metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

[1,2-Bis(dimethylphosphino)ethane] $carbonyl(\eta^{5}-cyclopentadienyl)iron(II)$ diphenylphosphinoylborate

Kajin Lee,^a Alan J. Lough^{b*} and Ian Manners^a

^aSchool of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, England, and ^bDepartment of Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3H6

Correspondence e-mail: alough@chem.utoronto.ca

Received 19 December 2007; accepted 28 December 2007

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.008 Å; R factor = 0.059; wR factor = 0.177; data-to-parameter ratio = 14.2.

In the title compound, $[Fe(C_5H_5)(C_6H_{16}P_2)(CO)](C_{12}H_{13})$ BOP), the Fe^{II} ion adopts a three-legged piano-stool geometry, with $Fe \cdots Cg = 1.721 (5) \text{ Å} (Cg = \text{the centroid})$ defined by the C atoms of the cyclopentadienyl ring). The 1,2bis(dimethylphosphino)ethane (dmpe) ligand chelates to form a five-membered C_2P_2Fe ring which is in a pseudo-half-chair conformation. In the crystal structure, associations of one cation and two anions are formed via weak intermolecular C-H···O hydrogen bonds, giving rise to $R_4^2(9)$ rings.

Related literature

For related literature, see: Jaska et al. (2003, 2005); Kuckmann et al. (2007); Paciello et al. (1990). For background on graphset theory, see: Bernstein et al. (1995).

Experimental

Crystal data

$[Fe(C_5H_5)(C_6H_{16}P_2)(CO)]$ -	$\beta = 81.155 \ (2)^{\circ}$
$(C_{12}H_{13}BOP)$	$\gamma = 71.497 \ (3)^{\circ}$
$M_r = 514.08$	$V = 1273.50 (11) \text{ Å}^3$
Triclinic, P1	Z = 2
a = 9.0244 (5) Å	Mo $K\alpha$ radiation
b = 11.4671 (4) Å	$\mu = 0.80 \text{ mm}^{-1}$
c = 14.0568 (7) Å	T = 150 (1) K
$\alpha = 67.491 \ (3)^{\circ}$	$0.20 \times 0.14 \times 0.12 \text{ mm}$

Data collection

Ionius KappaCCD diffractometer	8558 measured reflections
bsorption correction: multi-scan	4217 independent reflections
(SORTAV; Blessing, 1995)	2935 reflections with $I > 2\sigma(I)$
$T_{\min} = 0.521, \ T_{\max} = 0.943$	$R_{\rm int} = 0.091$

Refinement

N

1

$R[F^2 > 2\sigma(F^2)] = 0.058$	H atoms treated by a mixture of
$wR(F^2) = 0.176$	independent and constrained
S = 1.05	refinement
4217 reflections	$\Delta \rho_{\rm max} = 0.81 \text{ e } \text{\AA}^{-3}$
296 parameters	$\Delta \rho_{\rm min} = -0.79 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Selected bond lengths (Å).

Fe1-C12 Fe1-P1	1.733 (5) 2.2129 (15)	Fe1-P2	2.2133 (13)

Table 2	
Hydrogen-bond geometry (Å, °).	

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C2 - H2A \cdots O2^{i}$	1.00	2.41	3.389 (7)	167
$C11 - H11B \cdots O2^{ii}$	0.98	2.20	3.281 (7)	172
$C11 - H11C \cdots O2^{i}$	0.98	2.43	3.403 (7)	171

Symmetry codes: (i) -x + 1, -y, -z + 1; (ii) x, y, z + 1.

Data collection: COLLECT (Nonius, 2002); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXTL (Sheldrick, 2001); molecular graphics: PLATON (Spek, 2003) and SHELXTL; software used to prepare material for publication: SHELXTL

IM thanks the EPSRC, the University of Bristol for start-up funds, the European Union for a Marie Curie Chair and the Royal Society for a Wolfson Research Merit Award for financial support. AJL acknowledges NSERC Canada and the University of Toronto for funding.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2681).

References

- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Jaska, C. A., Dorn, H., Lough, A. J. & Manners, I. (2003). Chem. Eur. J. 9, 271-281
- Jaska, C. A., Lough, A. J. & Manners, I. (2005). J. Chem. Soc. Dalton Trans. pp. 326-331.
- Kuckmann, T. I., Dornhaus, F., Bolte, M., Lerner, H.-W., Holthausen, M. C. & Wagner, M. (2007). Eur. J. Inorg. Chem. pp. 1989-2003.
- Nonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.

- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A edited by C. W. Carter & R. M. Sweet pp. 307–326. London: Academic Press.
- Paciello, R. A., Manriquez, J. M. & Bercaw, J. E. (1990). Organometallics, 9, 260–265.

Sheldrick, G. M. (2001). SHELXTL/PC. Version 6.1, Windows NT version. Bruker AXS Inc., Madison, Wisconsin, USA. Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13.

supporting information

Acta Cryst. (2008). E64, m338-m339 [doi:10.1107/S1600536807068651]

[1,2-Bis(dimethylphosphino)ethane]carbonyl(η^5 -cyclopentadienyl)iron(II) diphenylphosphinoylborate

Kajin Lee, Alan J. Lough and Ian Manners

S1. Comment

The mechanism for the metal catalyzed dehydrocoupling of phosphine-borane adducts has been studied by investigating the synthesis and reactivity of model complexes. The P—H bond oxidative addition of RPhPH-BH₃ to Pt(PEt₃)₃ has been reported as well as the phosphine-borane ligand-exchange reaction at the Pt centre of *cis*-[PtH(PPh₂.BH₃) (depe)] (Jaska *et al.*, 2003). Model complexes such as *cis*-[PtH(PPhH.BH₃)(dcype)] [dcype = 1,2-bis(dicyclohexylphosphino)ethane] have been synthesized *via* dehydrocoupling routes involving Pt—H and P—H bonds of *cis*-[PtH₂(dcype)] and PhPH₂.BH₃ respectively (Jaska *et al.*, 2005). The reactivity of CpFe(CO)₂PPh₂.BH₃, (I), (Kuckmann *et al.*, 2007) [see Fig. 3] was probed as a potential model complex in the study of the mechanism of the dehydrocoupling of phosphine-borane adducts: the CO ligands might dissociate to promote a reaction with phosphine-borane adducts. Before reacting (I) with phosphine-borane adducts, dmpe (1,2-bis(dimethylphosphino)ethane) was added in excess to (I) to observe the lability of the CO ligands. When adventitious air was also introduced to this reaction in THF, the title compound, (II), (Fig. 1), was formed. A similar complex, Cp*Fe(dmpe)*X*(*X* = H, CH₃ or Cl) was reported earlier (Paciello *et al.*, 1990).

The Fe atom in (II) is bonded to a cyclopentadienyl (cp) ring with Fe^{···}C_g = 1.721 (5)Å (C_g = the centroid of C1—C5), a carbonyl group and the bis-chelating (dimethylphosphino)ethane (dmpe) ligand (Table 1). In the crystal of (II), weak intermolecular C—H^{···}O hydrogen bonds (Table 2) form rings with graph set assignment $R^2_4(9)$ (Bernstein *et al.*, 1995) created in a three component cluster of two anions and one cation (Fig. 2).

S2. Experimental

The complex $CpFe(CO)_2PPh_2.BH_3$ (200 mg, 0.532 mmol) was dissolved in 1.8 ml THF in a round bottom Schlenk flask. This yellow solution turned orange upon addition of dmpe (0.150 ml, 0.899 mmol). After 8 days of stirring at 293 K, orange precipitate was observed in the solution. The solution was filter cannulated into a new flask and then the volatile components of the reaction mixture were removed *in vacuo* overnight. The product was purified by chromatography with a column of celite (0.5 cm × 1.5 cm) supported on glass wool with hexanes (4 ml), Et₂O (5 ml) and then THF (4 ml). The product in THF afforded pale yellow needles of (II) due to adventitious air.

S3. Refinement

All hydrogen atoms bonded to C were placed in calculated positions with C—H = 0.95-1.00 Å and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(C_{methyl})$. The H atoms bonded to B1 were refined independently with isotropic displacement parameters.

Figure 1

The molecular structure of (II) with displacement ellipsoids drawn at the 30% probability level. H atoms bonded to C atoms are not shown.

Figure 2

Part of the crystal structure of (II) showing hydrogen bonds as thin lines. Only the H atoms bonded to B atoms and those involved in hydrogen bonding are shown.

Figure 3

The reaction scheme.

$[1,2-Bis(dimethylphosphino)ethane]carbonyl(\eta^{5}-cyclopentadienyl)iron(II) diphenylphosphinoylborate$

Crystal data [Fe(C₅H₅)(C₆H₁₆P₂)(CO)](C₁₂H₁₃BOP) $M_r = 514.08$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 9.0244 (5) Å b = 11.4671 (4) Å c = 14.0568 (7) Å a = 67.491 (3)° $\beta = 81.155$ (2)° $\gamma = 71.497$ (3)° V = 1273.50 (11) Å³

Data collection

Nonius KappaCCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 9 pixels mm⁻¹ φ scans and ω scans with κ offsets Absorption correction: multi-scan (*SORTAV*; Blessing, 1995) $T_{\min} = 0.521, T_{\max} = 0.943$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.058$ $wR(F^2) = 0.176$ S = 1.054217 reflections 296 parameters 0 restraints Primary atom site location: structure-invariant direct methods Z = 2 F(000) = 540 $D_x = 1.341 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 \mathbf{Å} Cell parameters from 8558 reflections $\theta = 2.6-25.0^{\circ}$ $\mu = 0.80 \text{ mm}^{-1}$ T = 150 KCut needle, pale yellow $0.20 \times 0.14 \times 0.12 \text{ mm}$

8558 measured reflections 4217 independent reflections 2935 reflections with $I > 2\sigma(I)$ $R_{int} = 0.091$ $\theta_{max} = 25.0^{\circ}, \theta_{min} = 2.6^{\circ}$ $h = -10 \rightarrow 10$ $k = -12 \rightarrow 13$ $l = -16 \rightarrow 16$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0844P)^2 + 1.3773P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.002$ $\Delta\rho_{max} = 0.81$ e Å⁻³ $\Delta\rho_{min} = -0.79$ e Å⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

 $U_{\rm iso}^*/U_{\rm eq}$ х Zv Fe1 0.79005 (5) 0.0227(2)0.22249 (8) 0.31967 (6) P1 -0.03606(15)0.38455 (12) 0.78938 (10) 0.0256(3)P2 0.20337 (15) 0.11946 (11) 0.82546 (10) 0.0231(3)01 0.3727 (4) 0.5707(3)0.0444(10)0.2462(5)C1 0.4180 (6) 0.7772(4)0.3862(5)0.0339(13)H1A 0.4862 0.4108 0.7139 0.041* C2 0.4403 (6) 0.2587 (5) 0.8551 (4) 0.0294 (12) H2A 0.5270 0.1779 0.8568 0.035* C3 0.3203 (6) 0.2692(5)0.9321(4)0.0319(13) H3A 0.3063 0.1965 0.9974 0.038* C4 0.2271 (6) 0.4001(5)0.9012(4)0.0305(12)H4A 0.1336 0.4357 0.9409 0.037* C5 0.2834(6)0.4729(5)0.8063(4)0.0326(13) H5A 0.2400 0.5691 0.7674 0.039* C6 -0.1017(6)0.2512(5)0.7849(4)0.0328 (12) H6A -0.21340.2631 0.8071 0.039* H6B -0.08930.2506 0.039* 0.7138 C7 -0.0015(6)0.1229(5)0.8573 (4) 0.0301 (12) H7A -0.02120.0471 0.8492 0.036* H7B -0.02750.1172 0.9297 0.036* C8 -0.1254(7)0.5297 (5) 0.6827(4)0.0397 (14) H8A -0.23940.5477 0.6902 0.060* H8B -0.08910.5149 0.6178 0.060* H8C -0.09610.6052 0.6824 0.060* C9 -0.1446(6)0.4183 (6) 0.9003(4)0.0372(13)-0.25440.4233 0.8977 0.056* H9A H9B -0.13770.5022 0.8996 0.056* H9C -0.10030.3476 0.9636 0.056* C10 0.0595 (5) 0.7200(4)0.2542 (6) 0.0337(13)0.051* H10A 0.2284 -0.02370.7398 H10B 0.7031 0.051* 0.3665 0.0453 H10C 0.1952 0.6596 0.051* 0.1244 C11 0.3108 (6) -0.0181(5)0.9308 (4) 0.0318 (12) -0.09840.048* H11A 0.2859 0.9380 H11B 0.2812 -0.00010.9950 0.048*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H11C	0.4233	-0.0300	0.9163	0.048*
C12	0.2342 (6)	0.3517 (4)	0.6586 (4)	0.0275 (12)
P3	0.21995 (16)	0.08074 (12)	0.22685 (10)	0.0265 (3)
O2	0.3092 (5)	0.0325 (4)	0.1455 (3)	0.0482 (11)
C13	0.3424 (6)	0.1487 (4)	0.2728 (4)	0.0246 (11)
C14	0.4211 (6)	0.2322 (5)	0.1986 (4)	0.0287 (12)
H14A	0.4080	0.2534	0.1276	0.034*
C15	0.5184 (6)	0.2844 (5)	0.2277 (4)	0.0346 (13)
H15A	0.5714	0.3412	0.1765	0.042*
C16	0.5383 (6)	0.2541 (5)	0.3308 (4)	0.0332 (12)
H16A	0.6064	0.2886	0.3505	0.040*
C17	0.4598 (6)	0.1742 (5)	0.4046 (4)	0.0328 (13)
H17A	0.4721	0.1550	0.4754	0.039*
C18	0.3619 (6)	0.1208 (5)	0.3767 (4)	0.0283 (12)
H18A	0.3082	0.0653	0.4285	0.034*
C20	0.2031 (6)	-0.0630 (4)	0.3411 (4)	0.0249 (11)
C21	0.0648 (6)	-0.0653 (5)	0.4012 (4)	0.0303 (12)
H21A	-0.0229	0.0107	0.3858	0.036*
C22	0.0560 (7)	-0.1787 (5)	0.4833 (4)	0.0355 (13)
H22A	-0.0384	-0.1800	0.5238	0.043*
C23	0.1819 (7)	-0.2897 (5)	0.5070 (4)	0.0348 (13)
H23A	0.1741	-0.3672	0.5631	0.042*
C24	0.3195 (6)	-0.2878 (5)	0.4489 (4)	0.0351 (13)
H24A	0.4072	-0.3637	0.4659	0.042*
C25	0.3308 (6)	-0.1761 (5)	0.3662 (4)	0.0310 (12)
H25A	0.4257	-0.1761	0.3262	0.037*
B1	0.0223 (8)	0.2119 (6)	0.1944 (5)	0.0338 (14)
H1	0.045 (6)	0.298 (5)	0.132 (4)	0.030 (13)*
H2	-0.037 (7)	0.166 (6)	0.160 (5)	0.062 (18)*
Н3	-0.020 (6)	0.244 (5)	0.265 (4)	0.043 (15)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Fe1	0.0241 (4)	0.0196 (4)	0.0260 (4)	-0.0091 (3)	-0.0030 (3)	-0.0068 (3)
P1	0.0240 (7)	0.0230 (7)	0.0301 (7)	-0.0048(5)	-0.0049 (6)	-0.0097 (6)
P2	0.0233 (7)	0.0193 (7)	0.0280 (7)	-0.0083 (5)	-0.0021 (5)	-0.0077 (5)
01	0.061 (3)	0.040 (2)	0.027 (2)	-0.012 (2)	-0.0033 (19)	-0.0081 (17)
C1	0.033 (3)	0.037 (3)	0.037 (3)	-0.023 (3)	-0.003 (2)	-0.007(2)
C2	0.030 (3)	0.024 (3)	0.037 (3)	-0.008 (2)	-0.011 (2)	-0.009(2)
C3	0.045 (3)	0.032 (3)	0.029 (3)	-0.024 (3)	-0.007 (3)	-0.008(2)
C4	0.034 (3)	0.036 (3)	0.035 (3)	-0.015 (2)	0.001 (2)	-0.024 (2)
C5	0.034 (3)	0.026 (3)	0.046 (3)	-0.015 (2)	-0.007 (3)	-0.014 (2)
C6	0.018 (3)	0.039 (3)	0.052 (3)	-0.012 (2)	-0.002 (2)	-0.025 (3)
C7	0.025 (3)	0.028 (3)	0.045 (3)	-0.013 (2)	0.001 (2)	-0.017 (2)
C8	0.034 (3)	0.033 (3)	0.038 (3)	0.004 (2)	-0.011 (3)	-0.006(2)
C9	0.029 (3)	0.050 (3)	0.038 (3)	-0.011 (3)	0.005 (2)	-0.024 (3)
C10	0.040 (3)	0.024 (3)	0.039 (3)	-0.010 (2)	-0.003 (3)	-0.013 (2)

C11	0.037 (3)	0.021 (3)	0.034 (3)	-0.009 (2)	-0.005 (2)	-0.004 (2)
C12	0.031 (3)	0.017 (3)	0.034 (3)	-0.008 (2)	-0.007 (2)	-0.005 (2)
P3	0.0302 (8)	0.0211 (7)	0.0302 (7)	-0.0117 (6)	-0.0063 (6)	-0.0059 (5)
O2	0.058 (3)	0.043 (2)	0.048 (3)	-0.021 (2)	0.001 (2)	-0.0176 (19)
C13	0.027 (3)	0.017 (3)	0.028 (3)	-0.003 (2)	-0.006 (2)	-0.007 (2)
C14	0.032 (3)	0.025 (3)	0.029 (3)	-0.012 (2)	-0.004 (2)	-0.006 (2)
C15	0.036 (3)	0.030 (3)	0.042 (3)	-0.017 (2)	-0.002 (3)	-0.011 (2)
C16	0.034 (3)	0.030 (3)	0.044 (3)	-0.016 (2)	-0.007 (3)	-0.014 (2)
C17	0.037 (3)	0.027 (3)	0.035 (3)	-0.007 (2)	-0.012 (2)	-0.009 (2)
C18	0.029 (3)	0.021 (3)	0.032 (3)	-0.009 (2)	0.002 (2)	-0.007 (2)
C20	0.028 (3)	0.027 (3)	0.028 (3)	-0.015 (2)	-0.008 (2)	-0.011 (2)
C21	0.025 (3)	0.029 (3)	0.038 (3)	-0.008 (2)	-0.003 (2)	-0.012 (2)
C22	0.032 (3)	0.037 (3)	0.038 (3)	-0.015 (3)	0.004 (2)	-0.012 (2)
C23	0.048 (4)	0.030 (3)	0.027 (3)	-0.021 (3)	0.002 (3)	-0.005 (2)
C24	0.036 (3)	0.028 (3)	0.038 (3)	-0.005 (2)	-0.011 (3)	-0.008 (2)
C25	0.031 (3)	0.029 (3)	0.033 (3)	-0.008 (2)	0.000 (2)	-0.012 (2)
B1	0.034 (4)	0.029 (3)	0.039 (4)	-0.010 (3)	-0.007 (3)	-0.010 (3)

Geometric parameters (Å, °)

Fe1—C12	1.733 (5)	C10—H10A	0.9800
Fe1—P1	2.2129 (15)	C10—H10B	0.9800
Fe1—P2	2.2133 (13)	C10—H10C	0.9800
Fe1—C2	2.093 (5)	C11—H11A	0.9800
Fe1—C1	2.093 (5)	C11—H11B	0.9800
Fe1—C5	2.097 (5)	C11—H11C	0.9800
Fe1—C3	2.105 (5)	P3—O2	1.477 (4)
Fe1—C4	2.107 (5)	P3—C20	1.837 (5)
P1C8	1.811 (5)	P3—C13	1.844 (5)
Р1—С9	1.815 (5)	P3—B1	1.917 (6)
P1—C6	1.831 (5)	C13—C18	1.396 (7)
P2—C10	1.804 (5)	C13—C14	1.396 (7)
P2—C11	1.818 (5)	C14—C15	1.388 (7)
P2—C7	1.826 (5)	C14—H14A	0.9500
O1—C12	1.160 (6)	C15—C16	1.382 (7)
C1—C5	1.422 (7)	C15—H15A	0.9500
C1—C2	1.426 (7)	C16—C17	1.369 (7)
C1—H1A	1.0000	C16—H16A	0.9500
C2—C3	1.418 (7)	C17—C18	1.394 (7)
C2—H2A	1.0000	C17—H17A	0.9500
C3—C4	1.401 (7)	C18—H18A	0.9500
С3—НЗА	1.0000	C20—C21	1.397 (7)
C4—C5	1.394 (7)	C20—C25	1.401 (7)
C4—H4A	1.0000	C21—C22	1.385 (7)
C5—H5A	1.0000	C21—H21A	0.9500
C6—C7	1.521 (7)	C22—C23	1.377 (8)
С6—Н6А	0.9900	C22—H22A	0.9500
С6—Н6В	0.9900	C23—C24	1.379 (7)

C7—H7A	0.9900	С23—Н23А	0.9500
С7—Н7В	0.9900	C24—C25	1.381 (7)
C8—H8A	0.9800	C24—H24A	0.9500
C8—H8B	0.9800	C25—H25A	0.9500
C8—H8C	0.9800	B1—H1	1.09 (5)
С9—Н9А	0.9800	B1—H2	1.12 (6)
С9—Н9В	0.9800	B1—H3	1.15 (5)
С9—Н9С	0.9800		
C12—Fe1—C2	113.6 (2)	Р2—С7—Н7А	110.1
C12—Fe1—C1	90.6 (2)	С6—С7—Н7В	110.1
C2—Fe1—C1	39.84 (19)	P2—C7—H7B	110.1
C12—Fe1—C5	105.3 (2)	H7A—C7—H7B	108.4
C2—Fe1—C5	66.7 (2)	P1	109.5
C1—Fe1—C5	39.7 (2)	P1—C8—H8B	109.5
C12—Fe1—C3	153.0 (2)	H8A—C8—H8B	109.5
C2—Fe1—C3	39.5 (2)	P1—C8—H8C	109.5
C1—Fe1—C3	66.1 (2)	H8A—C8—H8C	109.5
C5—Fe1—C3	65.9 (2)	H8B—C8—H8C	109.5
C12—Fe1—C4	143.2 (2)	Р1—С9—Н9А	109.5
C2—Fe1—C4	65.7 (2)	Р1—С9—Н9В	109.5
C1—Fe1—C4	65.4 (2)	H9A—C9—H9B	109.5
C5—Fe1—C4	38.7 (2)	Р1—С9—Н9С	109.5
C3—Fe1—C4	38.9 (2)	H9A—C9—H9C	109.5
C12—Fe1—P1	91.01 (17)	H9B—C9—H9C	109.5
C2—Fe1—P1	155.10 (15)	P2	109.5
C1—Fe1—P1	142.78 (15)	P2-C10-H10B	109.5
C5—Fe1—P1	104.63 (15)	H10A—C10—H10B	109.5
C3—Fe1—P1	115.69 (16)	P2-C10-H10C	109.5
C4—Fe1—P1	92.67 (15)	H10A—C10—H10C	109.5
C12—Fe1—P2	91.92 (15)	H10B-C10-H10C	109.5
C2—Fe1—P2	95.99 (14)	P2—C11—H11A	109.5
C1—Fe1—P2	130.86 (15)	P2—C11—H11B	109.5
C5—Fe1—P2	159.26 (15)	H11A—C11—H11B	109.5
C3—Fe1—P2	93.58 (14)	P2—C11—H11C	109.5
C4—Fe1—P2	124.82 (15)	H11A—C11—H11C	109.5
P1—Fe1—P2	86.24 (5)	H11B—C11—H11C	109.5
C8—P1—C9	102.6 (3)	O1-C12-Fe1	178.2 (5)
C8—P1—C6	106.0 (3)	O2—P3—C20	107.9 (2)
C9—P1—C6	103.3 (3)	O2—P3—C13	108.6 (2)
C8—P1—Fe1	117.0 (2)	C20—P3—C13	101.9 (2)
C9—P1—Fe1	118.65 (19)	O2—P3—B1	118.6 (3)
C6—P1—Fe1	107.95 (17)	C20—P3—B1	111.6 (3)
C10—P2—C11	102.7 (2)	C13—P3—B1	106.9 (2)
C10—P2—C7	104.4 (2)	C18—C13—C14	118.5 (4)
C11—P2—C7	104.9 (2)	C18—C13—P3	124.1 (4)
C10—P2—Fe1	115.38 (18)	C14—C13—P3	117.5 (4)
C11—P2—Fe1	119.88 (17)	C15—C14—C13	120.6 (5)

C7—P2—Fe1	108.14 (16)	C15—C14—H14A	119.7
C5—C1—C2	108.0 (5)	C13—C14—H14A	119.7
C5-C1-Fe1	70.3 (3)	C16—C15—C14	120.2 (5)
C2—C1—Fe1	70.1 (3)	C16—C15—H15A	119.9
C5—C1—H1A	126.0	C14—C15—H15A	119.9
C2—C1—H1A	126.0	C17—C16—C15	120.0 (5)
Fe1—C1—H1A	126.0	C17—C16—H16A	120.0
C3—C2—C1	107.2 (5)	C15—C16—H16A	120.0
C3—C2—Fe1	70.7 (3)	C16—C17—C18	120.5 (5)
C1-C2-Fe1	70.1 (3)	C16—C17—H17A	119.7
C3—C2—H2A	126.4	C18—C17—H17A	119.7
C1—C2—H2A	126.4	C17—C18—C13	120.2 (5)
Fe1—C2—H2A	126.4	C17—C18—H18A	119.9
C4—C3—C2	107.8 (4)	C13—C18—H18A	119.9
C4—C3—Fe1	70.7 (3)	C21—C20—C25	118.8 (4)
C2—C3—Fe1	69.8 (3)	C21—C20—P3	122.2 (4)
С4—С3—НЗА	126.1	C25—C20—P3	118.9 (4)
С2—С3—НЗА	126.1	C22—C21—C20	119.7 (5)
Fe1—C3—H3A	126.1	C22—C21—H21A	120.1
C5—C4—C3	109.6 (5)	C20—C21—H21A	120.1
C5—C4—Fe1	70.3 (3)	C23—C22—C21	121.0 (5)
C3—C4—Fe1	70.5 (3)	C23—C22—H22A	119.5
C5—C4—H4A	125.2	C21—C22—H22A	119.5
C3—C4—H4A	125.2	C22—C23—C24	119.6 (5)
Fe1—C4—H4A	125.2	С22—С23—Н23А	120.2
C4—C5—C1	107.3 (5)	C24—C23—H23A	120.2
C4—C5—Fe1	71.0 (3)	C23—C24—C25	120.5 (5)
C1—C5—Fe1	70.0 (3)	C23—C24—H24A	119.8
С4—С5—Н5А	126.3	C25—C24—H24A	119.8
C1—C5—H5A	126.3	C24—C25—C20	120.4 (5)
Fe1—C5—H5A	126.3	C24—C25—H25A	119.8
C7—C6—P1	107.3 (3)	C20—C25—H25A	119.8
С7—С6—Н6А	110.3	P3—B1—H1	107 (3)
P1—C6—H6A	110.3	P3—B1—H2	101 (3)
С7—С6—Н6В	110.3	H1—B1—H2	107 (4)
Р1—С6—Н6В	110.3	P3—B1—H3	107 (3)
H6A—C6—H6B	108.5	H1—B1—H3	106 (4)
C6—C7—P2	108.1 (3)	H2—B1—H3	127 (4)
С6—С7—Н7А	110.1		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C2—H2A···O2 ⁱ	1.00	2.41	3.389 (7)	167
C3—H3A····O2 ⁱⁱ	1.00	2.20	3.197 (7)	172

			supportin	supporting information		
C11—H11 <i>B</i> ····O2 ⁱⁱ	0.98	2.35	3.281 (7)	159		
C11—H11C····O2 ⁱ	0.98	2.43	3.403 (7)	171		

Symmetry codes: (i) –*x*+1, –*y*, –*z*+1; (ii) *x*, *y*, *z*+1.