# metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

# { $\mu$ -6,6'-Dimethoxy-2,2'-[propane-1,3divlbis(nitrilomethylidyne)]diphenolato}trinitratocopper(II)samarium(III) acetone solvate

### Jing-Hua Wang, Po Gao, Peng-Fei Yan, Guang-Ming Li\* and Guang-Feng Hou

School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China Correspondence e-mail: gmli@hlju.edu.cn

Received 21 November 2007; accepted 21 November 2007

Key indicators: single-crystal X-ray study; T = 295 K; mean  $\sigma$ (C–C) = 0.005 Å; R factor = 0.026; wR factor = 0.062; data-to-parameter ratio = 16.3.

In the title complex, [CuSm(C<sub>19</sub>H<sub>20</sub>N<sub>2</sub>O<sub>4</sub>)(NO<sub>3</sub>)<sub>3</sub>]·CH<sub>3</sub>CO-CH<sub>3</sub>, the Cu<sup>II</sup> atom is four-coordinated in a square-planar geometry by two O atoms and two N atoms of the deprotonated Schiff base. The Sm<sup>III</sup> atom is ten-coordinate, chelated by three nitrate groups and linked to the four O atoms of the deprotonated Schiff base.

### **Related literature**

See Elmali & Elerman (2003, 2004) for similar copperlanthanum complexes of the same Schiff base.



# **Experimental**

### Crystal data

| $[CuSm(C_{10}H_{20}N_{2}O_{4})-$ | $\beta = 86.984 \ (19)^{\circ}$  |
|----------------------------------|----------------------------------|
| $(NO_3)_3] \cdot C_3 H_6 O$      | $\gamma = 72.346 \ (18)^{\circ}$ |
| $M_r = 798.37$                   | $V = 1400.5 (11) \text{ Å}^3$    |
| Triclinic, P1                    | Z = 2                            |
| a = 9.384 (5) Å                  | Mo $K\alpha$ radiation           |
| b = 12.111 (5) Å                 | $\mu = 2.91 \text{ mm}^{-1}$     |
| c = 13.529 (6) Å                 | T = 295 (2) K                    |
| $\alpha = 73.071 \ (18)^{\circ}$ | $0.33 \times 0.30 \times 0.19$   |

#### Data collection

Rigaku R-AXIS RAPID diffractometer Absorption correction: multi-scan (ABSCOR: Higashi, 1995)  $T_{\min} = 0.446, T_{\max} = 0.610$ (expected range = 0.420-0.575)

### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.026$  $wR(F^2) = 0.062$ S = 1.096381 reflections

ation  $\mathbf{n}^{-1}$ K × 0.19 mm

13938 measured reflections 6381 independent reflections 5692 reflections with  $I > 2\sigma(I)$  $R_{\rm int} = 0.023$ 

392 parameters H-atom parameters constrained  $\Delta \rho_{\text{max}} = 0.57 \text{ e} \text{ Å}^ \Delta \rho_{\rm min} = -0.41 \text{ e } \text{\AA}^{-3}$ 

Data collection: RAPID-AUTO (Rigaku Corporation, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXL97.

The authors gratefully acknowledge financial support from the National Natural Science Foundation of China (Nos. 20572018 and 20672032), Heilongjiang Province (Nos. 1055HZ001, ZJG0504 and JC200605) and Heilongjiang University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2393).

### References

Elmali, A. & Elerman, Y. (2003). Z. Naturforsch. Teil B, 58, 639-643. Elmali, A. & Elerman, Y. (2004). Z. Naturforsch. Teil B, 59, 535-540.

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

- Rigaku Corporation (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.
- Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.

Sheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.

# supporting information

Acta Cryst. (2008). E64, m344 [doi:10.1107/S1600536807061454]

# {*µ*-6,6'-Dimethoxy-2,2'-[propane-1,3-diylbis(nitrilomethyl-idyne)]diphenolato}trinitratocopper(II)samarium(III) acetone solvate

# Jing-Hua Wang, Po Gao, Peng-Fei Yan, Guang-Ming Li and Guang-Feng Hou

# S1. Comment

As shown in Fig. 1, the octodentate Schiff base ligand links Cu and Sm atoms into a dinuclear complex through two phenolate O atoms, which is similar with the bonding reported for another copper-lanthanum complex of the same ligand (Elmali & Elerman, 2003, 2004). The Sm<sup>III</sup> centre in (I) is ten-coordinated by four oxygen atoms from the ligand and six oxygen atoms from three nitrate ions. The Cu<sup>II</sup> center is four-coordinate by two nitrogen atoms and two oxygen atoms from the ligand. And one molecular acetone is dissociative in the complex.

# S2. Experimental

The title complex was obtained by the treatment of copper(II) acetate monohydrate with the Schiff base in methanol/acetone (4:1) at room temperature. Then the mixture was refluxed for 3 h after the addition of samarium (III) nitrate hexahydrate. The reaction mixture was cooled and filtered; diethyl ether was allowed to diffuse slowly into the solution of the filtrate. Single crystals were obtained after several days. Analysis calculated for  $C_{22}H_{26}CuN_5O_{14}Sm$ : C, 33.28; H, 3.12; Cu, 7.91; N, 8.88; Sm, 18.86; found: C, 33.10; H, 3.28; Cu, 7.96; N, 8.77; Sm, 18.83%.

### S3. Refinement

H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 Å (aromatic C), C—H = 0.97 Å (methylene C), C—H = 0.98 Å (methine C), and with  $U_{iso}(H) = 1.2Ueq(C)$  or C—H = 0.96 Å (methly C) and with  $U_{iso}(H) = 1.5Ueq(C)$ . In complex (I), the diaminopropane is disordered and was refined with a split model over two positions, and with an occupancy of 0.289 (11) for C8, C9, C10, and 0.711 (11) for C8', C9', C10'.



### Figure 1

The molecular structure of (I), showing 40% probability displacement ellipsoids. All H atoms and actone molecule have been omitted for clarity.

# $\{\mu-6,6'-Dimethoxy-2,2'-[propane-1,3-diylbis(nitrilomethylidyne)]diphenolato\}$ $\tau$ rinitratocopper(II)samarium(III) acetone solvate

### Crystal data

| [CuSm(C <sub>19</sub> H <sub>20</sub> N <sub>2</sub> O <sub>4</sub> )(NO <sub>3</sub> ) <sub>3</sub> ]·C <sub>3</sub> H <sub>6</sub> O<br>$M_r = 798.37$<br>Triclinic, P1<br>Hall symbol: -P 1<br>a = 9.384 (5) Å<br>b = 12.111 (5) Å<br>c = 13.529 (6) Å<br>a = 73.071 (18)°<br>$\beta = 86.984$ (19)°<br>$\gamma = 72.346$ (18)°<br>V = 1400.5 (11) Å <sup>3</sup> | Z = 2<br>F(000) = 792<br>$D_x = 1.893 \text{ Mg m}^{-3}$<br>Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$<br>Cell parameters from 12555 reflections<br>$\theta = 6.3-55.0^{\circ}$<br>$\mu = 2.91 \text{ mm}^{-1}$<br>T = 295 K<br>Block, green<br>$0.33 \times 0.30 \times 0.19 \text{ mm}$ |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data collection                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                               |
| Rigaku R-AXIS RAPID<br>diffractometer<br>Radiation source: fine-focus sealed tube<br>Graphite monochromator<br>ω scan                                                                                                                                                                                                                                                | Absorption correction: multi-scan<br>( <i>ABSCOR</i> ; Higashi, 1995)<br>$T_{min} = 0.446, T_{max} = 0.610$<br>13938 measured reflections<br>6381 independent reflections                                                                                                                     |

| $h = -12 \rightarrow 12$                                   |
|------------------------------------------------------------|
| $k = -15 \rightarrow 15$                                   |
| $l = -17 \rightarrow 17$                                   |
|                                                            |
| Secondary atom site location: difference Fourier           |
| map                                                        |
| Hydrogen site location: inferred from                      |
| neighbouring sites                                         |
| H-atom parameters constrained                              |
| $w = 1/[\sigma^2(F_o^2) + (0.0234P)^2 + 0.9589P]$          |
| where $P = (F_o^2 + 2F_c^2)/3$                             |
| $(\Delta/\sigma)_{\rm max} = 0.001$                        |
| $\Delta \rho_{\rm max} = 0.57 \text{ e } \text{\AA}^{-3}$  |
| $\Delta \rho_{\rm min} = -0.41 \text{ e } \text{\AA}^{-3}$ |
|                                                            |

### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

|     | x           | У          | Ζ          | $U_{ m iso}*/U_{ m eq}$ |
|-----|-------------|------------|------------|-------------------------|
| C1  | 0.5501 (3)  | 0.7332 (2) | 0.4170 (2) | 0.0360 (6)              |
| C2  | 0.6420 (3)  | 0.7711 (2) | 0.3375 (2) | 0.0380 (6)              |
| C3  | 0.7936 (3)  | 0.7349 (3) | 0.3504 (3) | 0.0465 (7)              |
| H1  | 0.8522      | 0.7622     | 0.2969     | 0.056*                  |
| C4  | 0.8598 (4)  | 0.6566 (3) | 0.4449 (3) | 0.0537 (9)              |
| H2  | 0.9634      | 0.6310     | 0.4546     | 0.064*                  |
| C5  | 0.7740 (4)  | 0.6175 (3) | 0.5226 (3) | 0.0527 (8)              |
| H3  | 0.8195      | 0.5648     | 0.5852     | 0.063*                  |
| C6  | 0.6162 (3)  | 0.6554 (3) | 0.5105 (2) | 0.0422 (7)              |
| C7  | 0.5318 (4)  | 0.6060 (3) | 0.5936 (2) | 0.0490 (8)              |
| H4  | 0.5879      | 0.5478     | 0.6504     | 0.059*                  |
| C8  | 0.3395 (5)  | 0.5602 (4) | 0.6970 (3) | 0.0819 (14)             |
| Н5  | 0.3455      | 0.5953     | 0.7520     | 0.098*                  |
| H6  | 0.4067      | 0.4780     | 0.7162     | 0.098*                  |
| C9  | 0.1820 (5)  | 0.5565 (3) | 0.6872 (3) | 0.0663 (11)             |
| H7  | 0.1718      | 0.5328     | 0.6260     | 0.080*                  |
| H8  | 0.1627      | 0.4960     | 0.7468     | 0.080*                  |
| C10 | 0.0698 (4)  | 0.6750 (3) | 0.6799 (2) | 0.0538 (8)              |
| Н9  | -0.0281     | 0.6636     | 0.6933     | 0.065*                  |
| H10 | 0.0937      | 0.7071     | 0.7326     | 0.065*                  |
| C11 | -0.0655 (3) | 0.8406 (3) | 0.5481 (2) | 0.0424 (7)              |
| H11 | -0.1403     | 0.8359     | 0.5956     | 0.051*                  |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

| C12                 | -0.1089(3)           | 0.9324 (3)           | 0.4522 (2)    | 0.0384 (6)      |
|---------------------|----------------------|----------------------|---------------|-----------------|
| C13                 | -0.2583 (4)          | 1.0074 (3)           | 0.4383 (3)    | 0.0497 (8)      |
| H12                 | -0.3221              | 0.9999               | 0.4932        | 0.060*          |
| C14                 | -0.3108 (4)          | 1.0906 (3)           | 0.3460 (3)    | 0.0533 (8)      |
| H13                 | -0.4098              | 1.1394               | 0.3381        | 0.064*          |
| C15                 | -0.2161 (3)          | 1.1026 (3)           | 0.2633 (3)    | 0.0470 (7)      |
| H14                 | -0.2519              | 1.1588               | 0.1998        | 0.056*          |
| C16                 | -0.0682(3)           | 1.0303 (2)           | 0.2762 (2)    | 0.0376 (6)      |
| C17                 | -0.0128(3)           | 0.9440(2)            | 0.3701 (2)    | 0.0340 (6)      |
| C18                 | -0.0188(4)           | 1,1099 (3)           | 0.0970(3)     | 0.0576 (9)      |
| H15                 | -0.0858              | 1.0772               | 0.0718        | 0.086*          |
| H16                 | 0.0640               | 1 1107               | 0.0523        | 0.086*          |
| H17                 | -0.0709              | 1 1909               | 0.0983        | 0.086*          |
| C19                 | 0.6504(4)            | 0 8849 (4)           | 0.1599 (3)    | 0.0568 (9)      |
| H18                 | 0.7168               | 0.0049 (4)           | 0.1802        | 0.0908 (9)      |
| нто<br>H10          | 0.5843               | 0.9218               | 0.1042        | 0.085*          |
| 111 <i>9</i><br>Ц20 | 0.3843               | 0.9427               | 0.1042        | 0.085*          |
| C20                 | 0.7078<br>0.1035 (7) | 0.8107<br>0.3884 (5) | -0.0000(5)    | $0.085^{\circ}$ |
| U20                 | 0.1933(7)            | 0.3884 (3)           | -0.0636       | 0.1100 (19)     |
| H21                 | 0.1201               | 0.4099               | -0.0030       | 0.105*          |
| H22                 | 0.1525               | 0.3381               | 0.0562        | 0.105*          |
| H23                 | 0.2805               | 0.3270               | -0.0197       | 0.105*          |
| C21                 | 0.2360 (6)           | 0.49/1 (4)           | -0.0088(4)    | 0.0800 (13)     |
| C22                 | 0.3365 (7)           | 0.4818 (5)           | 0.0816 (4)    | 0.1022 (18)     |
| H24                 | 0.3632               | 0.5547               | 0.0722        | 0.153*          |
| H25                 | 0.4256               | 0.4154               | 0.0852        | 0.153*          |
| H26                 | 0.2844               | 0.4658               | 0.1447        | 0.153*          |
| Cu2                 | 0.24465 (4)          | 0.75758 (3)          | 0.49629 (3)   | 0.03670 (8)     |
| N1                  | 0.3895 (3)           | 0.6310 (2)           | 0.60036 (19)  | 0.0498 (7)      |
| N2                  | 0.0646 (3)           | 0.7631 (2)           | 0.57760 (18)  | 0.0402 (5)      |
| N3                  | 0.3263 (3)           | 1.1105 (2)           | 0.2284 (2)    | 0.0510 (7)      |
| N4                  | 0.3808 (3)           | 0.8126 (3)           | 0.0426 (2)    | 0.0478 (6)      |
| N5                  | 0.1427 (3)           | 0.6889 (3)           | 0.2369 (2)    | 0.0528 (7)      |
| 01                  | 0.4021 (2)           | 0.77107 (19)         | 0.39863 (15)  | 0.0439 (5)      |
| 02                  | 0.5643 (2)           | 0.84507 (19)         | 0.24634 (16)  | 0.0447 (5)      |
| 03                  | 0.1281 (2)           | 0.87450 (18)         | 0.37652 (15)  | 0.0411 (5)      |
| 04                  | 0.0358 (2)           | 1.03583 (18)         | 0.20020 (16)  | 0.0436 (5)      |
| 05                  | 0.3167 (3)           | 1.0333 (2)           | 0.31093 (18)  | 0.0543 (6)      |
| O6                  | 0.3339 (4)           | 1.2091 (2)           | 0.2275 (2)    | 0.0787 (9)      |
| 07                  | 0.3255 (3)           | 1.0798 (2)           | 0.14667 (18)  | 0.0535 (6)      |
| 08                  | 0.3018 (3)           | 0.9182 (2)           | 0.04383 (17)  | 0.0524 (5)      |
| O9                  | 0.4101 (3)           | 0.7863 (3)           | -0.0366 (2)   | 0.0736 (8)      |
| O10                 | 0.4267 (3)           | 0.7385 (2)           | 0.12933 (19)  | 0.0545 (6)      |
| 011                 | 0.0985 (3)           | 0.7954 (2)           | 0.1774 (2)    | 0.0568 (6)      |
| O12                 | 0.0852 (4)           | 0.6118 (3)           | 0.2345 (3)    | 0.0822 (9)      |
| O13                 | 0.2480 (3)           | 0.6667 (2)           | 0.2982 (2)    | 0.0590 (6)      |
| O14                 | 0.2011 (5)           | 0.5883 (3)           | -0.0775 (3)   | 0.1208 (15)     |
| Sm1                 | 0.286846 (16)        | 0.877380 (13)        | 0.233252 (11) | 0.03533 (5)     |
|                     |                      |                      |               |                 |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$     | $U^{22}$     | $U^{33}$     | $U^{12}$      | $U^{13}$      | $U^{23}$      |
|-----|--------------|--------------|--------------|---------------|---------------|---------------|
| C1  | 0.0338 (14)  | 0.0327 (13)  | 0.0389 (14)  | -0.0044 (11)  | -0.0040 (11)  | -0.0115 (12)  |
| C2  | 0.0372 (15)  | 0.0340 (13)  | 0.0426 (15)  | -0.0094 (11)  | -0.0013 (12)  | -0.0117 (12)  |
| C3  | 0.0372 (16)  | 0.0438 (16)  | 0.063 (2)    | -0.0129 (13)  | 0.0002 (14)   | -0.0205 (16)  |
| C4  | 0.0359 (16)  | 0.0490 (18)  | 0.075 (2)    | -0.0042 (14)  | -0.0133 (16)  | -0.0223 (18)  |
| C5  | 0.0488 (19)  | 0.0469 (17)  | 0.055 (2)    | 0.0011 (14)   | -0.0207 (16)  | -0.0163 (16)  |
| C6  | 0.0437 (16)  | 0.0355 (14)  | 0.0418 (16)  | -0.0010 (12)  | -0.0114 (13)  | -0.0120 (13)  |
| C7  | 0.054 (2)    | 0.0409 (15)  | 0.0349 (15)  | 0.0064 (14)   | -0.0118 (14)  | -0.0049 (13)  |
| C8  | 0.084 (3)    | 0.067 (2)    | 0.045 (2)    | 0.009 (2)     | 0.012 (2)     | 0.0240 (18)   |
| C9  | 0.112 (4)    | 0.0417 (17)  | 0.0437 (19)  | -0.033 (2)    | 0.014 (2)     | -0.0017 (15)  |
| C10 | 0.060(2)     | 0.065 (2)    | 0.0346 (16)  | -0.0272 (17)  | 0.0042 (14)   | -0.0029 (15)  |
| C11 | 0.0416 (16)  | 0.0494 (16)  | 0.0441 (16)  | -0.0206 (13)  | 0.0115 (13)   | -0.0198 (14)  |
| C12 | 0.0362 (15)  | 0.0393 (14)  | 0.0442 (16)  | -0.0129 (12)  | 0.0015 (12)   | -0.0174 (13)  |
| C13 | 0.0403 (17)  | 0.0566 (19)  | 0.059 (2)    | -0.0135 (14)  | 0.0077 (15)   | -0.0286 (17)  |
| C14 | 0.0332 (16)  | 0.0585 (19)  | 0.067 (2)    | -0.0022 (14)  | -0.0076 (15)  | -0.0275 (18)  |
| C15 | 0.0414 (17)  | 0.0416 (15)  | 0.0527 (18)  | 0.0004 (13)   | -0.0143 (14)  | -0.0164 (14)  |
| C16 | 0.0365 (15)  | 0.0346 (13)  | 0.0420 (15)  | -0.0074 (11)  | -0.0021 (12)  | -0.0144 (12)  |
| C17 | 0.0315 (13)  | 0.0328 (13)  | 0.0378 (14)  | -0.0079 (10)  | -0.0037 (11)  | -0.0115 (11)  |
| C18 | 0.061 (2)    | 0.0499 (18)  | 0.0401 (17)  | 0.0023 (16)   | -0.0113 (15)  | 0.0023 (15)   |
| C19 | 0.051 (2)    | 0.070 (2)    | 0.052 (2)    | -0.0303 (17)  | 0.0147 (16)   | -0.0114 (18)  |
| C20 | 0.117 (5)    | 0.084 (3)    | 0.109 (4)    | -0.019 (3)    | -0.038 (4)    | -0.003 (3)    |
| C21 | 0.099 (4)    | 0.056 (2)    | 0.063 (3)    | -0.003(2)     | 0.019 (2)     | -0.010(2)     |
| C22 | 0.153 (6)    | 0.071 (3)    | 0.081 (3)    | -0.034(3)     | 0.015 (3)     | -0.022(3)     |
| Cu2 | 0.03880 (19) | 0.03451 (16) | 0.02912 (16) | -0.00780 (14) | -0.00024 (14) | -0.00084 (14) |
| N1  | 0.0625 (18)  | 0.0373 (13)  | 0.0317 (13)  | -0.0001 (12)  | 0.0018 (12)   | 0.0014 (11)   |
| N2  | 0.0490 (15)  | 0.0431 (13)  | 0.0323 (12)  | -0.0213 (11)  | 0.0042 (11)   | -0.0092 (11)  |
| N3  | 0.0517 (16)  | 0.0426 (14)  | 0.0546 (17)  | -0.0123 (12)  | -0.0041 (13)  | -0.0090 (13)  |
| N4  | 0.0424 (15)  | 0.0607 (17)  | 0.0417 (15)  | -0.0184 (13)  | 0.0044 (12)   | -0.0147 (13)  |
| N5  | 0.0500 (17)  | 0.0454 (15)  | 0.0623 (18)  | -0.0177 (13)  | 0.0185 (14)   | -0.0138 (14)  |
| 01  | 0.0326 (10)  | 0.0514 (12)  | 0.0324 (10)  | -0.0059 (9)   | -0.0036 (8)   | 0.0044 (9)    |
| O2  | 0.0373 (11)  | 0.0522 (12)  | 0.0375 (11)  | -0.0141 (9)   | 0.0013 (9)    | -0.0015 (9)   |
| O3  | 0.0360 (11)  | 0.0396 (10)  | 0.0342 (10)  | -0.0018 (8)   | 0.0006 (8)    | -0.0005 (9)   |
| O4  | 0.0397 (11)  | 0.0387 (10)  | 0.0376 (11)  | -0.0001 (8)   | -0.0067 (9)   | 0.0004 (9)    |
| 05  | 0.0666 (16)  | 0.0520(13)   | 0.0429 (12)  | -0.0183 (11)  | 0.0025 (11)   | -0.0113 (11)  |
| O6  | 0.105 (2)    | 0.0482 (14)  | 0.085 (2)    | -0.0268 (15)  | -0.0138 (18)  | -0.0155 (14)  |
| 07  | 0.0694 (16)  | 0.0457 (12)  | 0.0414 (12)  | -0.0210 (11)  | 0.0005 (11)   | -0.0025 (10)  |
| 08  | 0.0641 (15)  | 0.0494 (12)  | 0.0365 (11)  | -0.0139 (11)  | 0.0023 (10)   | -0.0052 (10)  |
| 09  | 0.0754 (19)  | 0.098 (2)    | 0.0495 (15)  | -0.0150 (16)  | 0.0049 (13)   | -0.0367 (16)  |
| O10 | 0.0538 (14)  | 0.0500 (13)  | 0.0507 (14)  | -0.0041 (10)  | -0.0009 (11)  | -0.0126 (11)  |
| O11 | 0.0489 (14)  | 0.0500 (13)  | 0.0649 (16)  | -0.0132 (10)  | -0.0024 (11)  | -0.0077 (12)  |
| 012 | 0.085 (2)    | 0.0648 (17)  | 0.115 (3)    | -0.0453 (16)  | 0.0311 (19)   | -0.0355 (18)  |
| 013 | 0.0676 (17)  | 0.0407 (12)  | 0.0568 (15)  | -0.0125 (11)  | 0.0042 (13)   | -0.0008 (11)  |
| 014 | 0.180 (4)    | 0.069 (2)    | 0.076 (2)    | -0.009 (2)    | -0.003 (2)    | 0.0073 (18)   |
| 014 |              |              | · · ·        |               |               | · · · ·       |

Geometric parameters (Å, °)

| C1-01    | 1.335 (3) | C18—H15     | 0.9600      |
|----------|-----------|-------------|-------------|
| C1—C6    | 1.381 (4) | C18—H16     | 0.9600      |
| C1—C2    | 1.402 (4) | C18—H17     | 0.9600      |
| С2—С3    | 1.360 (4) | C19—O2      | 1.436 (4)   |
| C2—O2    | 1.382 (4) | C19—H18     | 0.9600      |
| C3—C4    | 1.393 (5) | C19—H19     | 0.9600      |
| C3—H1    | 0.9300    | C19—H20     | 0.9600      |
| C4—C5    | 1.353 (5) | C20—C21     | 1.488 (7)   |
| C4—H2    | 0.9300    | C20—H21     | 0.9600      |
| С5—С6    | 1.414 (4) | C20—H22     | 0.9600      |
| С5—Н3    | 0.9300    | C20—H23     | 0.9600      |
| С6—С7    | 1.433 (5) | C21—O14     | 1.186 (5)   |
| C7—N1    | 1.281 (4) | C21—C22     | 1.518 (7)   |
| С7—Н4    | 0.9300    | C22—H24     | 0.9600      |
| C8—N1    | 1.481 (4) | С22—Н25     | 0.9600      |
| С8—С9    | 1.506 (6) | C22—H26     | 0.9600      |
| С8—Н5    | 0.9700    | Cu2—O3      | 1.933 (2)   |
| С8—Н6    | 0.9700    | Cu2—O1      | 1.942 (2)   |
| C9—C10   | 1.479 (5) | Cu2—N2      | 1.962 (3)   |
| С9—Н7    | 0.9700    | Cu2—N1      | 1.965 (3)   |
| С9—Н8    | 0.9700    | N3—O6       | 1.215 (4)   |
| C10—N2   | 1.474 (4) | N3—O5       | 1.249 (4)   |
| С10—Н9   | 0.9700    | N3—O7       | 1.265 (4)   |
| C10—H10  | 0.9700    | N4—O9       | 1.201 (3)   |
| C11—N2   | 1.291 (4) | N4—O10      | 1.254 (3)   |
| C11—C12  | 1.424 (4) | N4—O8       | 1.274 (3)   |
| C11—H11  | 0.9300    | N5—O12      | 1.221 (4)   |
| C12—C17  | 1.395 (4) | N5—O13      | 1.238 (4)   |
| C12—C13  | 1.407 (4) | N5—O11      | 1.261 (4)   |
| C13—C14  | 1.359 (5) | O1—Sm1      | 2.359 (2)   |
| C13—H12  | 0.9300    | O2—Sm1      | 2.520 (2)   |
| C14—C15  | 1.393 (5) | O3—Sm1      | 2.380 (2)   |
| C14—H13  | 0.9300    | O4—Sm1      | 2.510 (2)   |
| C15—C16  | 1.386 (4) | O5—Sm1      | 2.501 (2)   |
| C15—H14  | 0.9300    | O7—Sm1      | 2.517 (2)   |
| C16—O4   | 1.381 (4) | O8—Sm1      | 2.469 (2)   |
| C16—C17  | 1.394 (4) | O10—Sm1     | 2.525 (2)   |
| C17—O3   | 1.326 (3) | O11—Sm1     | 2.515 (3)   |
| C18—O4   | 1.443 (4) | O13—Sm1     | 2.577 (3)   |
| O1—C1—C6 | 122.4 (3) | H25—C22—H26 | 109.5       |
| 01—C1—C2 | 118.8 (3) | O3—Cu2—O1   | 79.81 (9)   |
| C6—C1—C2 | 118.7 (3) | O3—Cu2—N2   | 91.27 (10)  |
| C3—C2—O2 | 124.3 (3) | O1—Cu2—N2   | 171.07 (9)  |
| C3—C2—C1 | 121.9 (3) | O3—Cu2—N1   | 169.89 (10) |
| O2—C2—C1 | 113.8 (2) | O1—Cu2—N1   | 90.75 (11)  |
|          |           |             |             |

| C2—C3—C4                            | 119.1 (3)            | N2—Cu2—N1                    | 98.18 (12)             |
|-------------------------------------|----------------------|------------------------------|------------------------|
| C2—C3—H1                            | 120.4                | C7—N1—C8                     | 114.6 (3)              |
| C4—C3—H1                            | 120.4                | C7—N1—Cu2                    | 124.2 (2)              |
| C5—C4—C3                            | 120.2 (3)            | C8—N1—Cu2                    | 121.2 (2)              |
| C5—C4—H2                            | 119.9                | C11—N2—C10                   | 114.6 (3)              |
| C3—C4—H2                            | 119.9                | C11—N2—Cu2                   | 124.6 (2)              |
| C4-C5-C6                            | 121 2 (3)            | C10-N2-Cu2                   | 1208(2)                |
| C4—C5—H3                            | 119.4                | 06-N3-05                     | 120.0(2)<br>121.5(3)   |
| С6—С5—Н3                            | 119.1                | 06 - N3 - 07                 | 121.3(3)<br>122.7(3)   |
| C1 - C6 - C5                        | 119.4                | 05 - N3 - 07                 | 122.7(3)<br>1159(3)    |
| C1 $C6$ $C7$                        | 122.5(3)             | $O_{2} N_{3} O_{7}$          | 113.3(3)               |
| $C_1 = C_0 = C_1$                   | 122.5(3)             | $O_{2} = 10$                 | 122.3(3)               |
| C3-C6-C7                            | 110.0(3)             | $0_{10}$ N4 08               | 122.0(3)               |
| N1 = C7 = U4                        | 128.8 (5)            | 010 - N4 - 08                | 113.7(2)               |
| NI-C7-H4                            | 115.0                | 012 - N5 - 013               | 121.7(3)               |
| C6-C7-H4                            | 113.0                | 012—N5—011                   | 122.0 (3)              |
| NI                                  | 112.9 (3)            | 013—N5—011                   | 116.3 (3)              |
| NI—C8—H5                            | 109.0                | CI-OI-Cu2                    | 128.75 (18)            |
| С9—С8—Н5                            | 109.0                | C1—O1—Sm1                    | 123.53 (18)            |
| N1—C8—H6                            | 109.0                | Cu2—O1—Sm1                   | 107.68 (9)             |
| С9—С8—Н6                            | 109.0                | C2—O2—C19                    | 117.3 (2)              |
| H5—C8—H6                            | 107.8                | C2—O2—Sm1                    | 118.50 (17)            |
| C10—C9—C8                           | 112.1 (3)            | C19—O2—Sm1                   | 123.5 (2)              |
| С10—С9—Н7                           | 109.2                | C17—O3—Cu2                   | 129.08 (18)            |
| С8—С9—Н7                            | 109.2                | C17—O3—Sm1                   | 123.76 (17)            |
| С10—С9—Н8                           | 109.2                | Cu2—O3—Sm1                   | 107.15 (9)             |
| С8—С9—Н8                            | 109.2                | C16—O4—C18                   | 117.2 (2)              |
| Н7—С9—Н8                            | 107.9                | C16—O4—Sm1                   | 118.80 (16)            |
| N2—C10—C9                           | 112.3 (3)            | C18—O4—Sm1                   | 121.66 (19)            |
| N2—C10—H9                           | 109.2                | N3—O5—Sm1                    | 97.49 (18)             |
| С9—С10—Н9                           | 109.2                | N3—O7—Sm1                    | 96.27 (18)             |
| N2—C10—H10                          | 109.2                | N4—O8—Sm1                    | 97.71 (17)             |
| С9—С10—Н10                          | 109.2                | N4—O10—Sm1                   | 95.60 (17)             |
| H9—C10—H10                          | 107.9                | N5—O11—Sm1                   | 98.4 (2)               |
| N2-C11-C12                          | 128.3 (3)            | N5—O13—Sm1                   | 96.02 (18)             |
| N2-C11-H11                          | 115.9                | $\Omega_1 - Sm_1 - \Omega_3$ | 63.27 (8)              |
| C12—C11—H11                         | 115.9                | $\Omega_1$ —Sm1— $\Omega_8$  | 148.32 (8)             |
| C17 - C12 - C13                     | 119.5 (3)            | 03—Sm1—08                    | 146 44 (8)             |
| $C_{17}$ $C_{12}$ $C_{11}$          | 122.5(3)             | 01 - Sm1 - 05                | 73 64 (8)              |
| $C_{13}$ $C_{12}$ $C_{11}$          | 122.3(3)<br>117.8(3) | 03 - 8m1 - 05                | 73.43 (8)              |
| $C_{12} = C_{12} = C_{11}$          | 117.0(3)             | 05 - 5m1 - 05                | 117 84 (8)             |
| $C_{14} = C_{13} = C_{12}$          | 121.1 (5)            | $O_1  Sm1  O_2$              | 117.04(0)<br>124.51(7) |
| $C_{14} = C_{13} = 112$             | 119.5                | 01 - 3m1 - 04                | 124.31(7)              |
| $C_{12}$ $C_{13}$ $C_{14}$ $C_{15}$ | 119.3                | 03 - 3m1 - 04                | 04.03(7)               |
| $C_{13} = C_{14} = C_{13}$          | 120.0                | 05  Sm1 04                   | 7607(0)                |
| $C_{13} = C_{14} = $                | 120.0                | 03 - 5111 - 04               | 115 72 (9)             |
| C10 - C14 - H13                     | 120.0                | O1 - SIII - OII              | 113.72(8)              |
| 10 - 15 - 14                        | 119.0 (3)            | $O_{2} = Sm1 = O_{11}$       | ου.42 (δ)              |
| C10—C15—H14                         | 120.2                | 06—Sm1—011                   | /3.38 (9)              |
| U14—U15—H14                         | 120.2                | 05—Sm1—011                   | 144.02 (8)             |

| O4—C16—C15  | 124.5 (3) | O4—Sm1—O11  | 70.38 (8)  |
|-------------|-----------|-------------|------------|
| O4—C16—C17  | 114.3 (2) | O1—Sm1—O7   | 117.15 (8) |
| C15—C16—C17 | 121.2 (3) | O3—Sm1—O7   | 114.49 (8) |
| O3—C17—C16  | 118.4 (3) | O8—Sm1—O7   | 67.60 (8)  |
| O3—C17—C12  | 123.0 (3) | O5—Sm1—O7   | 50.26 (8)  |
| C16—C17—C12 | 118.6 (3) | O4—Sm1—O7   | 71.58 (8)  |
| O4—C18—H15  | 109.5     | O11—Sm1—O7  | 125.99 (8) |
| O4—C18—H16  | 109.5     | O1—Sm1—O2   | 64.43 (7)  |
| H15—C18—H16 | 109.5     | O3—Sm1—O2   | 123.87 (7) |
| O4—C18—H17  | 109.5     | O8—Sm1—O2   | 89.45 (8)  |
| H15—C18—H17 | 109.5     | O5—Sm1—O2   | 73.80 (8)  |
| H16—C18—H17 | 109.5     | O4—Sm1—O2   | 143.74 (7) |
| O2—C19—H18  | 109.5     | O11—Sm1—O2  | 142.17 (8) |
| O2—C19—H19  | 109.5     | O7—Sm1—O2   | 73.77 (8)  |
| H18—C19—H19 | 109.5     | O1—Sm1—O10  | 100.83 (8) |
| O2—C19—H20  | 109.5     | O3—Sm1—O10  | 139.45 (8) |
| H18—C19—H20 | 109.5     | O8—Sm1—O10  | 50.74 (8)  |
| H19—C19—H20 | 109.5     | O5—Sm1—O10  | 141.10 (8) |
| C21—C20—H21 | 109.5     | O4—Sm1—O10  | 130.89 (7) |
| C21—C20—H22 | 109.5     | O11—Sm1—O10 | 73.75 (9)  |
| H21—C20—H22 | 109.5     | O7—Sm1—O10  | 105.97 (8) |
| C21—C20—H23 | 109.5     | O2—Sm1—O10  | 69.44 (8)  |
| H21—C20—H23 | 109.5     | O1—Sm1—O13  | 69.00 (8)  |
| H22—C20—H23 | 109.5     | O3—Sm1—O13  | 71.58 (8)  |
| O14—C21—C20 | 122.5 (5) | O8—Sm1—O13  | 104.97 (8) |
| O14—C21—C22 | 121.5 (5) | O5—Sm1—O13  | 137.17 (8) |
| C20—C21—C22 | 115.9 (4) | O4—Sm1—O13  | 108.91 (9) |
| C21—C22—H24 | 109.5     | O11—Sm1—O13 | 49.23 (8)  |
| C21—C22—H25 | 109.5     | O7—Sm1—O13  | 172.57 (8) |
| H24—C22—H25 | 109.5     | O2—Sm1—O13  | 106.84 (8) |
| C21—C22—H26 | 109.5     | O10—Sm1—O13 | 67.87 (9)  |
| H24—C22—H26 | 109.5     |             |            |
|             |           |             |            |