metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis{ μ -N'-[1-(5-bromo-2-oxidophenyl)ethylidene]benzenesulfonohydrazidato}- $\kappa^{3}O^{2}$,N':N; $\kappa^{3}N$:O²,N'-bis[(dimethyl sulfoxide- κ O)copper(II)]

Hapipah M. Ali, Musalem Laila, Razali M. Rizal and Seik Weng Ng*

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 7 January 2008; accepted 21 January 2008

Key indicators: single-crystal X-ray study; T = 123 K; mean σ (C–C) = 0.006 Å; R factor = 0.039; wR factor = 0.151; data-to-parameter ratio = 18.1.

In the title centrosymmetric dinuclear complex, $[Cu_2(C_{15}H_{11}BrN_2O_3S)_2(C_2H_6OS)_2]$, the Cu^{II} ion is *N*,*O*-chelated by a dianionic ligand, monocoordinated by the sulfonamide N atom of a symmetry-related ligand and coordinated by an O atom from a dimethyl sulfoxide ligand, forming a distorted square-planar coordination geometry.

Related literature

For the structure of 2'-[1-(2-hydroxyphenyl)ethylidene]benzenesulfonohydrazide, see: Ali *et al.* (2007).

Experimental

Crystal data

Data collection

Bruker APEXII diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{min} = 0.335, T_{max} = 0.542$ (expected range = 0.308–0.497)

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.039$	238 parameters
$wR(F^2) = 0.151$	H-atom parameters constrained
S = 1.21	$\Delta \rho_{\rm max} = 1.75 \text{ e } \text{\AA}^{-3}$
4318 reflections	$\Delta \rho_{\rm min} = -0.89 \ {\rm e} \ {\rm \AA}^{-3}$

12330 measured reflections

 $R_{\rm int} = 0.027$

4318 independent reflections

3788 reflections with $I > 2\sigma(I)$

Table 1

Selected bond lengths (Å).

Symmetry code: (i) -x + 2, -y + 1, -z.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2008).

The authors thank the University of Canterbury, New Zealand, for the diffraction measurements, and the Science Fund (12–02-03–2031) and the Fundamental Research Grant Scheme (FP064/2006 A) for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2588).

References

Ali, H. M., Laila, M., Wan Jefrey, B. & Ng, S. W. (2007). Acta Cryst. E63, 01617–01618.

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.

Bruker (2005). *APEX2* (Version 2.0-2) and *SAINT* (Version 7.12A). Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2008). publCIF. In preparation.

supporting information

Acta Cryst. (2008). E64, m414 [doi:10.1107/S1600536808002201]

Bis{ μ -N'-[1-(5-bromo-2-oxidophenyl)ethylidene]benzenesulfonohydrazidato}- $\kappa^3 O^2$, N':N; $\kappa^3 N$:O², N'-bis[(dimethyl sulfoxide- κO)copper(II)]

Hapipah M. Ali, Musalem Laila, Razali M. Rizal and Seik Weng Ng

S1. Experimental

The Schiff base ligand was synthesized by refluxing 5-bromo-2-hydroxyacetophenone (0.6 g, 2.8 mmol) with benzene sulfonohydrazide (0.48 g,2.8 mmol)in ethanol for 2 h. The ligand then was refluxed with Copper (II) acetate for 5 h. The brown crystal were obtained by recrystalization the product from DMSO.

S2. Refinement

All H atoms were placed in calculated positions (C–H = 0.95–0.98 Å) and were included in the refinement in the ridingmodel approximation with $U_{iso}(H)$ set to $1.2U_{eq}(C)$ or $1.5U_{eq}(C)$ for methyl H atoms.

Figure 1

The molecular structure with displacement ellipsoids drawn at the 50% probability level, and H atoms shown as spheres of arbitrary radii [symmetry code: (i) -x + 2, -y + 1, -z].

Bis{ μ -N'-[1-(5-bromo-2- oxidophenyl)ethylidene]benzenesulfonohydrazidato}- $\kappa^3 O^2$, N':N; $\kappa^3 N$:N', O^2 -bis[(dimethyl sulfoxide- κO)copper(II)]

Crystal data

 $[Cu_{2}(C_{15}H_{11}BrN_{2}O_{3}S)_{2}(C_{2}H_{6}OS)_{2}]$ $M_{r} = 1017.77$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 8.0831 (1) Å b = 10.4972 (2) Å c = 12.9481 (2) Å a = 68.157 (1)° $\beta = 74.928$ (1)° $\gamma = 70.691$ (1)° V = 950.56 (3) Å³

Data collection

Bruker APEXII diffractometer Radiation source: medium-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.335, T_{\max} = 0.542$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.151$ S = 1.214318 reflections 238 parameters 0 restraints Primary atom site location: structure-invariant direct methods Z = 1 F(000) = 510 $D_x = 1.778 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 7546 reflections $\theta = 2.7-31.0^{\circ}$ $\mu = 3.49 \text{ mm}^{-1}$ T = 123 K Block, green $0.40 \times 0.31 \times 0.20 \text{ mm}$

12330 measured reflections 4318 independent reflections 3788 reflections with $I > 2\sigma(I)$ $R_{int} = 0.027$ $\theta_{max} = 27.5^\circ, \ \theta_{min} = 1.7^\circ$ $h = -10 \rightarrow 10$ $k = -13 \rightarrow 13$ $l = -16 \rightarrow 16$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0827P)^2 + 1.8365P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 1.75$ e Å⁻³ $\Delta\rho_{min} = -0.89$ e Å⁻³

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	v	Z	U_{iso}^*/U_{eq}	
Br1	0.33316 (6)	0.23924 (5)	0.54963 (4)	0.03789 (17)	
Cu1	1.09563 (6)	0.32031 (5)	0.10740 (4)	0.02020 (15)	
S1	1.13219 (13)	0.63204 (10)	0.05283 (8)	0.0213 (2)	
S2	1.41379 (13)	0.06832 (10)	0.18255 (8)	0.0230 (2)	
01	1.0528 (4)	0.2167 (3)	0.2622 (3)	0.0285 (6)	
O2	1.2628 (4)	0.4956 (3)	0.0677 (3)	0.0278 (6)	
O3	1.1615 (4)	0.7489 (3)	-0.0472 (3)	0.0292 (7)	
O4	1.3150 (4)	0.1704 (3)	0.0840 (2)	0.0253 (6)	
N1	0.9142 (4)	0.4879 (3)	0.1354 (3)	0.0195 (6)	
N2	0.9352 (4)	0.6205 (3)	0.0558 (3)	0.0198 (6)	
C1	0.8917 (5)	0.2298 (4)	0.3191 (3)	0.0219 (8)	

C2	0.8558 (6)	0.1098 (5)	0.4082 (3)	0.0269 (9)
H2	0.9472	0.0236	0.4212	0.032*
C3	0.6946 (6)	0.1120 (5)	0.4770 (3)	0.0274 (9)
H3	0.6759	0.0294	0.5370	0.033*
C4	0.5591 (6)	0.2368 (5)	0.4575 (3)	0.0249 (8)
C5	0.5843 (5)	0.3557 (4)	0.3695 (4)	0.0243 (8)
H5	0.4889	0.4393	0.3569	0.029*
C6	0.7481 (5)	0.3565 (4)	0.2975 (3)	0.0208 (7)
C7	0.7691 (5)	0.4889 (4)	0.2075 (3)	0.0217 (8)
C8	0.6221 (7)	0.6230 (5)	0.1999 (5)	0.0392 (12)
H8A	0.6631	0.7033	0.1428	0.059*
H8B	0.5875	0.6396	0.2731	0.059*
H8C	0.5198	0.6135	0.1788	0.059*
C10	1.1190 (5)	0.6831 (4)	0.1713 (3)	0.0220 (8)
C11	1.1381 (6)	0.5793 (5)	0.2752 (4)	0.0269 (8)
H11	1.1558	0.4822	0.2833	0.032*
C12	1.1307 (6)	0.6200 (5)	0.3673 (4)	0.0318 (9)
H12	1.1418	0.5505	0.4393	0.038*
C13	1.1072 (6)	0.7618 (5)	0.3547 (4)	0.0327 (10)
H13	1.1064	0.7884	0.4174	0.039*
C14	1.0849 (6)	0.8649 (5)	0.2507 (4)	0.0304 (9)
H14	1.0656	0.9622	0.2429	0.036*
C15	1.0910 (6)	0.8258 (4)	0.1583 (4)	0.0249 (8)
H15	1.0761	0.8957	0.0869	0.030*
C16	1.6285 (6)	0.0005 (5)	0.1132 (4)	0.0294 (9)
H16A	1.6190	-0.0542	0.0690	0.044*
H16B	1.7060	-0.0613	0.1694	0.044*
H16C	1.6786	0.0797	0.0631	0.044*
C17	1.4719 (6)	0.1775 (5)	0.2371 (4)	0.0310 (9)
H17A	1.3669	0.2215	0.2823	0.046*
H17B	1.5168	0.2519	0.1746	0.046*
H17C	1.5640	0.1193	0.2844	0.046*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.0284 (3)	0.0359 (3)	0.0357 (3)	-0.01063 (19)	0.00829 (19)	-0.0030 (2)
Cu1	0.0171 (3)	0.0210 (3)	0.0222 (3)	-0.00342 (18)	-0.00075 (18)	-0.00929 (19)
S1	0.0190 (5)	0.0249 (5)	0.0240 (5)	-0.0098 (4)	0.0014 (3)	-0.0118 (4)
S2	0.0192 (5)	0.0238 (5)	0.0253 (5)	-0.0066 (4)	-0.0020 (4)	-0.0070 (4)
01	0.0205 (14)	0.0309 (15)	0.0248 (14)	0.0000 (12)	-0.0005 (11)	-0.0063 (12)
O2	0.0179 (14)	0.0312 (16)	0.0391 (17)	-0.0064 (12)	0.0007 (12)	-0.0200 (13)
03	0.0320 (17)	0.0352 (16)	0.0255 (15)	-0.0200 (14)	0.0015 (13)	-0.0095 (13)
O4	0.0220 (14)	0.0278 (14)	0.0245 (14)	0.0011 (11)	-0.0040 (11)	-0.0130 (12)
N1	0.0206 (16)	0.0187 (15)	0.0205 (15)	-0.0074 (12)	-0.0020 (12)	-0.0063 (12)
N2	0.0201 (16)	0.0205 (15)	0.0214 (15)	-0.0094 (12)	-0.0014 (12)	-0.0074 (12)
C1	0.0202 (18)	0.0271 (19)	0.0204 (18)	-0.0047 (15)	-0.0025 (14)	-0.0113 (15)
C2	0.030 (2)	0.0246 (19)	0.0213 (19)	0.0012 (16)	-0.0058 (16)	-0.0085 (15)

C3	0.036 (2)	0.0252 (19)	0.0199 (18)	-0.0089 (17)	-0.0040 (17)	-0.0047 (15)
C4	0.024 (2)	0.029 (2)	0.0213 (18)	-0.0088 (16)	0.0002 (15)	-0.0081 (16)
C5	0.0196 (18)	0.0247 (19)	0.028 (2)	-0.0055 (15)	-0.0014 (15)	-0.0090 (16)
C6	0.0190 (18)	0.0193 (17)	0.0245 (18)	-0.0061 (14)	-0.0008 (15)	-0.0081 (14)
C7	0.0190 (18)	0.0202 (18)	0.0255 (19)	-0.0070 (14)	0.0012 (15)	-0.0084 (15)
C8	0.030 (2)	0.021 (2)	0.046 (3)	-0.0012 (18)	0.011 (2)	-0.0033 (19)
C10	0.0177 (18)	0.0252 (19)	0.0275 (19)	-0.0056 (15)	-0.0009 (15)	-0.0149 (16)
C11	0.025 (2)	0.026 (2)	0.029 (2)	-0.0045 (16)	-0.0016 (16)	-0.0115 (16)
C12	0.029 (2)	0.038 (2)	0.027 (2)	-0.0038 (19)	-0.0042 (17)	-0.0122 (18)
C13	0.030 (2)	0.044 (3)	0.032 (2)	-0.0112 (19)	-0.0001 (18)	-0.023 (2)
C14	0.030 (2)	0.030 (2)	0.037 (2)	-0.0118 (18)	0.0038 (18)	-0.0194 (19)
C15	0.024 (2)	0.0241 (19)	0.027 (2)	-0.0099 (16)	0.0023 (16)	-0.0099 (16)
C16	0.023 (2)	0.027 (2)	0.038 (2)	-0.0021 (16)	-0.0020 (17)	-0.0153 (18)
C17	0.031 (2)	0.038 (2)	0.031 (2)	-0.0086 (19)	-0.0062 (18)	-0.0181 (19)

Geometric parameters (Å, °)

Br1—C4	1.902 (4)	С5—Н5	0.9500
Cu1—O1	1.894 (3)	C6—C7	1.472 (5)
Cu1—O4	1.986 (3)	C7—C8	1.501 (6)
Cu1—N1	1.967 (3)	C8—H8A	0.9800
Cu1—N2 ⁱ	2.026 (3)	C8—H8B	0.9800
S1—O3	1.445 (3)	C8—H8C	0.9800
S1—O2	1.450 (3)	C10—C11	1.388 (6)
S1—N2	1.626 (3)	C10—C15	1.390 (6)
S1-C10	1.772 (4)	C11—C12	1.391 (6)
S2—O4	1.537 (3)	C11—H11	0.9500
S2—C17	1.779 (4)	C12—C13	1.387 (7)
S2—C16	1.781 (4)	C12—H12	0.9500
01—C1	1.310 (5)	C13—C14	1.389 (7)
N1—C7	1.295 (5)	C13—H13	0.9500
N1—N2	1.423 (4)	C14—C15	1.388 (6)
N2—Cu1 ⁱ	2.026 (3)	C14—H14	0.9500
C1—C2	1.410 (6)	C15—H15	0.9500
C1—C6	1.438 (5)	C16—H16A	0.9800
C2—C3	1.372 (6)	C16—H16B	0.9800
С2—Н2	0.9500	C16—H16C	0.9800
C3—C4	1.388 (6)	C17—H17A	0.9800
С3—Н3	0.9500	C17—H17B	0.9800
C4—C5	1.374 (6)	C17—H17C	0.9800
C5—C6	1.407 (6)		
O1—Cu1—N1	89.77 (13)	C1—C6—C7	122.5 (4)
01—Cu1—O4	91.02 (13)	N1—C7—C6	119.4 (3)
N1-Cu1-O4	167.44 (13)	N1—C7—C8	120.8 (4)
O1-Cu1-N2 ⁱ	153.28 (14)	C6—C7—C8	119.7 (4)
N1—Cu1—N2 ⁱ	93.89 (13)	С7—С8—Н8А	109.5
O4—Cu1—N2 ⁱ	91.03 (13)	C7—C8—H8B	109.5

O3—S1—O2	118.67 (19)	H8A—C8—H8B	109.5
O3—S1—N2	105.18 (18)	C7—C8—H8C	109.5
O2—S1—N2	112.07 (17)	H8A—C8—H8C	109.5
O3—S1—C10	107.86 (19)	H8B—C8—H8C	109.5
O2—S1—C10	106.05 (19)	C11—C10—C15	121.3 (4)
N2—S1—C10	106.37 (18)	C11—C10—S1	119.2 (3)
O4—S2—C17	105.9 (2)	C15—C10—S1	119.5 (3)
O4—S2—C16	102.9 (2)	C10-C11-C12	118.8 (4)
C17—S2—C16	98.1 (2)	C10-C11-H11	120.6
C1—O1—Cu1	121.3 (3)	C12—C11—H11	120.6
S2—O4—Cu1	120.97 (17)	C13—C12—C11	120.3 (4)
C7—N1—N2	117.5 (3)	C13—C12—H12	119.8
C7—N1—Cu1	127.0 (3)	C11—C12—H12	119.8
N2—N1—Cu1	114.7(2)	C12-C13-C14	120.3 (4)
N1—N2—S1	108.2(2)	C12-C13-H13	119.9
$N1 - N2 - Cu1^{i}$	122.8(2)	C14-C13-H13	119.9
$1 - N^2 - Cu^{1i}$	105.85(17)	C_{15} C_{14} C_{13}	119.9 (4)
01-C1-C2	105.05(17) 117 5 (4)	C_{15} C_{14} H_{14}	120.0
01 - C1 - C6	117.3(4) 125.2(4)	C13 $C14$ $H14$	120.0
C_{2} C_{1} C_{6}	125.2(4) 1173(4)	C_{14} C_{15} C_{10}	119 3 (4)
$C_{2} - C_{1} - C_{0}$	117.3(4) 122 9 (4)	C_{14} C_{15} H_{15}	119.5 (4)
$C_3 = C_2 = C_1$	118 5	C_{14} C_{15} H_{15}	120.4
C_{1} C_{2} H_{2}	118.5	S2 C16 H16A	120.4
$C_1 = C_2 = C_1$	110.3	S2 C16 H16P	109.5
$C_2 = C_3 = C_4$	119.0 (4)	32-010-110B	109.5
$C_2 = C_3 = H_3$	120.5	$\begin{array}{c} \text{HI0A} \\ \text{CI6} \\ \text{HI6C} \\ \text{CI6} \\ \text{HI6C} \\ \end{array}$	109.5
$C_4 - C_3 - H_3$	120.3		109.5
$C_{5} = C_{4} = C_{5}$	120.7(4)	H10A - C10 - H10C	109.5
$C_3 = C_4 = Br_1$	119.9 (3)	H10B - C10 - H10C	109.5
$C_3 - C_4 - Br_1$	119.3 (3)	S_2 —C17—H17A	109.5
C4 - C5 - C6	121.5 (4)	S2—CI/—HI/B	109.5
C4—C5—H5	119.2	HI/A = CI/= HI/B	109.5
C6—C5—H5	119.2	S2—C1/—H1/C	109.5
C5—C6—C1	118.4 (4)	HI/A—CI/—HI/C	109.5
C5—C6—C7	119.0 (4)	Н17В—С17—Н17С	109.5
N1—Cu1—O1—C1	40.0 (3)	C3—C4—C5—C6	-1.3 (7)
O4—Cu1—O1—C1	-152.5 (3)	Br1—C4—C5—C6	-178.1(3)
N2 ⁱ —Cu1—O1—C1	-58.2 (5)	C4—C5—C6—C1	-1.1 (6)
C17—S2—O4—Cu1	-58.7 (3)	C4—C5—C6—C7	-177.5 (4)
C16—S2—O4—Cu1	-161.2 (2)	O1—C1—C6—C5	-177.2(4)
01—Cu1—O4—S2	-23.1(2)	C2-C1-C6-C5	3.2 (6)
N1—Cu1—O4—S2	70.5 (7)	Q1—C1—C6—C7	-0.9 (6)
$N2^{i}$ —Cu1—O4—S2	-176.4(2)	C2-C1-C6-C7	179.6 (4)
01—Cu1—N1—C7	-34.4 (4)	N2—N1—C7—C6	-174.7(3)
O4—Cu1—N1—C7	-128.1 (6)	Cu1—N1—C7—C6	15.4 (5)
N2 ⁱ —Cu1—N1—C7	119.1 (3)	N2—N1—C7—C8	5.6 (6)
01—Cu1—N1—N2	155.5 (3)	Cu1—N1—C7—C8	-164.3 (4)
O4—Cu1—N1—N2	61.8 (7)	C5—C6—C7—N1	-174.6 (4)

N2 ⁱ —Cu1—N1—N2	-51.0 (3)	C1—C6—C7—N1	9.1 (6)
C7—N1—N2—S1	132.6 (3)	C5—C6—C7—C8	5.1 (6)
Cu1—N1—N2—S1	-56.4 (3)	C1—C6—C7—C8	-171.2 (4)
C7—N1—N2—Cu1 ⁱ	-103.8 (4)	O3—S1—C10—C11	-163.2 (3)
Cu1—N1—N2—Cu1 ⁱ	67.3 (3)	O2—S1—C10—C11	-35.1 (4)
O3—S1—N2—N1	166.0 (2)	N2—S1—C10—C11	84.4 (4)
O2—S1—N2—N1	35.8 (3)	O3—S1—C10—C15	16.4 (4)
C10-S1-N2-N1	-79.7 (3)	O2—S1—C10—C15	144.5 (3)
O3—S1—N2—Cu1 ⁱ	32.7 (2)	N2—S1—C10—C15	-96.0 (3)
O2—S1—N2—Cu1 ⁱ	-97.6 (2)	C15-C10-C11-C12	-0.7 (6)
C10-S1-N2-Cu1 ⁱ	146.95 (18)	S1-C10-C11-C12	178.8 (3)
Cu1—O1—C1—C2	148.7 (3)	C10-C11-C12-C13	-0.9 (7)
Cu1—O1—C1—C6	-30.8 (5)	C11—C12—C13—C14	2.1 (7)
O1—C1—C2—C3	177.1 (4)	C12-C13-C14-C15	-1.7 (7)
C6—C1—C2—C3	-3.3 (6)	C13—C14—C15—C10	0.1 (7)
C1—C2—C3—C4	1.1 (7)	C11—C10—C15—C14	1.1 (6)
C2—C3—C4—C5	1.3 (7)	S1—C10—C15—C14	-178.5 (3)
C2—C3—C4—Br1	178.2 (3)		

Symmetry code: (i) -x+2, -y+1, -z.