$\gamma = 71.9520 \ (17)^{\circ}$

Mo Ka radiation

 $0.21 \times 0.16 \times 0.15 \text{ mm}$

10997 measured reflections

2348 independent reflections

2310 reflections with $I > 2\sigma(I)$

 $\mu = 1.19 \text{ mm}^{-1}$

T = 100 (2) K

 $R_{\rm int} = 0.026$

Z = 1

 $V = 488.20 (15) \text{ Å}^3$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Poly[propane-1,3-diammonium [cuprate(II)-bis(μ_2 -pyridine-2,3dicarboxylato)] trihydrate]

Hossein Aghabozorg,^a* Ramona Khadivi,^b Mohammad Ghadermazi,^c Hoda Pasdar^b and Shabnam Hooshmand^d

^aFaculty of Chemistry, Teacher Training University, Tehran, Iran, ^bDepartment of Chemistry, Islamic Azad University, North Tehran Branch, Tehran, Iran, ^cDepartment of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj, Iran, and ^dDepartment of Chemistry, Ilam University, Ilam, Iran Correspondence e-mail: haghabozorg@yahoo.com

Received 29 October 2007; accepted 16 December 2007

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.007 Å; disorder in main residue; R factor = 0.063; wR factor = 0.176; data-to-parameter ratio = 12.4

The title polymeric compound $\{(C_3H_{12}N_2)[Cu(C_7H_3NO_4)_2]$. $3H_2O_{l_n}$ or $\{(pnH_2)[Cu(py-2,3-dc)_2]\cdot 3H_2O_{l_n}\}$ (pn is propane-1,3-diamine and py-2,3-dcH₂ is pyridine-2,3-dicarboxylic acid), was synthesized by reaction of copper(II) chloride dihydrate with a proton-transfer compound, propane-1,3-diammonium pyridine-2,3-dicarboxylate or $(pnH_2)(py-2,3-dc)$, in aqueous solution. The anion is a six-coordinate complex (site symmetry $\overline{1}$), with a distorted octahedral geometry around Cu^{II}. consisting of two bidentate pyridine-2,3-dicarboxylate groups and two O atoms of bridging ligands from (py-2,3-dc)²⁻ fragments, which are located in *trans* positions. The $(pnH_2)^{2+}$ cation is disordered over two sites by the center of inversion. Intermolecular hydrogen bonds, π - π [centroid-centroid distances of 3.539 (3) Å] and C–O··· π stacking interactions $[O \cdots Cg = 3.240 (5) \text{ Å}; Cg \text{ is the center of the pyridine ring}],$ connect the various components into a supramolecular structure.

Related literature

For related literature, see: Aghabozorg, Attar Gharamaleki, Ghadermazi et al. (2007); Aghabozorg, Attar Gharamaleki, Ghasemikhah et al. (2007); Aghabozorg, Daneshvar et al. (2007).

Experimental

Crystal data

 $(C_3H_{12}N_2)[Cu(C_7H_3NO_4)_2]\cdot 3H_2O$ $M_r = 523.94$ Triclinic, $P\overline{1}$ a = 6.6857 (12) Åb = 7.8251 (18) Å c = 9.9188 (9) Å $\alpha = 82.6561 \ (10)^{\circ}$ $\beta = 84.0079 (13)^{\circ}$

Data collection

```
Bruker SMART APEXII CCD
  diffractometer
Absorption correction: multi-scan
  (SADABS; Sheldrick, 2003)
  T_{\min} = 0.775, \ T_{\max} = 0.836
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.063$	189 parameters
$wR(F^2) = 0.176$	H-atom parameters constrained
S = 1.01	$\Delta \rho_{\rm max} = 0.69 \ {\rm e} \ {\rm \AA}^{-3}$
2348 reflections	$\Delta \rho_{\rm min} = -0.93 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Cu1-O1	1.960 (4)	Cu1-O4 ⁱ	2.549 (4)
Cu1-N1	1.970 (4)		
O1 ⁱⁱ -Cu1-N1 ⁱⁱ	83.39 (16)	$O4^i$ -Cu1-O4 ⁱⁱⁱ	180
O1-Cu1-N1 ⁱⁱ	96.61 (16)		

Symmetry codes: (i) x - 1, y, z; (ii) -x, -y + 2, -z + 2; (iii) -x + 1, -y + 2, -z + 2.

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N2-H2A\cdots O3$	0.91	1.96	2.854 (1)	167
$N2-H2B\cdots O2^{iv}$	0.91	2.01	2.830 (1)	150
$N3-H3B\cdots N2^{v}$	0.91	1.56	2.283 (1)	134
$N3 - H3B \cdots O2W^{vi}$	0.91	1.95	2.852 (13)	174
$N3-H3C\cdots O3^{iv}$	0.91	2.42	3.041 (10)	126
$N3-H3C\cdots O4^{iv}$	0.91	2.08	2.991 (1)	174
$N3-H3D\cdotsO1WA^{vii}$	0.91	2.03	2.934 (1)	170
$N3-H3D\cdotsO1WB^{vii}$	0.91	2.51	3.407 (15)	170
$O1WA - H3W \cdots O1^{viii}$	0.89	2.11	2.764 (1)	130

metal-organic compounds

$D - H \cdots A$	$D-{\rm H}$	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1WA - H4W \cdots O3^{i}$	0.97	1.74	2.696 (1)	168
$O2W - H1W \cdot \cdot \cdot O1WA$	0.87	2.00	2.779 (15)	148
$O2W - H1W \cdots O1WB$	0.87	1.59	2.350 (1)	145
$O2W - H2W \cdot \cdot \cdot O3^{ix}$	0.85	1.92	2.768 (1)	179
$C5-H5\cdots O1WA^{x}$	0.95	2.60	3.534 (13)	169
$C8-H8A\cdots O2$	0.99	2.37	2.891 (11)	112
$C8-H8B\cdots O4^{i}$	0.99	2.49	3.396 (11)	153
0.		=,		

Symmetry codes: (i) x - 1, y, z; (iv) -x + 1, -y + 2, -z + 1; (v) -x, -y + 2, -z + 1; (vi) x - 1, y + 1, z; (vii) x, y + 1, z; (viii) x, y - 1, z; (ix) -x + 1, -y + 1, -z + 1; (x) -x, -y + 1, -z + 2.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *APEX2*; data reduction: *APEX2*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 1998); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL* and *Mercury* (Macrae *et al.*, 2006); software used to prepare material for publication: *SHELXTL*.

Financial support from Ilam University and the Teacher Training University is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2184).

References

- Aghabozorg, H., Attar Gharamaleki, J., Ghadermazi, M., Ghasemikhah, P. & Soleimannejad, J. (2007). Acta Cryst. E63, m1803–m1804.
- Aghabozorg, H., Attar Gharamaleki, J., Ghasemikhah, P., Ghadermazi, M. & Soleimannejad, J. (2007). Acta Cryst. E63, m1710–m1711.
- Aghabozorg, H., Daneshvar, S., Motyeian, E., Ghadermazi, M. & Attar Gharamaleki, J. (2007). Acta Cryst. E63, m2468-m2469.
- Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. **39**, 453–457.
- Sheldrick, G. M. (1998). SHELXTL. Version. 5.10. Bruker AXS Inc, Madison, Wisconsin, USA.
- Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.

supporting information

Acta Cryst. (2008). E64, m267-m268 [doi:10.1107/S1600536807067153]

Poly[propane-1,3-diammonium [cuprate(II)-bis(µ₂-pyridine-2,3-dicarboxylato)] trihydrate]

Hossein Aghabozorg, Ramona Khadivi, Mohammad Ghadermazi, Hoda Pasdar and Shabnam Hooshmand

S1. Comment

Intermolecular intractions, such as hydrogen bonding, π - π stacking, ion pairing and donor-acceptor interactions, are famous for making aggregates of molecules. One or more of these interactions may result in the formation of specific and spontaneous self-associations or self-associated compounds. Research has shown that hydrogen bonding plays the key role in preparation of self-assembled compounds. There is a very close relationship between hydrogen bonding and formation of proton transfer compounds (Aghabozorg, Attar Gharamaleki, Ghadermazi *et al.*, 2007; Aghabozorg, Attar Gharamaleki, Ghasemikhah *et al.*, 2007; Aghabozorg, Daneshvar *et al.*, 2007).

Here, we report on the synthesis and X-ray crystal structure of the title compound. Selected bond lengths, bond angles are given in Table 1. The Cu^{II} compound is composed of an anionic complex, $[Cu(py-2,3-dc)_2]^{2-}$, propane-1,3-di-ammonium as a counter-ion, $(pnH_2)^{2+}$, and three uncoordinated water molecules (Fig. 1). The Cu^{II} atom resides on a center of symmetry and is six-coordinated by two pyridine-2,3-dicarboxylate, $(py-2,3-dc)^{2-}$, groups which act as a bidentate ligand through one O atom and one N atom and two O atoms of bridging $(py-2,3-dc)^{2-}$ ligands that occupy *trans* positions with $[O4^{ii}-Cu1-O4^{iii} = 180^{\circ}; ii: x - 1, y, z$ and iii: -x + 1, -y + 2, -z + 2] which create the title polymeric structure. On the other hand, O1-Cu1-N1-C1 and N1-Cu1-O1-C6 torsion angles are 175.1 (3)° and -176.7 (4)°, respectively indicate that two $(py-2,3-dc)^{2-}$ units are in the plane. In the crystal structure, the spaces between two layers of $[Cu(py-2,3-dc)_2]^{2-}$ are filled with a layers of $(pnH_2)^{2+}$ cations and water molecules (Fig 2). Solvate water molecules are disordered over two sites: O1WA and O1WB with equal occupancies and O2W by the center of inversion.

A notable feature of this compound is the presence of π - π and C—O··· π stacking interactions. The π - π stacking between two aromatic rings of (py-2,3-dc)^{2–} fragments with distances of 3.539 (3) Å (1 - *x*, 1 - *y*, 2 - *z*) are observed (Fig. 3). The C—O··· π distances are 3.240 (5) Å (C6–O2···*Cg*1(1 - *x*, 2 - *y*, 2 - *z*); *Cg*1 is the centroid for the N1/C1–C5 ring] (Fig. 4). Intermolecular O—H···O, O—H···N, N—H···O, C—H···O and C—H···N hydrogen bonds with D···A ranging from 2.283 (1) Å to 3.534 (13) Å (Table 2) seem to be effective in the stabilization of the crystal structure, resulting in the formation of an interesting supramolecular structure.

S2. Experimental

A solution of $CuCl_2.2H_2O$ (85 mg, 0.5 mmol) in water (5 ml) was added to an aqueous solution of $(pnH_2)(py-2,3-dc)$ (242 mg, 1 mmol) in water (10 ml) in a 1:2 molar ratio. Blue crystals of title compound were obtained after allowing the mixture to stand for four weeks at room temperature.

S3. Refinement

The H(C) atom positions were calculated. H(N) and H(O) atom positions were found in difference Fourier synthesis. All hydrogen atoms were refined with use of a riding model with the U_{iso} (H) parameters equal to 1.2 U_{eq} (C) and to 1.5 U_{eq} (N), 1.5 U_{eq} (O), where U(C), U_{eq} (O) and U(N) are equivalent isotropic thermal parameters of the atoms to which corresponding H atoms are bonded.

The cation is disordered over two sites by a center of inversion.

Water molecules are disordered over two sites: O1WA and O1WB with equal occupancies and O2W by the center of inversion.

Figure 1

The molecular structure of the title complex, with displacement ellipsoids drawn at the 50% probability level. [The labels a, b,c and d denote atoms generated by the symmetry operators (-1 + x, y, z), (1 + x, y, z), (-x, 2 - y, 2 - z) and (1 - x, 2 - y, 2 - z), respectively].

Figure 2

A layered packing diagram viewed down the *b* axis. The space between the two layers of $[Cu(py-2,3-dc)_2]^{2-}$ fragments is filled with a layer of $(pnH_2)^{2+}$ cations and water molecules.

Figure 3

 π - π Stacking interactions between two aromatic rings. The average distance between the planes is 3.539 (3) Å (1 - x, 1 - y, 2 - z).

Figure 4

The stacking interactions of the carbonyl groups of $(py-2,3-dc)^{2-}$ fragments. The C—O··· π distances (measured to the center of ring (N1/C1-C5) are 3.239 (5) Å (1 - x, 2 - y, 2 - z).

Poly[propane-1,3-diammonium [cuprate(II)-bis(µ2-pyridine-2,3-dicarboxylato] tetrahydrate]

Crystal data $(C_{3}H_{12}N_{2})[Cu(C_{7}H_{3}NO_{4})_{2}]\cdot 3H_{2}O$ $M_r = 523.94$ Triclinic, $P\overline{1}$ a = 6.6857 (12) Å*b* = 7.8251 (18) Å *c* = 9.9188 (9) Å $\alpha = 82.6561 (10)^{\circ}$ $\beta = 84.0079 (13)^{\circ}$ $\gamma = 71.9520 (17)^{\circ}$ $V = 488.20 (15) \text{ Å}^3$

Data collection

Bruker SMART APEXII CCD	10997 measured reflections
diffractometer	2348 independent reflections
Radiation source: fine-focus sealed tube	2310 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.026$
φ and ω scans	$\theta_{\rm max} = 28.0^{\circ}, \theta_{\rm min} = 2.8^{\circ}$
Absorption correction: multi-scan	$h = -8 \rightarrow 8$
(SADABS; Sheldrick, 2003)	$k = -10 \rightarrow 10$
$T_{\min} = 0.775, \ T_{\max} = 0.836$	$l = -13 \rightarrow 13$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.063$ $wR(F^2) = 0.176$ S = 1.012348 reflections 189 parameters 0 restraints Primary atom site location: structure-invariant direct methods

Z = 1F(000) = 271 $D_{\rm x} = 1.782 \text{ Mg m}^{-3}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 1234 reflections $\theta = 3-20^{\circ}$ $\mu = 1.19 \text{ mm}^{-1}$ T = 100 KPrism. blue $0.21 \times 0.16 \times 0.15 \text{ mm}$

Secondary atom site location: difference Fourier map Hydrogen site location: mixed H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.010P)^2 + 9.P]$ where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.69 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.93 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Cul	0.0000	1.0000	1.0000	0.0083 (2)	
01	0.1529 (5)	1.0909 (5)	0.8418 (4)	0.0137 (7)	
O2	0.4743 (6)	1.0337 (6)	0.7330 (4)	0.0233 (9)	
O3	0.7857 (6)	0.6603 (5)	0.7152 (4)	0.0189 (8)	
O4	0.9507 (6)	0.7923 (5)	0.8365 (4)	0.0184 (8)	
N1	0.2805 (6)	0.8300 (5)	1.0351 (4)	0.0099 (8)	
C1	0.4291 (7)	0.8457 (6)	0.9349 (5)	0.0098 (9)	
C2	0.6352 (8)	0.7332 (6)	0.9342 (5)	0.0108 (9)	
C3	0.6889 (8)	0.6039 (6)	1.0472 (5)	0.0119 (9)	
Н3	0.8292	0.5260	1.0525	0.014*	
C4	0.5387 (8)	0.5903 (6)	1.1494 (5)	0.0113 (9)	
H4	0.5743	0.5031	1.2259	0.014*	
C5	0.3353 (8)	0.7039 (6)	1.1406 (5)	0.0111 (9)	
Н5	0.2314	0.6924	1.2112	0.013*	
C6	0.3515 (8)	1.0015 (7)	0.8261 (5)	0.0135 (9)	
C7	0.8024 (7)	0.7337 (7)	0.8180 (5)	0.0135 (10)	
N2	0.4757 (13)	0.7636 (12)	0.5189 (9)	0.0129 (16)	0.50
H2A	0.5574	0.7319	0.5913	0.019*	0.50
H2B	0.5369	0.8236	0.4504	0.019*	0.50
H2C	0.4627	0.6624	0.4892	0.019*	0.50
C8	0.2618 (16)	0.8836 (14)	0.5611 (10)	0.0139 (19)	0.50
H8A	0.2673	1.0086	0.5610	0.017*	0.50
H8B	0.2188	0.8415	0.6549	0.017*	0.50
С9	0.1014 (16)	0.8816 (14)	0.4648 (11)	0.014 (2)	0.50
H9A	0.0884	0.7582	0.4704	0.017*	0.50
H9B	0.1506	0.9140	0.3702	0.017*	0.50
C10	-0.1138 (17)	1.0139 (15)	0.4993 (11)	0.017 (2)	0.50
H10A	-0.2226	0.9832	0.4550	0.020*	0.50
H10B	-0.1467	1.0008	0.5990	0.020*	0.50
N3	-0.1232 (14)	1.2052 (12)	0.4541 (9)	0.0135 (16)	0.50
H3B	-0.2596	1.2764	0.4603	0.020*	0.50
H3C	-0.0696	1.2138	0.3662	0.020*	0.50
H3D	-0.0461	1.2422	0.5083	0.020*	0.50
O1WA	0.0811 (17)	0.3649 (16)	0.6306 (12)	0.015 (2)	0.50
O1WB	0.1490 (17)	0.3949 (16)	0.6312 (13)	0.018 (2)	0.50

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

supporting information

H3W	0.1276	0.3321	0.7141	0.027*	
H4W	-0.0108	0.4794	0.6569	0.027*	
O2W	0.4409 (12)	0.4057 (11)	0.4800 (8)	0.0171 (15)	0.50
H1W	0.3664	0.3585	0.5422	0.026*	0.50
H2W	0.3701	0.3870	0.4201	0.026*	0.50

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.0047 (4)	0.0081 (4)	0.0105 (4)	-0.0008 (3)	0.0010 (3)	0.0011 (3)
01	0.0095 (16)	0.0141 (17)	0.0131 (17)	0.0005 (13)	0.0002 (13)	0.0039 (13)
02	0.0120 (18)	0.029 (2)	0.019 (2)	0.0007 (16)	0.0054 (15)	0.0113 (16)
03	0.0152 (18)	0.024 (2)	0.0127 (18)	-0.0001 (15)	0.0009 (14)	-0.0029 (15)
04	0.0134 (17)	0.0167 (18)	0.023 (2)	-0.0041 (14)	0.0063 (15)	-0.0012 (15)
N1	0.0093 (18)	0.0090 (18)	0.0103 (19)	-0.0011 (15)	0.0015 (15)	-0.0022 (14)
C1	0.008 (2)	0.012 (2)	0.010 (2)	-0.0044 (17)	-0.0004 (16)	-0.0005 (17)
C2	0.011 (2)	0.011 (2)	0.011 (2)	-0.0048 (17)	-0.0024 (17)	0.0010 (17)
C3	0.013 (2)	0.010(2)	0.013 (2)	-0.0022 (17)	-0.0039 (18)	-0.0027 (17)
C4	0.014 (2)	0.009 (2)	0.012 (2)	-0.0034 (17)	-0.0036 (17)	0.0005 (17)
C5	0.016 (2)	0.010(2)	0.010(2)	-0.0061 (18)	-0.0015 (17)	-0.0026 (17)
C6	0.006 (2)	0.017 (2)	0.013 (2)	-0.0005 (18)	0.0021 (17)	0.0030 (18)
C7	0.007 (2)	0.015 (2)	0.012 (2)	0.0036 (17)	-0.0006 (17)	0.0041 (18)
N2	0.011 (4)	0.016 (4)	0.010 (4)	-0.003 (3)	0.002 (3)	0.000 (3)
C8	0.014 (5)	0.014 (5)	0.012 (4)	-0.002 (4)	0.004 (4)	-0.004 (4)
C9	0.012 (5)	0.012 (5)	0.017 (5)	-0.003 (4)	0.002 (4)	0.000 (4)
C10	0.018 (5)	0.013 (5)	0.016 (5)	-0.004 (4)	0.004 (4)	0.000 (4)
N3	0.015 (4)	0.012 (4)	0.012 (4)	-0.002 (3)	0.000 (3)	0.001 (3)
O1WA	0.014 (6)	0.018 (5)	0.010 (4)	-0.002 (4)	0.005 (4)	0.000 (3)
O1WB	0.016 (6)	0.016 (5)	0.016 (4)	0.001 (4)	0.006 (4)	0.001 (3)
O2W	0.014 (3)	0.020 (4)	0.017 (4)	-0.007 (3)	0.002 (3)	-0.002 (3)

Geometric parameters (Å, °)

Cu1—O1 ⁱ	1.960 (4)	С5—Н5	0.9500
Cu1—O1	1.960 (4)	N2—C8	1.499 (12)
Cu1—N1 ⁱ	1.970 (4)	N2—H2A	0.9100
Cu1—N1	1.970 (4)	N2—H2B	0.9100
Cu1—O4 ⁱⁱ	2.549 (4)	N2—H2C	0.9100
Cu1—O4 ⁱⁱⁱ	2.549 (4)	C8—C9	1.513 (14)
O1—C6	1.298 (6)	C8—H8A	0.9900
O2—C6	1.225 (6)	C8—H8B	0.9900
O3—C7	1.263 (7)	C9—C10	1.524 (14)
O4—C7	1.252 (7)	С9—Н9А	0.9900
O4—Cu1 ^{iv}	2.549 (4)	С9—Н9В	0.9900
N1C5	1.340 (6)	C10—N3	1.491 (13)
N1-C1	1.352 (6)	C10—H10A	0.9900
C1—C2	1.386 (7)	C10—H10B	0.9900
C1—C6	1.520 (7)	N3—H3B	0.9100

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2—C3	1.406 (7)	N3—H3C	0.9100
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2—C7	1.520 (7)	N3—H3D	0.9100
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3—C4	1.369 (7)	O1WA—H3W	0.8934
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С3—Н3	0.9500	O1WA—H4W	0.9660
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4—C5	1.379 (7)	O2W—H1W	0.8700
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4—H4	0.9500	O2W—H2W	0.8498
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{llllllllllllllllllllllllllllllllllll$	01 ⁱ —Cu1—O1	180.000 (1)	N1C5C4	121.7 (5)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O1 ⁱ —Cu1—N1 ⁱ	83.39 (16)	C4—C5—Cu1	152.8 (4)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O1—Cu1—N1 ⁱ	96.61 (16)	N1—C5—H5	119.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O1 ⁱ —Cu1—N1	96.61 (16)	C4—C5—H5	119.1
$\begin{split} & \text{N1} = -\text{Cu1} = -\text{N1} & 180.000 (1) & \text{O2} = -\text{C6} = -\text{O1} & 125.3 (5) \\ & \text{O1} = -\text{Cu1} = -\text{O4}^{ii} & 96.02 (14) & \text{O2} = -\text{C6} = -\text{C1} & 119.8 (4) \\ & \text{O1} = -\text{Cu1} = -\text{O4}^{ii} & 93.98 (14) & \text{O1} = -\text{C6} = -\text{C1} & 114.9 (4) \\ & \text{N1} = -\text{Cu1} = -\text{O4}^{ii} & 90.52 (15) & \text{O2} = -\text{C6} = -\text{Cu1} & 74.8 (3) \\ & \text{O1} = -\text{Cu1} = -\text{O4}^{ii} & 89.48 (15) & \text{C1} = -\text{C6} = -\text{Cu1} & 74.8 (3) \\ & \text{O1} = -\text{Cu1} = -\text{O4}^{ii} & 89.48 (15) & \text{O1} = -\text{C7} = -\text{O2} & 118.0 (5) \\ & \text{O1} = -\text{Cu1} = -\text{O4}^{iii} & 96.02 (14) & \text{O4} = -\text{C7} = -\text{C2} & 118.0 (5) \\ & \text{N1} = -\text{Cu1} = -\text{O4}^{iii} & 90.52 (15) & \text{N2} = -\text{C8} = -\text{C9} & 110.5 (8) \\ & \text{O1} = -\text{Cu1} = -\text{O4}^{iii} & 90.52 (15) & \text{N2} = -\text{C8} = -\text{H8A} & 109.5 \\ & \text{C6} = -\text{O1} = -\text{Cu1} & 114.8 (3) & \text{C9} = -\text{C8} = -\text{H8A} & 109.5 \\ & \text{C6} = -\text{O1} = -\text{Cu1} & 114.8 (3) & \text{C9} = -\text{C8} = -\text{H8A} & 109.5 \\ & \text{C7} = -\text{O4} = -\text{Cu1} & 114.8 (3) & \text{C9} = -\text{C8} = -\text{H8B} & 109.5 \\ & \text{C5} = -\text{N1} = -\text{Cu1} & 118.9 (4) & \text{C9} = -\text{C8} = -\text{H8B} & 109.5 \\ & \text{C5} = -\text{N1} = -\text{Cu1} & 128.3 (3) & \text{H8A} = -\text{C8} = -\text{H8B} & 109.5 \\ & \text{C5} = -\text{N1} = -\text{Cu1} & 112.8 (3) & \text{C8} = -\text{C9} = -\text{C10} & 111.4 (9) \\ & \text{N1} = -\text{C1} = -\text{C2} & 122.9 (4) & \text{C8} = -\text{C9} = -\text{C10} & 111.4 (9) \\ & \text{N1} = -\text{C1} = -\text{C2} & 122.9 (4) & \text{C8} = -\text{C9} = -\text{H9A} & 109.3 \\ & \text{C2} = -\text{C1} = -\text{C6} & 123.2 (4) & \text{C8} = -\text{C9} = -\text{H9B} & 109.3 \\ & \text{C6} = -\text{C1} = -\text{C1} & 13.9 (4) & \text{C10} = -\text{C9} = -\text{H9B} & 109.3 \\ & \text{C6} = -\text{C1} = -\text{C1} & 13.9 (4) & \text{C10} = -\text{C9} = -\text{H9B} & 109.3 \\ & \text{C6} = -\text{C1} = -\text{C1} & 136.3 (4) & \text{C10} = -\text{C9} = -\text{H9B} & 109.3 \\ & \text{C6} = -\text{C1} = -\text{C1} & 136.3 (4) & \text{C10} = -\text{C9} = -\text{H9B} & 109.3 \\ & \text{C6} = -\text{C1} = -\text{C1} & 136.9 (4) & \text{N3} = -\text{C10} = -\text{H10B} & 109.1 \\ & \text{C3} = -\text{C2} = -\text{C1} & 118.1 (4) & \text{C9} = -\text{C10} = -\text{H10B} & 109.1 \\ & \text{C3} = -\text{C2} = -\text{C1} & 19.9 (5) & \text{N3} = -\text{C10} = -\text{H10B} & 109.1 \\ & \text{C3} = -\text{C4} = -\text{C5} & 119.6 (5) & \text{H3W} = -01\text{WA} =$	O1—Cu1—N1	83.39 (16)	Cu1—C5—H5	88.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1 ⁱ —Cu1—N1	180.000(1)	O2—C6—O1	125.3 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O1 ⁱ —Cu1—O4 ⁱⁱ	96.02 (14)	O2—C6—C1	119.8 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O1—Cu1—O4 ⁱⁱ	83.98 (14)	O1—C6—C1	114.9 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1 ⁱ —Cu1—O4 ⁱⁱ	90.52 (15)	O2—C6—Cu1	165.3 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1—Cu1—O4 ⁱⁱ	89.48 (15)	C1—C6—Cu1	74.8 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O1 ⁱ —Cu1—O4 ⁱⁱⁱ	83.98 (14)	O4—C7—O3	126.2 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O1—Cu1—O4 ⁱⁱⁱ	96.02 (14)	O4—C7—C2	118.0 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1 ⁱ —Cu1—O4 ⁱⁱⁱ	89.48 (15)	O3—C7—C2	115.5 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1—Cu1—O4 ⁱⁱⁱ	90.52 (15)	N2—C8—C9	110.5 (8)
C6-O1-Cul 114.8 (3) C9-C8-H8A 109.5 C7-O4-Cul ^{iv} 134.2 (3) N2-C8-H8B 109.5 C5-N1-C1 118.9 (4) C9-C8-H8B 109.5 C5-N1-Cul 128.3 (3) H8A-C8-H8B 108.1 C1-N1-Cul 112.8 (3) C8-C9-C10 111.4 (9) N1-C1-C2 122.9 (4) C8-C9-H9A 109.3 N1-C1-C6 13.9 (4) C10-C9-H9A 109.3 C2-C1-C6 123.2 (4) C8-C9-H9B 109.3 C2-C1-Cul 163.3 (4) C10-C9-H9B 109.3 C4-C2-C3 116.9 (4) N3-C10-C9 112.5 (8) C1-C2-C7 124.9 (4) N3-C10-H10A 109.1 C3-C2-C7 118.1 (4) C9-C10-H10A 109.1 C4-C3-H3 120.0 C9-C10-H10B 109.1 C2-C3-H3 120.0 C9-C10-H10B 109.1 C3-C4-C5 119.6 (5) H3W-O1WA-H4W 91.9 C3-C4-H4 120.2 H1W-O2W-H2W 88.7 C5-C4-H4 120.2 H1W-O2W-H2W 88.7	O4 ⁱⁱ —Cu1—O4 ⁱⁱⁱ	180.000(1)	N2—C8—H8A	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6—O1—Cu1	114.8 (3)	С9—С8—Н8А	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C7—O4—Cu1 ^{iv}	134.2 (3)	N2—C8—H8B	109.5
C5-N1-Cul128.3 (3)H8A-C8-H8B108.1C1-N1-Cul112.8 (3)C8-C9-C10111.4 (9)N1-C1-C2122.9 (4)C8-C9-H9A109.3N1-C1-C6113.9 (4)C10-C9-H9A109.3C2-C1-C6123.2 (4)C8-C9-H9B109.3C2-C1-Cul163.3 (4)C10-C9-H9B109.3C6-C1-Cul73.4 (3)H9A-C9-H9B108.0C1-C2-C3116.9 (4)N3-C10-C9112.5 (8)C1-C2-C7124.9 (4)N3-C10-H10A109.1C3-C2-C7118.1 (4)C9-C10-H10B109.1C4-C3-H3120.0C9-C10-H10B109.1C2-C3-H3120.0H10A-C10-H10B109.1C3-C4-C5119.6 (5)H3W-O1WA-H4W91.9C3-C4-H4120.2H1W-O2W-H2W88.7C5-C4-H4120.2H1W-O2W-H2W88.7N1-Cu1-O1-C6-176.6 (4)C3-C4-C5-Cu11.2 (10)	C5—N1—C1	118.9 (4)	C9—C8—H8B	109.5
C1-N1-Cu1 112.8 (3) C8-C9-C10 111.4 (9) N1-C1-C2 122.9 (4) C8-C9-H9A 109.3 N1-C1-C6 113.9 (4) C10-C9-H9A 109.3 C2-C1-C6 123.2 (4) C8-C9-H9B 109.3 C2-C1-Cu1 163.3 (4) C10-C9-H9B 109.3 C2-C1-Cu1 163.3 (4) C10-C9-H9B 109.3 C6-C1-Cu1 73.4 (3) H9A-C9-H9B 108.0 C1-C2-C3 116.9 (4) N3-C10-C9 112.5 (8) C1-C2-C7 124.9 (4) N3-C10-H10A 109.1 C3-C2-C7 118.1 (4) C9-C10-H10A 109.1 C4-C3-H3 120.0 C9-C10-H10B 109.1 C2-C3-H3 120.0 H10A-C10-H10B 109.1 C3-C4-C5 119.6 (5) H3W-O1WA-H4W 91.9 C3-C4-H4 120.2 H1W-O2W-H2W 88.7 C5-C4-H4 120.2 N1O1-C6 -176.6 (4) C3-C4-C5-Cu1 1.2 (10)	C5—N1—Cu1	128.3 (3)	H8A—C8—H8B	108.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—N1—Cu1	112.8 (3)	C8—C9—C10	111.4 (9)
N1-C1-C6113.9 (4)C10-C9-H9A109.3C2-C1-C6123.2 (4)C8-C9-H9B109.3C2-C1-Cu1163.3 (4)C10-C9-H9B109.3C6-C1-Cu173.4 (3)H9A-C9-H9B108.0C1-C2-C3116.9 (4)N3-C10-C9112.5 (8)C1-C2-C7124.9 (4)N3-C10-H10A109.1C3-C2-C7118.1 (4)C9-C10-H10A109.1C4-C3-C2119.9 (5)N3-C10-H10B109.1C4-C3-H3120.0C9-C10-H10B109.1C2-C3-H3120.0H10A-C10-H10B107.8C3-C4-C5119.6 (5)H3W-O1WA-H4W91.9C3-C4-H4120.2H1W-O2W-H2W88.7C5-C4-H4120.2H1W-O2W-H2W88.7	N1—C1—C2	122.9 (4)	С8—С9—Н9А	109.3
C2-C1-C6 123.2 (4) C8-C9-H9B 109.3 C2-C1-Cu1 163.3 (4) C10-C9-H9B 109.3 C6-C1-Cu1 73.4 (3) H9A-C9-H9B 108.0 C1-C2-C3 116.9 (4) N3-C10-C9 112.5 (8) C1-C2-C7 124.9 (4) N3-C10-H10A 109.1 C3-C2-C7 118.1 (4) C9-C10-H10A 109.1 C4-C3-C2 119.9 (5) N3-C10-H10B 109.1 C2-C3-H3 120.0 C9-C10-H10B 109.1 C2-C3-H3 120.0 H10A-C10-H10B 107.8 C3-C4-C5 119.6 (5) H3W-O1WA-H4W 91.9 C3-C4-H4 120.2 H1W-O2W-H2W 88.7 C5-C4-H4 120.2 112.2 (10) 1.2 (10)	N1—C1—C6	113.9 (4)	C10—C9—H9A	109.3
C2-C1-Cu1 163.3 (4) C10-C9-H9B 109.3 C6-C1-Cu1 73.4 (3) H9A-C9-H9B 108.0 C1-C2-C3 116.9 (4) N3-C10-C9 112.5 (8) C1-C2-C7 124.9 (4) N3-C10-H10A 109.1 C3-C2-C7 118.1 (4) C9-C10-H10A 109.1 C4-C3-C2 119.9 (5) N3-C10-H10B 109.1 C4-C3-H3 120.0 C9-C10-H10B 109.1 C2-C3-H3 120.0 H10A-C10-H10B 109.1 C3-C4-C5 119.6 (5) H3W-O1WA-H4W 91.9 C3-C4-H4 120.2 H1W-O2W-H2W 88.7 C5-C4-H4 120.2 1120.2 1120.2	C2-C1-C6	123.2 (4)	С8—С9—Н9В	109.3
C1C1C1C1C1C1C1C1C6 -176.6 (4)C1C1C1C1C1C1C2C2C3116.9 (4)N3C10C9112.5 (8)C1C2C7124.9 (4)N3C10H10A109.1C3C2C7118.1 (4)C9C10H10B109.1C4C3C2119.9 (5)N3C10H10B109.1C4C3H3120.0C9C10H10B109.1C2C3H3120.0H10AC10H10B107.8C3C4C5119.6 (5)H3WO1WAH4W91.9C3C4H4120.2H1WO2WH2W88.7C5C4H4120.2L20.2L1WL20.10L20.10	C2-C1-Cu1	163.3 (4)	C10—C9—H9B	109.3
C1-C2-C3 $116.9 (4)$ $N3-C10-C9$ $112.5 (8)$ $C1-C2-C7$ $124.9 (4)$ $N3-C10-H10A$ 109.1 $C3-C2-C7$ $118.1 (4)$ $C9-C10-H10A$ 109.1 $C4-C3-C2$ $119.9 (5)$ $N3-C10-H10B$ 109.1 $C4-C3-H3$ 120.0 $C9-C10-H10B$ 109.1 $C2-C3-H3$ 120.0 $C9-C10-H10B$ 109.1 $C2-C3-H3$ 120.0 $H10A-C10-H10B$ 109.1 $C3-C4-C5$ $119.6 (5)$ $H3W-O1WA-H4W$ 91.9 $C3-C4-H4$ 120.2 $H1W-O2W-H2W$ 88.7 $C5-C4-H4$ 120.2 $112.5 (4)$ $C3-C4-C5-Cu1$ $1.2 (10)$	C6—C1—Cu1	73.4 (3)	H9A—C9—H9B	108.0
C1 $-C2 - C7$ 124.9 (4)N3 $-C10 - H10A$ 109.1C3 $-C2 - C7$ 118.1 (4)C9 $-C10 - H10A$ 109.1C4 $-C3 - C2$ 119.9 (5)N3 $-C10 - H10B$ 109.1C4 $-C3 - H3$ 120.0C9 $-C10 - H10B$ 109.1C2 $-C3 - H3$ 120.0H10A $-C10 - H10B$ 109.1C3 $-C4 - C5$ 119.6 (5)H3W $-O1WA - H4W$ 91.9C3 $-C4 - H4$ 120.2H1W $-O2W - H2W$ 88.7C5 $-C4 - H4$ 120.21.2 (10)	C1 - C2 - C3	116.9 (4)	N3-C10-C9	112.5 (8)
C3 $-C2 - C7$ 118.1 (4)C9 $-C10 - H10A$ 109.1C4 $-C3 - C2$ 119.9 (5)N3 $-C10 - H10B$ 109.1C4 $-C3 - H3$ 120.0C9 $-C10 - H10B$ 109.1C2 $-C3 - H3$ 120.0C9 $-C10 - H10B$ 109.1C3 $-C4 - C5$ 119.6 (5)H3W $-O1WA - H4W$ 91.9C3 $-C4 - H4$ 120.2H1W $-O2W - H2W$ 88.7C5 $-C4 - H4$ 120.21.2 (10)	C1 - C2 - C7	124.9 (4)	N3—C10—H10A	109.1
C4 $-$ C3 $-$ C2110.1 (1)C3 $-$ C10 $-$ H10.1109.1C4 $-$ C3 $-$ C2119.9 (5)N3 $-$ C10 $-$ H10B109.1C4 $-$ C3 $-$ H3120.0C9 $-$ C10 $-$ H10B109.1C2 $-$ C3 $-$ H3120.0H10A $-$ C10 $-$ H10B107.8C3 $-$ C4 $-$ C5119.6 (5)H3W $-$ O1WA $-$ H4W91.9C3 $-$ C4 $-$ H4120.2H1W $-$ O2W $-$ H2W88.7C5 $-$ C4 $-$ H4120.21.2 (10)	$C_{3} - C_{2} - C_{7}$	1181(4)	C9-C10-H10A	109.1
$C4 - C3 - H3$ 120.0 $C9 - C10 - H10B$ 109.1 $C2 - C3 - H3$ 120.0 $H10A - C10 - H10B$ 107.8 $C3 - C4 - C5$ 119.6 (5) $H3W - O1WA - H4W$ 91.9 $C3 - C4 - H4$ 120.2 $H1W - O2W - H2W$ 88.7 $C5 - C4 - H4$ 120.2 $H1W - O2W - H2W$ 88.7 $N1^{L} - Cu1 - O1 - C6$ -176.6 (4) $C3 - C4 - C5 - Cu1$ 1.2 (10)	C4-C3-C2	119.9 (5)	N3—C10—H10B	109.1
$C2-C3-H3$ 120.0 $H10A-C10-H10B$ 107.8 $C3-C4-C5$ 119.6 (5) $H3W-O1WA-H4W$ 91.9 $C3-C4-H4$ 120.2 $H1W-O2W-H2W$ 88.7 $C5-C4-H4$ 120.2 $H1W-O2W-H2W$ 88.7 $N1^{i}-Cu1-O1-C6$ -176.6 (4) $C3-C4-C5-Cu1$ 1.2 (10)	C4-C3-H3	120.0	C9-C10-H10B	109.1
C3-C4-C5 119.6 (5) H3W-O1WA-H4W 91.9 C3-C4-H4 120.2 H1W-O2W-H2W 88.7 C5-C4-H4 120.2 120.2 1.2 (10)	С2—С3—Н3	120.0	H10A - C10 - H10B	107.8
C3-C4-H4 120.2 H1W-O2W-H2W 88.7 C5-C4-H4 120.2 1120.2 H1W-O2W-H2W 120.2 N1 ⁱ -Cu1-O1-C6 -176.6 (4) C3-C4-C5-Cu1 1.2 (10)	$C_{3} - C_{4} - C_{5}$	119.6(5)	H3W_01WA_H4W	91.9
$C5 - C4 - H4 $ 120.2 $N1^{L} - Cu1 - O1 - C6 - 176.6 (4) C3 - C4 - C5 - Cu1 1.2 (10)$	C3—C4—H4	120.2	H1W - O2W - H2W	88 7
N1 ⁱ —Cu1—O1—C6 $-176.6(4)$ C3—C4—C5—Cu1 1.2(10)	C5—C4—H4	120.2		00.7
$N1^{i}$ —Cu1—O1—C6 -176.6 (4) C3—C4—C5—Cu1 1.2 (10)				
	N1 ⁱ —Cu1—O1—C6	-176.6 (4)	C3—C4—C5—Cu1	1.2 (10)
N1—Cu1—O1—C6 3.4 (4) O1 ⁱ —Cu1—C5—N1 176.7 (4)	N1—Cu1—O1—C6	3.4 (4)	Ol ⁱ —Cu1—C5—N1	176.7 (4)
O4 ⁱⁱ —Cu1—O1—C6 -86.8 (4) O1—Cu1—C5—N1 -3.3 (4)	O4 ⁱⁱ —Cu1—O1—C6	-86.8 (4)	O1—Cu1—C5—N1	-3.3 (4)
O4 ⁱⁱⁱ —Cu1—O1—C6 93.2 (4) N1 ⁱ —Cu1—C5—N1 180.000	O4 ⁱⁱⁱ —Cu1—O1—C6	93.2 (4)	N1 ⁱ —Cu1—C5—N1	180.000 (3)
$O1^{i}$ —Cu1—N1—C5 -3.2 (4) $O4^{ii}$ —Cu1—C5—N1 81.2 (4)	Ol ⁱ —Cul—Nl—C5	-3.2 (4)	O4 ⁱⁱ —Cu1—C5—N1	81.2 (4)
O1—Cu1—N1—C5 176.8 (4) O4 ⁱⁱⁱ —Cu1—C5—N1 -98.8 (4)	01—Cu1—N1—C5	176.8 (4)	O4 ⁱⁱⁱ —Cu1—C5—N1	-98.8 (4)

O4 ⁱⁱ —Cu1—N1—C5	-99.2 (4)	Ol ⁱ —Cu1—C5—C4	173.2 (8)
O4 ⁱⁱⁱ —Cu1—N1—C5	80.8 (4)	O1—Cu1—C5—C4	-6.8 (8)
O1 ⁱ —Cu1—N1—C1	175.0 (3)	$N1^{i}$ —Cu1—C5—C4	176.5 (7)
O1—Cu1—N1—C1	-5.0 (3)	N1—Cu1—C5—C4	-3.5 (7)
O4 ⁱⁱ —Cu1—N1—C1	79.0 (3)	O4 ⁱⁱ —Cu1—C5—C4	77.6 (7)
O4 ⁱⁱⁱ —Cu1—N1—C1	-101.0 (3)	$O4^{iii}$ —Cu1—C5—C4	-102.4 (7)
C5—N1—C1—C2	2.0 (7)	Cu1—O1—C6—O2	178.7 (5)
Cu1—N1—C1—C2	-176.4 (4)	Cu1—O1—C6—C1	-1.2 (6)
C5—N1—C1—C6	-176.0 (4)	N1-C1-C6-O2	177.1 (5)
Cu1—N1—C1—C6	5.6 (5)	C2-C1-C6-O2	-1.0 (8)
C5—N1—C1—Cu1	178.4 (6)	Cu1—C1—C6—O2	-179.1 (6)
O1 ⁱ —Cu1—C1—N1	-5.9 (4)	N1-C1-C6-01	-3.0(7)
O1—Cu1—C1—N1	174.1 (4)	C2-C1-C6-01	179.0 (5)
N1 ⁱ —Cu1—C1—N1	180.000 (3)	Cu1—C1—C6—O1	0.8 (4)
O4 ⁱⁱ —Cu1—C1—N1	-99.6 (3)	N1-C1-C6-Cu1	-3.8 (4)
O4 ⁱⁱⁱ —Cu1—C1—N1	80.4 (3)	C2-C1-C6-Cu1	178.2 (5)
$O1^{i}$ —Cu1—C1—C2	4.7 (13)	O1 ⁱ —Cu1—C6—O2	176.0 (15)
O1—Cu1—C1—C2	-175.3 (13)	O1—Cu1—C6—O2	-4.0 (15)
N1 ⁱ —Cu1—C1—C2	-169.4 (11)	N1 ⁱ —Cu1—C6—O2	-0.1 (18)
N1—Cu1—C1—C2	10.6 (11)	N1—Cu1—C6—O2	179.9 (18)
$O4^{ii}$ —Cu1—C1—C2	-89.0 (12)	O4 ⁱⁱ —Cu1—C6—O2	86.3 (17)
$O4^{iii}$ — $Cu1$ — $C1$ — $C2$	91.0 (12)	O4 ⁱⁱⁱ —Cu1—C6—O2	-93.7 (17)
Ol ⁱ —Cu1—C1—C6	179.4 (3)	Ol ⁱ —Cu1—C6—O1	180.000 (2)
O1—Cu1—C1—C6	-0.6 (3)	N1 ⁱ —Cu1—C6—O1	3.9 (4)
N1 ⁱ —Cu1—C1—C6	5.3 (5)	N1—Cu1—C6—O1	-176.1 (4)
N1—Cu1—C1—C6	-174.7 (5)	O4 ⁱⁱ —Cu1—C6—O1	90.3 (4)
O4 ⁱⁱ —Cu1—C1—C6	85.7 (3)	O4 ⁱⁱⁱ —Cu1—C6—O1	-89.7 (4)
O4 ⁱⁱⁱ —Cu1—C1—C6	-94.3 (3)	Ol ⁱ —Cu1—C6—C1	-1.1 (5)
N1—C1—C2—C3	-2.9 (7)	O1—Cu1—C6—C1	178.9 (5)
C6—C1—C2—C3	175.0 (4)	N1 ⁱ —Cu1—C6—C1	-177.2 (3)
Cu1—C1—C2—C3	-11.1 (15)	N1—Cu1—C6—C1	2.8 (3)
N1—C1—C2—C7	174.0 (5)	O4 ⁱⁱ —Cu1—C6—C1	-90.8 (3)
C6—C1—C2—C7	-8.2 (8)	O4 ⁱⁱⁱ —Cu1—C6—C1	89.2 (3)
Cu1—C1—C2—C7	165.8 (10)	Cu1 ^{iv} —O4—C7—O3	164.8 (4)
C1—C2—C3—C4	1.8 (7)	Cu1 ^{iv} —O4—C7—C2	-21.4 (7)
C7—C2—C3—C4	-175.3 (4)	C1—C2—C7—O4	109.8 (6)
C2—C3—C4—C5	0.0 (7)	C3—C2—C7—O4	-73.4 (6)
C1—N1—C5—C4	0.0 (7)	C1—C2—C7—O3	-75.7 (6)
Cu1—N1—C5—C4	178.1 (4)	C3—C2—C7—O3	101.1 (5)
C1—N1—C5—Cu1	-178.1 (7)	N2-C8-C9-C10	-175.6 (8)
C3—C4—C5—N1	-1.0 (7)	C8—C9—C10—N3	76.1 (11)

Symmetry codes: (i) -*x*, -*y*+2, -*z*+2; (ii) *x*-1, *y*, *z*; (iii) -*x*+1, -*y*+2, -*z*+2; (iv) *x*+1, *y*, *z*.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H··· <i>A</i>
N2—H2A···O3	0.91	1.96	2.854 (1)	167

supporting information

N2—H2 B ···O2 ^v	0.91	2.01	2.830(1)	150	
N3—H3 <i>B</i> ····N2 ^{vi}	0.91	1.56	2.283 (1)	134	
N3—H3 <i>B</i> ···O2 <i>W</i> ^{vii}	0.91	1.95	2.852 (13)	174	
N3—H3 <i>C</i> ···O3 ^v	0.91	2.42	3.041 (10)	126	
N3—H3 <i>C</i> ···O4 ^v	0.91	2.08	2.991 (1)	174	
N3—H3 D ···O1 WA^{viii}	0.91	2.03	2.934 (1)	170	
N3—H3D····O1WB ^{viii}	0.91	2.51	3.407 (15)	170	
O1 <i>WA</i> —H3 <i>W</i> ···O1 ^{ix}	0.89	2.11	2.764 (1)	130	
O1 <i>WA</i> —H4 <i>W</i> ···O3 ⁱⁱ	0.97	1.74	2.696 (1)	168	
O2 <i>W</i> —H1 <i>W</i> ···O1 <i>WA</i>	0.87	2.00	2.779 (15)	148	
O2 <i>W</i> —H1 <i>W</i> ···O1 <i>WB</i>	0.87	1.59	2.350(1)	145	
O2 <i>W</i> —H2 <i>W</i> ···O3 ^x	0.85	1.92	2.768 (1)	179	
$C5$ — $H5$ ···O1 WA^{xi}	0.95	2.60	3.534 (13)	169	
C8—H8A···O2	0.99	2.37	2.891 (11)	112	
C8—H8 <i>B</i> ···O4 ⁱⁱ	0.99	2.49	3.396 (11)	153	

Symmetry codes: (ii) *x*-1, *y*, *z*; (v) -*x*+1, -*y*+2, -*z*+1; (vi) -*x*, -*y*+2, -*z*+1; (vii) *x*-1, *y*+1, *z*; (viii) *x*, *y*+1, *z*; (ix) *x*, *y*-1, *z*; (x) -*x*+1, -*y*+1, -*z*+1; (xi) -*x*, -*y*+1, -*z*+2.