0.045 (2)
C14	0.3902 (10)	0.3114 (4)	0.9432 (6)	0.048 (3)
H14	0.3449	0.3234	0.9875	0.057*
C15	0.4267 (9)	0.3604 (4)	0.8902 (6)	0.043(2)
C16	0.4953 (10)	0.3435 (4)	0.8254 (6)	0.047 (2)
H16	0.5216	0.3766	0.7906	0.057*
C17	0.5928 (10)	0.2625 (5)	0.7395 (6)	0.052 (3)
H17	0.6081	0.2992	0.7066	0.062*
C18	0.6914 (11)	0.1982 (4)	0.6398 (6)	0.059 (3)
H18A	0.7973	0.2059	0.6502	0.071*
H18B	0.6442	0.2305	0.5987	0.071*
C19	0.6558 (11)	0.1265 (4)	0.6100 (6)	0.056 (3)
H19A	0.5510	0.1226	0.5872	0.067*
H19B	0.7103	0.1153	0.5664	0.067*
C20	0.8556 (10)	0.0652 (5)	0.6983 (6)	0.061 (3)
H20A	0.8725	0.0239	0.7293	0.091*
				-

H20B	0.9068	0.1014	0.7305	0.091*
H20C	0.8914	0.0607	0.6469	0.091*
C21	0.7334 (10)	-0.0092 (5)	0.8631 (6)	0.044 (2)
C22	0.8217 (10)	-0.0497 (5)	0.1533 (6)	0.071 (3)
H22A	0.8432	-0.0657	0.1013	0.107*
H22B	0.8283	-0.0865	0.1921	0.107*
H22C	0.8917	-0.0154	0.1755	0.107*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	0.0465 (8)	0.0318 (6)	0.0374 (7)	0.0009 (5)	0.0140 (6)	0.0000 (5)
Ni2	0.0449 (7)	0.0264 (6)	0.0357 (7)	0.0005 (5)	0.0140 (6)	-0.0007(5)
Br1	0.0776 (8)	0.0362 (6)	0.0944 (9)	0.0020 (5)	0.0229 (7)	-0.0143 (6)
Br2	0.0783 (8)	0.0426 (6)	0.0560 (7)	-0.0078 (5)	0.0329 (6)	-0.0048 (5)
Br3	0.0927 (9)	0.0551 (7)	0.0637 (7)	0.0114 (6)	0.0426 (7)	0.0071 (6)
Br4	0.0686 (8)	0.0395 (6)	0.0873 (9)	0.0079 (5)	0.0202 (7)	-0.0125 (6)
S 1	0.101 (2)	0.0635 (19)	0.069 (2)	0.0369 (18)	0.0174 (19)	0.0090 (16)
S2	0.088 (2)	0.068 (2)	0.106 (3)	0.0307 (18)	0.034 (2)	0.0328 (19)
01	0.056 (4)	0.031 (3)	0.048 (4)	-0.004 (3)	0.017 (3)	-0.003 (3)
O2	0.063 (4)	0.037 (4)	0.046 (4)	0.005 (3)	0.023 (3)	0.001 (3)
N1	0.059 (5)	0.036 (4)	0.043 (5)	0.003 (4)	0.015 (4)	-0.001 (4)
N2	0.051 (5)	0.047 (5)	0.053 (5)	0.008 (4)	0.014 (4)	-0.003 (4)
N3	0.053 (6)	0.034 (4)	0.058 (6)	0.003 (4)	0.009 (4)	-0.006 (4)
N4	0.066 (6)	0.032 (4)	0.050 (5)	-0.007 (4)	0.027 (4)	0.001 (4)
N5	0.052 (5)	0.043 (5)	0.043 (5)	-0.003 (4)	0.018 (4)	-0.002 (4)
N6	0.064 (6)	0.038 (5)	0.044 (5)	0.003 (4)	0.012 (4)	0.008 (4)
C1	0.047 (6)	0.035 (5)	0.041 (6)	-0.004 (4)	0.006 (5)	-0.005 (4)
C2	0.045 (6)	0.042 (6)	0.032 (6)	-0.002 (5)	-0.003 (5)	0.001 (4)
C3	0.048 (6)	0.029 (5)	0.043 (6)	-0.007 (4)	0.009 (5)	0.005 (4)
C4	0.048 (6)	0.043 (6)	0.049 (6)	0.005 (5)	0.008 (5)	-0.006 (5)
C5	0.051 (6)	0.029 (5)	0.052 (7)	0.014 (5)	-0.001 (5)	0.005 (5)
C6	0.052 (7)	0.038 (6)	0.064 (7)	-0.007 (5)	0.004 (6)	0.002 (5)
C7	0.056 (7)	0.039 (6)	0.048 (7)	-0.001 (5)	0.010 (5)	0.002 (5)
C8	0.073 (8)	0.055 (6)	0.049 (7)	-0.002 (5)	0.031 (6)	0.008 (5)
C9	0.077 (8)	0.058 (7)	0.047 (7)	-0.006 (6)	0.015 (6)	0.008 (6)
C10	0.040 (6)	0.053 (6)	0.043 (6)	-0.009 (5)	0.012 (5)	-0.007 (5)
C11	0.038 (6)	0.033 (5)	0.052 (6)	-0.004 (4)	0.007 (5)	-0.011 (5)
C12	0.040 (6)	0.034 (5)	0.035 (6)	-0.008 (4)	-0.001 (5)	0.000 (4)
C13	0.054 (6)	0.046 (6)	0.036 (6)	0.007 (5)	0.014 (5)	0.003 (4)
C14	0.065 (7)	0.038 (6)	0.044 (6)	0.001 (5)	0.019 (5)	-0.012 (5)
C15	0.033 (6)	0.039 (5)	0.057 (7)	0.006 (4)	0.009 (5)	-0.018 (5)
C16	0.056 (7)	0.032 (5)	0.052 (7)	0.000 (5)	0.007 (5)	0.005 (5)
C17	0.072 (7)	0.040 (6)	0.046 (6)	0.001 (5)	0.017 (6)	0.012 (5)
C18	0.086 (8)	0.044 (6)	0.055 (7)	-0.007 (5)	0.032 (6)	-0.003 (5)
C19	0.069 (7)	0.045 (6)	0.059 (7)	-0.006 (5)	0.025 (6)	0.003 (5)
C20	0.055 (7)	0.063 (7)	0.070 (8)	-0.003 (6)	0.025 (6)	-0.017 (6)
C21	0.046 (6)	0.046 (6)	0.039 (6)	-0.008 (5)	0.010 (5)	0.005 (5)

						0
C22	0.056 (7)	0.078 (8)	0.089 (9)	0.018 (6)	0.040 (7)	0.002 (7)
Geomet	ric parameters (2	Å, °)				
Nil—O	01	1.911 (6)		C2—C3		1.428 (11)
Ni1—N	1	1.934 (7)		C3—C4		1.388 (11)
Ni1—N	2	2.019 (7)		C4—C5		1.370 (11)
Ni1—N	[3	1.973 (8))	C4—H4		0.9300
Ni1—N	6 ⁱ	2.643 (8)		C5—C6		1.365 (12)
Ni2—O	2	1.904 (5)		С6—Н6		0.9300
Ni2—N	[3 ⁱ	2.589 (8)		С7—Н7		0.9300
Ni2—N	4	1.935 (7)		C8—C9		1.532 (12)
Ni2—N	6	1.978 (7))	C8—H8A		0.9700
Ni2—N	5	2.010 (7))	C8—H8B		0.9700
Br1—C	5	1.907 (8))	С9—Н9А		0.9700
Br2—C	3	1.888 (8))	С9—Н9В		0.9700
Br3—C	13	1.889 (9))	C11—C12		1.404 (11)
Br4—C	15	1.902 (8))	C11—C16		1.410 (11)
S1—C1	0	1.602 (10))	C11—C17		1.460 (12)
S2—C2	21	1.617 (10))	C12—C13		1.412 (11)
01—C2	2	1.299 (9)		C13—C14		1.369 (11)
02—C1	12	1.301 (9))	C14—C15		1.383 (11)
N1-C2	7	1.270 (10))	C14—H14		0.9300
N1-C8	3	1.466 (10))	C15—C16		1.372 (11)
N2—C2	22	1.481 (10))	C16—H16		0.9300
N2—C9)	1.509 (10))	C17—H17		0.9300
N2—H2	2A	0.9100	,	C18—C19		1.519 (11)
N3—C1	10	1.166 (10))	C18—H18A		0.9700
N4—C1	17	1.283 (10))	C18—H18B		0.9700
N4—C1	18	1.481 (10))	C19—H19A		0.9700
N5—C	19	1.462 (10))	C19—H19B		0.9700
N5-C2	20	1.472 (10))	C20—H20A		0.9600
N5—H5	5A	0.9100		C20—H20B		0.9600
N6-C2	21	1.161 (10))	C20—H20C		0.9600
C1—Cé	5	1.403 (11)	C22—H22A		0.9600
C1C2	2	1.412 (11	l)	C22—H22B		0.9600
C1—C7	7	1.457 (11)	C22—H22C		0.9600
O1—Ni	i1—N1	93.3 (3)		N1—C7—H7		116.8
O1—Ni	1—N3	93.2 (3)		С1—С7—Н7		116.8
N1—Ni	1—N3	160.5 (3))	N1—C8—C9		105.8 (7)
O1—Ni	1—N2	166.4 (3))	N1—C8—H8A		110.6
N1—Ni	1—N2	84.4 (3)		С9—С8—Н8А		110.6
N3—Ni	1—N2	93.3 (3)		N1—C8—H8B		110.6
O1—Ni	$1 - N6^{i}$	86.9 (3)		C9—C8—H8B		110.6
N1—Ni	$1 - N6^{i}$	109.2 (3))	H8A—C8—H8B		108.7
N2—Ni	$1 - N6^{i}$	81.3 (3)		N2—C9—C8		106.5 (8)
N3—Ni	$1 - N6^{i}$	89.5 (3)		N2—C9—H9A		110.4

Ω^2 _Ni ² _N4	93.9(3)	С8—С9—Н9А	110.4
$O_2 N_2 N_5$	93.9(3)	N2 C0 H0B	110.4
N4 Ni2 N6	166.8(3)	$C_8 = C_9 = H_9 B$	110.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100.0(3)		108.6
N2 N12 N15	172.3(3)	$N_{2} = C_{10} = S_{1}$	108.0 177.8(0)
IN4 $II2$ $II3$	83.0(3)	$N_{3} = C_{10} = S_{1}$	177.8 (9)
NO-N12-NS	91.8 (5)	C12 - C11 - C16	122.2(8)
$02-N12-N5^{\circ}$	88.0 (5)		123.5 (8)
$N4 - N12 - N3^{2}$	101.0 (3)		114.4 (8)
$N5-N12-N3^{1}$	85.2 (3)	02-012-011	124.9 (8)
N6—N12—N3 ¹	91.0 (3)	02	119.7 (8)
C2—O1—Nil	127.1 (6)	C11—C12—C13	115.4 (8)
C12—O2—Ni2	127.0 (5)	C14—C13—C12	123.0 (8)
C7—N1—C8	120.3 (8)	C14—C13—Br3	118.6 (7)
C7—N1—Ni1	125.8 (6)	C12—C13—Br3	118.4 (6)
C8—N1—Ni1	113.8 (6)	C13—C14—C15	119.7 (8)
C22—N2—C9	112.5 (7)	C13—C14—H14	120.1
C22—N2—Ni1	115.6 (6)	C15—C14—H14	120.1
C9—N2—Ni1	106.6 (5)	C16—C15—C14	120.7 (8)
C22—N2—H2A	107.2	C16—C15—Br4	120.4 (7)
C9—N2—H2A	107.2	C14—C15—Br4	118.9 (6)
Ni1—N2—H2A	107.2	C15—C16—C11	119.0 (8)
C10—N3—Ni1	152.4 (7)	C15—C16—H16	120.5
C17—N4—C18	118.3 (7)	C11—C16—H16	120.5
C17—N4—Ni2	126.4 (6)	N4-C17-C11	124.1 (8)
C18 - N4 - Ni2	115.2 (6)	N4—C17—H17	117.9
C19 - N5 - C20	112.2(0) 112.4(7)	C11—C17—H17	117.9
C19 - N5 - Ni2	106.6 (5)	N4-C18-C19	104.9(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	114.1.(6)	N4 C18 H18A	110.8
C_{20} N5 H5A	107.9	C10 C18 H18A	110.8
$C_{19} = N_{5} = H_{5} A$	107.9	$M_{12} = C_{12} = H_{12} = H_{12}$	110.8
120 N/2 N/5 1/5 A	107.9	$\mathbf{N4} = \mathbf{C10} = $	110.8
NIZ-NJ-HJA C21 NG NG2	107.9		110.8
$C_2 I = N_0 = N_{12}$	147.0 (7)		108.9
C_{0}	122.1 (8)	N5-C19-C18	109.5 (8)
	116.5 (8)	N5—C19—H19A	109.8
$C_2 = C_1 = C_1$	121.4 (8)	С18—С19—Н19А	109.8
01	125.3 (8)	N5—C19—H19B	109.8
O1—C2—C3	119.8 (8)	С18—С19—Н19В	109.8
C1—C2—C3	115.0 (8)	H19A—C19—H19B	108.2
C4—C3—C2	122.7 (8)	N5—C20—H20A	109.5
C4—C3—Br2	118.6 (7)	N5—C20—H20B	109.5
C2—C3—Br2	118.7 (6)	H20A—C20—H20B	109.5
C5—C4—C3	119.1 (8)	N5—C20—H20C	109.5
C5—C4—H4	120.4	H20A—C20—H20C	109.5
C3—C4—H4	120.4	H20B-C20-H20C	109.5
C6—C5—C4	121.6 (8)	N6-C21-S2	178.9 (9)
C6C5Br1	120.1 (7)	N2—C22—H22A	109.5
C4—C5—Br1	118.3 (7)	N2—C22—H22B	109.5
C5—C6—C1	119.5 (9)	H22A—C22—H22B	109.5

С5—С6—Н6	120.2	N2—C22—H22C	109.5
С1—С6—Н6	120.2	H22A—C22—H22C	109.5
N1—C7—C1	126.3 (8)	H22B—C22—H22C	109.5

Symmetry code: (i) -x+1, -y, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	Н…А	D····A	<i>D</i> —H… <i>A</i>
N2—H2A···O2 ⁱ	0.91	2.48	3.269 (9)	146
N5—H5A···O1 ⁱ	0.91	2.15	3.012 (9)	158
N5—H5A····Br2 ⁱ	0.91	2.86	3.500 (7)	129

Symmetry code: (i) -x+1, -y, -z+1.