metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Poly[[μ_2 -aqua-tetraaquahexakis(μ_4 -naphthalene-2,6-dicarboxylato)tetraholmium(III)] 1.75-hydrate]

Filipe A. Almeida Paz^a* and Jacek Klinowski^b

^aDepartment of Chemistry, University of Aveiro, CICECO, 3810-193 Aveiro, Portugal, and ^bDepartment of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, England Correspondence e-mail: filipe.paz@ua.pt

Received 26 November 2007; accepted 5 January 2008

Key indicators: single-crystal X-ray study; T = 180 K; mean σ (C–C) = 0.016 Å; Hatom completeness 73%; disorder in solvent or counterion; R factor = 0.062; wR factor = 0.172; data-to-parameter ratio = 11.2.

In the title compound, $\{[Ho_4(C_{12}H_6O_4)_6(H_2O)_5]\cdot 1.75H_2O\}_n$, which is isostructural with its Tb^{3+} - and Eu^{3+} -containing analogues, there are four crystallographically independent Ho^{3+} centres, each exhibiting a highly distorted HoO_8 bicapped trigonal-prismatic coordination environment. Adjacent polyhedra are interconnected *via* the carboxylate groups and one μ_2 -bridging water molecule, forming one-dimensional chains propagating along [100]. The naphthalene-2,6-dicarboxylate ligands further interconnect these chains into a threedimensional framework, which has zigzag channels housing the water molecules. Two naphthalene-2,6-dicarboxylate bridging ligands have their centroids located on crystallographic centres of inversion. One water O atom has a fixed site occupancy factor of 0.75.

Related literature

For isostructural materials, see: Min & Lee (2002); Zheng, Sun *et al.* (2004). For related structures, see: Zheng, Wang *et al.* (2004); Paz & Klinowski (2003); Almeida Paz & Klinowski (2008); Wang *et al.* (2002). For general background, see: Shi *et al.* (2008); Cunha-Silva *et al.* (2007). For bond-length data, see: Allen (2002).

Experimental

Crystal data

 $[Ho_4(C_{12}H_6O_4)_6(H_2O_5)_5] \cdot 1.75H_2O$ $M_r = 2066.34$ Monoclinic, $P2_1/n$ a = 17.0505 (4) Å b = 15.1728 (4) Å c = 24.9142 (6) Å B = 106.126 (1)° $V = 6191.8 (3) \text{ Å}^{3}$ Z = 4 Mo K\alpha radiation \(\mu = 5.16 \text{ mm}^{-1}\) T = 180 (2) K 0.12 \times 0.01 \text{ mm}\)

Data collection

Nonius KappaCCD diffractometer Absorption correction: multi-scan (SORTAV; Blessing, 1995) $T_{min} = 0.576, T_{max} = 0.950$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.062$ $wR(F^2) = 0.172$ S = 1.0410664 reflections 951 parameters $R_{\rm int} = 0.060$

27842 measured reflections

10664 independent reflections

7421 reflections with $I > 2\sigma(I)$

4 restraints H-atom parameters constrained $\Delta \rho_{max} = 9.72$ e Å⁻³ $\Delta \rho_{min} = -2.00$ e Å⁻³

Table 1 Selected bond lengths (Å).

$\begin{array}{l} \text{Ho4} - \text{O16}^{\text{vii}} \\ \text{Ho4} - \text{O18} \\ \text{Ho4} - \text{O22} \\ \text{Ho4} - \text{O23}^{\text{viii}} \\ \text{Ho4} - \text{O5W} \end{array}$	2.342 (8) 2.337 (7) 2.276 (7) 2.296 (8) 2.671 (6)
Ho4-O16 ^{vii} Ho4-O18 Ho4-O22 Ho4-O23 ^{viii}	2.342 (8) 2.337 (7) 2.276 (7) 2.296 (8)
$Ho4-O16^{vii}$ Ho4-O18 Ho4-O22	2.342 (8) 2.337 (7) 2.276 (7)
$Ho4-O16^{vii}$ Ho4-O18	2.342 (8) 2.337 (7)
Ho4–O16 ^{vii}	2.342 (8)
1104-07	
$H_04 - O^{9^{vi}}$	2.382 (7)
Ho4-O4 ^v	2.360 (8)
Ho3-O5W	2.640 (6)
Ho3-O4W	2.469 (8)
Ho3-O21	2.300 (8)
Ho3-O20 ⁱⁱ	2.299 (8)
Ho3-O17	2.299 (7)
Ho3-O14	2.356 (8)
Ho3-O12	2.337 (8)
Ho3-O8	2.410 (8)

Symmetry codes: (i) -x + 1, -y + 1, -z + 2; (ii) $x - \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$; (iii) -x + 1, -y + 1, -z + 1; (iv) $x - \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$; (v) -x + 2, -y + 1, -z + 2; (vi) $x + \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$; (vii) -x + 2, -y + 1, -z + 1; (viii) $x + \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$.

Data collection: *COLLECT* (Nonius 1998); cell refinement: *HKL SCALEPACK* (Otwinowski & Minor 1997); data reduction: *HKL DENZO* (Otwinowski & Minor 1997) and *SCALEPACK*; program(s) used to solve structure: *SIR92* (Altomare *et al.* 1994); program(s) used to refine structure: *SHELXTL* (Bruker, 2001); molecular graphics: *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *SHELXTL*.

We are grateful to the Fundação para a Ciência e a Tecnologia (FCT, Portugal) for their general financial support

under the POCI-PPCDT/QUI/58377/2004 research project supported by FEDER.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2668).

References

- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Almeida Paz, F. A. & Klinowski, J. (2008). Acta Cryst. E64, m140-m141.
- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Brandenburg, K. (2006). *DIAMOND*. Version 3.1e. Crystal Impact GbR, Bonn, Germany.
- Bruker (2001). SHELXTL. Version 6.12. Bruker AXS, Inc. Madison, Wisconsin, USA.
- Cunha-Silva, L., Shi, F.-N., Klinowski, J., Trindade, T., Rocha, J. & Paz, F. A. A. (2007). Acta Cryst. E63, m372–m375.
- Min, D. & Lee, S. W. (2002). Bull. Korean Chem. Soc. 23, 948-952.
- Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Paz, F. A. A. & Klinowski, J. (2003). Chem. Commun. pp. 1484-1485.
- Shi, F.-N., Cunha-Silva, L., Sá Ferreira, R. A., Mafra, L., Trindade, T., Carlos, L. D., Paz, F. A. A. & Rocha, J. (2008). J. Am. Chem. Soc. 130, 150–167.
- Wang, Z., Jin, C.-M., Shao, T., Li, Y.-Z., Zhang, K.-L., Zhang, H.-T. & You, X.-Z. (2002). *Inorg. Chem. Commun.* 5, 642–648.
- Zheng, X., Sun, C., Lu, S., Liao, F., Gao, S. & Jin, L. (2004). Eur. J. Inorg. Chem. pp. 3262–3268.
- Zheng, X.-J., Wang, Z.-M., Gao, S., Liao, F.-H., Yan, C.-H. & Jin, L.-P. (2004). *Eur. J. Inorg. Chem.* pp. 2968–2973.

supporting information

Acta Cryst. (2008). E64, m336-m337 [doi:10.1107/S1600536808000378]

Poly[[µ₂-aqua-tetraaquahexakis(µ₄-naphthalene-2,6-dicarboxylato)tetraholmium(III)] 1.75-hydrate]

Filipe A. Almeida Paz and Jacek Klinowski

S1. Comment

Multi-dimensional (*i.e.*, one-dimensional, two-dimensional or three-dimensional) networks, known as coordination polymers or metal-organic frameworks (MOFs), in which metallic centres are bridged *via* organic ligands, are of considerable interest. Even though structural diversity can be achieved by selecting different metallic centres (which implies a variation in the number and type of the coordination geometry), fascinating structural architectures are often produced by using uncommon bridging ligands. To reconcile the robustness and crystallinity of the synthesized networks, crystal engineers usually employ *exo*-carboxylate derivatives as the bridging ligands, usually associated with aromatic rings. It is therefore surprising that only a handful of papers reporting lanthanide centres coordinated to residues of naphthalene-2,6-dicarboxylic acid (H₂NDC) have been published (Paz & Klinowski, 2008; Zheng, Sun *et al.*, 2004; Zheng, Wang *et al.*, 2004; Paz & Klinowski, 2003; Wang *et al.*, 2002; Min & Lee, 2002), as confirmed by a search in the Cambridge Structural Database (CSD, Version 5.28 with three updates - August 2007; Allen, 2002).

Following our interest in the hydrothermal synthesis of MOFs, (*e.g.* Shi *et al.*, 2008; Cunha-Silva *et al.*, 2007), we report here the low temperature crystal structure of the title compound, (I), a three-dimensional MOF containing the naphthalene-2,6-dicarboxylate dianion (NDC²⁻) bound to Ho³⁺: [Ho₄(NDC)₆(H₂O)₅]·1.75H₂O. Despite being analogous the frameworks reported by Min & Lee (2002) (with Tb³⁺) and Zheng, Sun *et al.* (2004) (with Eu³⁺), this new crystal structure provides further insights into the self-assembly process. Thus crystals of a two-dimensional network, [Ho₂(NDC)₃(H₂O)₆], could also be isolated from the same synthetic batch (Paz & Klinowski, 2008). We infer that the ionic radius of the lanthanide employed determines whether a three-dimensional (for the lighter series of lanthanides - up to Dy³⁺) or a two-dimensional network (for lanthanides after and including Er³⁺) is obtained. Ho³⁺ always produces a mixture of the two materials, even though it is possible to vary the amount of each framework in the product by adjusting the composition of the synthesis mixture.

Compound (I) contains four crystallographically independent Ho³⁺ centres (Ho1 to Ho4) which are coordinated to a total of six NDC²⁻ ligands (two of these have their centroids located at crystallographic inversion centres) and five water molecules. The coordination sphere of each metallic centre is composed by one unidentate water molecule, with the fifth water (O5W) bridging two neighbouring metallic centres (Ho3 and Ho4 - see Figure 1). Despite the large number of crystallographically independent moieties, the NDC²⁻ moieties coordinate to the Ho³⁺ centres through only two distinct coordination fashions: a *syn,syn*-chelate coupled to a *syn,syn*- μ_2 -bridge (for the C56 and C68 carboxylate groups), and simple *syn,syn*- μ_2 -bridges (for all remaining carboxylate moieties). The {HoO₈} coordination geometries for the Ho³⁺ centres remain strikingly similar, resembling highly distorted bicapped trigonal prisms (Figures 2a to 2 d), with the capping positions being either water molecules or the O-atoms involved in the *syn,syn*- μ_2 -bridges coupled to *syn,syn*-chelate mentioned above (O20 and O23 - Figure 2). Disregarding the Ho—O distances related to the O20, O23 and O5W

atoms which occupy the capping positions of the coordination polyhedra, the remaining Ho—O distances are typical and well within the ranges registered for related materials (as revealed by a search in the CSD - 77 entries, range of 2.20–2.82 Å with a median of 2.34 Å): for Ho1 to Ho4, respectively, 2.277 (8)–2.370 (8) Å, 2.264 (8)–2.423 (9) Å, 2.299 (7)–2.469 (8) Å and 2.276 (7)–2.453 (10) Å (Table 1). We emphasize that even though the Ho—O distances associated with these capping positions are unusually long, they are still within the feasible range found in related materials. Moreover, we also note that the longest values of Ho—O for Ho1 to Ho4 found in the ranges given above are those with the coordinated water molecules. In fact, by restricting the search in the CSD to the geometrical parameters for coordinated water molecules to Ho³⁺ centres, the expected range is from 2.28 to 2.55 Å, which is in good agreement with the experimental data for the title compound.

The connection between neighbouring {HoO₈} polyhedra *via* the carboxylate groups and water molecules leads to the formation of a one-dimensional chain of metallic centres running along the [100] crystallographic direction (Figure 2 e). The Ho···Ho distances range from 4.0258 (1) to 5.2585 (1) Å. These chains are interconnected along the [001] direction *via* the NDC²⁻ bridges forming a three-dimensional MOF (Figure 3). There is structural evidence that such connectivity creates small one-dimensional zigzag channels parallel to the *a*-axis, distributed in a typical brick-wall fashion in the *bc* plane containing the water molecules of crystallization O1W and O7W. Although the water H atoms could not be located in the present study, presumably O—H···O hydrogen bonds from the water molecules (both coordinated and uncoordinated) interconnect adjacent chains (not shown).

S2. Experimental

To a solution of HoCl₃.6H₂O (1.062 g, 2.799 mmol) in distilled water (6.04 g), naphthalene-2,6-dicarboxylic acid (0.102 g, 0.472 mmol) and triethylamine (0.089 g, 0.880 mmol) were added and the mixture was stirred thoroughly for 5 minutes at ambient temperature. The suspension, with a molar composition of 5.93 Ho³⁺: 1.00 H₂NDC: 1.86 TEA: 120 H₂O, was transferred to a Parr teflon-lined stainless steel vessel (*ca* 21 cm³) and placed for 8 h at 418 K in a preheated oven. Before opening, the reaction vessel was allowed to cool slowly to ambient temperature at a rate of 10 K per hour over a period of 14 h. Colourless plates of (I) were manually selected from the product which also contains $[Ho_2(NDC)_3(H_2O)_6]$ (Paz & Klinowski, 2008).

S3. Refinement

The water molecules O1W, O5W and O7W were refined isotropically. Following structural evidence from unrestrained refinement cycles, the O7W water molecule was given a fixed occupancy of 75% in the final structural model.

It is important to stress that a considerable smeared-out electron density was found surrounding the water molecules O1W and O5W. Attempts to model this disorder (during the last stages of the overall structural refinement) over two (or more) partially occupied sites (for each water molecule) did not produce satisfactory models, with large shifts associated with these chemical moieties being observed. In order to achieve full convergence the positions of O1W and O5W were restrained to be equally distant from, respectively, Ho1 and Ho2, and Ho3 and Ho4 (one free variable for each pair of distances). The difficulties while modelling these two water molecules are attributed to the quality of the crystal used for data collection, which was a very small and thin colourless plate diffracting rather weakly at high angles [e.g., almost no reflections were observed for resolutions higher than 0.80 Å]. The highest difference peak is 0.78Å from O5W.

H atoms associated with all water molecules could not be located from difference Fourier maps, and attempts to place these atoms in calculated positions in order to maximize hydrogen bonding interactions did not lead to chemically reasonable structural models and they were omitted from the refinement. The H atoms bound to carbon were placed at idealized positions (C—H = 0.95 Å) and refined as riding with $U_{iso} = 1.2U_{eq}$ (C).

Figure 1

Simplified representation of the asymmetric unit of (I) with displacement ellipsoids drawn at the 80% probability level. Water molecules O1W and O7W, and hydrogen atoms have been omitted for clarity.

Figure 2

Polyhedral representation of the {HoO₈} coordination environments, which resemble highly distorted bicapped trigonal prisms, for: (*a*) Ho1, (*b*) Ho2, (*c*) Ho3 and (*d*) Ho4. (*e*) Interconnection of the individual {HoO₈} polyhedra along the [100] crystallographic direction leading to the formation of one-dimensional chains. For selected bond lengths (in Å) see the dedicated Table in the main paper. Symmetry codes used to generate equivalent atoms: (i) -x + 1, -y + 1, -z + 2; (ii) x-1/2, -y + 1/2, z-1/2; (iii) -x + 1, -y + 1, -z + 1; (iv) x-1/2, -y + 1/2, z+1/2; (v) -x + 2, -y + 1, -z + 2; (vi) x+1/2, -y + 1/2, z-1/2; (vii) -x + 2, -y + 1, -z + 1; (viii) x+1/2, -y + 1/2, z+1/2; (ix) x-1, y, z.

Figure 3

Crystal packing of the title compound viewed in perspective along the [100] direction of the unit cell. Hydrogen atoms have been omitted for clarity.

poly[[μ_2 -aqua-tetraaquahexakis(μ_4 -naphthalene-2,6-dicarboxylato) tetraholmium(III)] 1.75-hydrate]

Crystal data	
[Ho ₄ (C ₁₂ H ₆ O ₄) ₆ (H ₂ O ₅) ₅]·1.75H ₂ O $M_r = 2066.34$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 17.0505 (4) Å b = 15.1728 (4) Å c = 24.9142 (6) Å $\beta = 106.126$ (1)° V = 6191.8 (3) Å ³ Z = 4	F(000) = 3982 $D_x = 2.217 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 70959 reflections $\theta = 1.0-25.0^{\circ}$ $\mu = 5.16 \text{ mm}^{-1}$ T = 180 K Plate, colourless $0.12 \times 0.12 \times 0.01 \text{ mm}$
Data collection Nonius Kappa CCD diffractometer Radiation source: fine-focus sealed tube Thin slice ω and φ scans Absorption correction: multi-scan (SORTAV; Blessing, 1995) $T_{\min} = 0.576, T_{\max} = 0.950$ 27842 measured reflections	10664 independent reflections 7421 reflections with $I > 2\sigma(I)$ $R_{int} = 0.060$ $\theta_{max} = 25.0^{\circ}, \theta_{min} = 3.6^{\circ}$ $h = -20 \rightarrow 20$ $k = -18 \rightarrow 18$ $l = -29 \rightarrow 29$
Refinement Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.062$ $wR(F^2) = 0.172$ S = 1.04 10664 reflections	951 parameters4 restraintsPrimary atom site location: structure-invariant direct methodsSecondary atom site location: difference Fourier map

Hydrogen site location: inferred from	$w = 1/[\sigma^2(F_o^2) + (0.0951P)^2 + 49.5291P]$
neighbouring sites	where $P = (F_0^2 + 2F_c^2)/3$
H-atom parameters constrained	$(\Delta/\sigma)_{\rm max} = 0.001$
-	$\Delta \rho_{\rm max} = 9.73 \text{ e } \text{\AA}^{-3}$
	$\Delta \rho_{\rm min} = -2.01 \text{ e} \text{ Å}^{-3}$

Special details

Experimental. See dedicated section in the main paper

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Ho1	0.43036 (3)	0.43328 (3)	0.74931 (2)	0.01641 (16)	
Ho2	0.73944 (3)	0.44550 (4)	0.75148 (2)	0.01864 (16)	
Ho3	0.94596 (3)	0.31502 (3)	0.75250 (2)	0.01782 (16)	
Ho4	1.22082 (3)	0.30713 (4)	0.74454 (2)	0.02020 (16)	
O1W	0.5958 (6)	0.2081 (11)	0.7441 (7)	0.108 (5)*	
O2W	0.4125 (5)	0.5883 (5)	0.7439 (4)	0.028 (2)	
O3W	0.7616 (5)	0.6017 (6)	0.7697 (4)	0.039 (2)	
O4W	0.9089 (5)	0.1577 (5)	0.7388 (3)	0.0251 (18)	
O5W	1.0839 (4)	0.3895 (5)	0.7479 (3)	0.0263 (19)*	
O6W	1.2552 (6)	0.1500 (7)	0.7565 (4)	0.046 (3)	
O7W	0.0661 (11)	0.6098 (13)	0.7506 (7)	0.080 (5)*	0.75
O1	0.5535 (5)	0.4870 (6)	0.8042 (3)	0.0273 (19)	
O2	0.6872 (5)	0.4687 (6)	0.8260 (4)	0.030 (2)	
O3	0.6279 (5)	0.5218 (5)	1.1807 (3)	0.0226 (18)	
O4	0.7584 (5)	0.5611 (5)	1.2030 (3)	0.0265 (19)	
O5	0.4886 (5)	0.4701 (6)	0.6805 (3)	0.0274 (19)	
O6	0.6189 (5)	0.5100 (5)	0.7000 (3)	0.0251 (18)	
O7	0.7555 (5)	0.3124 (5)	0.8006 (3)	0.0257 (19)	
O8	0.8854 (5)	0.2691 (5)	0.8246 (3)	0.0224 (17)	
O9	0.7805 (5)	0.2343 (6)	1.1724 (3)	0.0272 (19)	
O10	0.9123 (5)	0.1926 (5)	1.1948 (3)	0.0271 (19)	
O11	0.8714 (5)	0.4522 (5)	0.8033 (3)	0.0221 (18)	
O12	0.9998 (5)	0.4138 (6)	0.8254 (3)	0.0263 (19)	
O13	0.7983 (5)	0.4924 (6)	0.6817 (3)	0.0286 (19)	
O14	0.9277 (5)	0.4469 (5)	0.7005 (3)	0.0255 (19)	
O15	0.7017 (5)	0.5512 (6)	0.3068 (3)	0.029 (2)	
O16	0.8295 (5)	0.5917 (6)	0.3278 (3)	0.0275 (19)	
O17	1.0540 (4)	0.2363 (5)	0.8072 (3)	0.0193 (17)	
O18	1.1862 (5)	0.2690 (6)	0.8260 (3)	0.0255 (19)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

019	1.1803 (5)	0.1574 (6)	1.1822 (3)	0.0244 (18)
O20	1.3118 (5)	0.1900 (5)	1.2001 (3)	0.0279 (19)
O21	0.9784 (4)	0.2705 (6)	0.6730 (3)	0.0237 (18)
O22	1.1109 (4)	0.2322 (5)	0.6914 (3)	0.0205 (17)
O23	0.8546 (5)	0.2013 (5)	0.2970 (3)	0.029 (2)
024	0.9861 (5)	0.1763 (6)	0.3129 (3)	0.027(2)
C1	0.6227 (6)	0.4803 (8)	0.8388 (5)	0.018(2)
C2	0.6267(7)	0.4936 (7)	0.8990 (5)	0.017(2)
C3	0 6942 (6)	0.4698(7)	0.9413(5)	0.017(2)
H3	0.7390	0.4426	0.9321	0.020*
C4	0.6985 (6)	0.4851 (8)	0.9988 (5)	0.018(2)
C5	0.7657 (7)	0.4613 (7)	1.0441(5)	0.018(2)
H5	0.8115	0.4337	1.0367	0.021*
C6	0.7666 (7)	0.4770 (8)	1.0988 (5)	0.021
Н6	0.8137	0.4634	1 1284	0.025*
C7	0.6966 (7)	0.5137 (7)	1 1106 (5)	0.025
C8	0.0900(7)	0.5137(7)	1.1100 (5)	0.017(2)
C8	0.0950(7)	0.5322(0)	1.1009(5)	0.023(3)
	0.0303 (7)	0.5572 (7)	1.0075 (5)	0.017(2)
C10	0.5857	0.5021	1.0750	0.021
C10 C11	0.0301(0)	0.3230(7)	1.0112(4)	0.013(2)
	0.5008 (7)	0.5494 (7)	0.9003 (3)	0.019(2)
	0.5152	0.5703	0.9740	0.025
C12	0.5597 (6)	0.5342 (7)	0.9130 (5)	0.016 (2)
HI2	0.5131	0.5510	0.8839	0.019*
C13	0.5503 (6)	0.4905 (7)	0.6661 (5)	0.01/(2)
C14	0.5434 (6)	0.5002 (7)	0.6056 (5)	0.016 (2)
C15	0.6068 (6)	0.5430 (7)	0.5885 (4)	0.017 (2)
H15	0.6541	0.5631	0.6158	0.020*
C16	0.5998 (6)	0.5554 (7)	0.5329 (5)	0.017 (2)
H16	0.6416	0.5861	0.5222	0.020*
C17	0.5312 (6)	0.5233 (7)	0.4910 (5)	0.017 (2)
C18	0.4772 (6)	0.4677 (7)	0.5661 (5)	0.015 (2)
H18	0.4357	0.4382	0.5778	0.018*
C19	0.8176 (7)	0.2826 (8)	0.8349 (5)	0.021 (3)
C20	0.8111 (7)	0.2621 (7)	0.8932 (5)	0.019 (2)
C21	0.8757 (6)	0.2863 (7)	0.9394 (5)	0.016 (2)
H21	0.9242	0.3103	0.9337	0.019*
C22	0.8690 (7)	0.2752 (8)	0.9943 (5)	0.021 (3)
C23	0.9341 (7)	0.2967 (8)	1.0427 (5)	0.020 (2)
H23	0.9828	0.3228	1.0387	0.024*
C24	0.9259 (7)	0.2794 (7)	1.0947 (4)	0.018 (2)
H24	0.9704	0.2916	1.1264	0.021*
C25	0.8527 (7)	0.2439 (8)	1.1029 (5)	0.024 (3)
C26	0.8468 (7)	0.2230 (7)	1.1597 (5)	0.021 (3)
C27	0.7881 (6)	0.2240 (7)	1.0570 (5)	0.019 (2)
H27	0.7388	0.2011	1.0621	0.023*
C28	0.7956 (7)	0.2380 (7)	1.0023 (5)	0.018 (2)
C29	0.7310 (7)	0.2155 (8)	0.9532 (5)	0.021 (3)

H29	0.6820	0.1906	0.9577	0.026*
C30	0.7375 (6)	0.2283 (8)	0.9012 (5)	0.023 (3)
H30	0.6929	0.2148	0.8698	0.027*
C31	0.9407 (7)	0.4500 (7)	0.8369 (5)	0.019 (2)
C32	0.9522 (7)	0.4816 (7)	0.8958 (5)	0.018 (2)
C33	0.8895 (7)	0.5255 (7)	0.9109 (5)	0.023 (3)
H33	0.8419	0.5425	0.8827	0.028*
C34	0.8955 (7)	0.5444 (7)	0.9651 (5)	0.018 (2)
H34	0.8516	0.5726	0.9747	0.021*
C35	1.0323 (7)	0.4782 (7)	0.9923 (4)	0.017 (2)
C36	1.0245 (7)	0.4606 (8)	0.9367 (5)	0.021 (3)
H36	1.0684	0.4341	0.9261	0.025*
C37	0.8618 (7)	0.4769 (7)	0.6682 (4)	0.017 (2)
C38	0.8630 (7)	0.4925 (7)	0.6092 (4)	0.019 (2)
C39	0.9333 (7)	0.5273 (7)	0.5949 (5)	0.021 (3)
H39	0.9816	0.5403	0.6236	0.026*
C40	0.9309 (6)	0.5418 (7)	0.5409 (4)	0.016 (2)
H40	0.9775	0.5658	0.5325	0.019*
C41	0.8605 (6)	0.5219 (7)	0.4964 (4)	0.015 (2)
C42	0.8534 (6)	0.5405 (7)	0.4398 (4)	0.013 (2)
H42	0.8984	0.5668	0.4303	0.015*
C43	0.7835 (6)	0.5220 (7)	0.3975 (4)	0.015 (2)
C44	0.7714 (7)	0.5548 (8)	0.3403 (5)	0.021 (3)
C45	0.7181 (7)	0.4779 (7)	0.4120 (4)	0.017 (2)
H45	0.6710	0.4612	0.3832	0.021*
C46	0.7218 (6)	0.4594 (7)	0.4660 (5)	0.018 (2)
H46	0.6772	0.4307	0.4745	0.021*
C47	0.7923 (6)	0.4830(7)	0.5103 (4)	0.015 (2)
C48	0.7949 (7)	0.4712 (7)	0.5676 (5)	0.018 (2)
H48	0.7485	0.4481	0.5768	0.021*
C49	1.1229 (6)	0.2538 (7)	0.8407 (5)	0.017 (2)
C50	1.1273 (6)	0.2519 (7)	0.9011 (5)	0.017 (2)
C51	1.1979 (6)	0.2820 (7)	0.9410 (4)	0.013 (2)
H51	1.2405	0.3098	0.9294	0.016*
C52	1.2048 (6)	0.2704 (7)	0.9985 (4)	0.014 (2)
C53	1.2777 (6)	0.2962 (7)	1.0406 (5)	0.017 (2)
Н53	1.3196	0.3276	1.0303	0.020*
C54	1.2864 (7)	0.2755 (7)	1.0951 (4)	0.018 (2)
H54	1.3353	0.2908	1.1226	0.022*
C55	1.2227 (6)	0.2308 (8)	1.1113 (5)	0.020 (2)
C56	1.2393 (7)	0.1930 (7)	1.1688 (4)	0.017 (2)
C57	1.1509 (6)	0.2115 (7)	1.0724 (4)	0.016 (2)
H57	1.1080	0.1843	1.0838	0.019*
C58	1.1396 (6)	0.2314 (7)	1.0155 (4)	0.015 (2)
C59	1.0675 (6)	0.2059 (7)	0.9728 (5)	0.018 (2)
Н59	1.0224	0.1819	0.9832	0.021*
C60	1.0627 (6)	0.2154 (7)	0.9185 (5)	0.017 (2)
H60	1.0147	0.1970	0.8912	0.020*

C61	1.0416 (7)	0.2537 (7)	0.6579 (4)	0.020 (3)
C62	1.0362 (7)	0.2519 (7)	0.5969 (5)	0.021 (3)
C63	1.1013 (6)	0.2124 (7)	0.5797 (5)	0.016 (2)
H63	1.1487	0.1917	0.6067	0.019*
C64	1.0947 (7)	0.2049 (7)	0.5240 (5)	0.023 (3)
H64	1.1384	0.1796	0.5125	0.027*
C65	1.0234 (6)	0.2345 (7)	0.4826 (4)	0.017 (2)
C66	1.0120 (7)	0.2199 (7)	0.4252 (5)	0.021 (3)
H66	1.0551	0.1945	0.4131	0.025*
C67	0.9396 (7)	0.2414 (7)	0.3858 (5)	0.018 (2)
C68	0.9257 (7)	0.2056 (8)	0.3278 (5)	0.023 (3)
C69	0.8791 (7)	0.2877 (7)	0.4044 (5)	0.021 (2)
H69	0.8306	0.3070	0.3778	0.025*
C70	0.8896 (7)	0.3041 (7)	0.4580 (5)	0.019 (2)
H70	0.8482	0.3351	0.4690	0.023*
C71	0.9601 (6)	0.2772 (7)	0.4996 (4)	0.015 (2)
C72	0.9682 (6)	0.2855 (7)	0.5576 (5)	0.016 (2)
H72	0.9266	0.3143	0.5698	0.019*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ho1	0.0159 (3)	0.0228 (3)	0.0110 (3)	-0.0031 (2)	0.00474 (19)	-0.0011 (2)
Ho2	0.0156 (3)	0.0290 (3)	0.0126 (3)	0.0039 (2)	0.0060 (2)	-0.0003(2)
Ho3	0.0158 (3)	0.0273 (3)	0.0115 (3)	0.0032 (2)	0.0057 (2)	-0.0002 (2)
Ho4	0.0173 (3)	0.0331 (3)	0.0116 (3)	-0.0074 (2)	0.0063 (2)	-0.0006 (2)
O2W	0.029 (5)	0.023 (4)	0.043 (5)	-0.006 (4)	0.026 (4)	-0.002 (4)
O3W	0.026 (5)	0.026 (5)	0.065 (7)	0.000 (4)	0.012 (4)	-0.011 (5)
O4W	0.026 (5)	0.026 (4)	0.026 (5)	-0.004(4)	0.012 (4)	-0.003 (4)
O6W	0.050 (6)	0.044 (6)	0.052 (7)	-0.012 (5)	0.030 (5)	-0.006 (5)
01	0.027 (5)	0.044 (5)	0.015 (4)	-0.011 (4)	0.013 (4)	-0.003 (4)
O2	0.024 (5)	0.045 (5)	0.024 (5)	0.008 (4)	0.009 (4)	-0.001 (4)
O3	0.022 (4)	0.031 (5)	0.018 (4)	0.000 (3)	0.011 (3)	-0.004 (3)
O4	0.021 (4)	0.031 (5)	0.026 (5)	-0.003(4)	0.003 (4)	-0.006 (4)
05	0.023 (4)	0.046 (5)	0.016 (4)	-0.008(4)	0.011 (3)	0.003 (4)
O6	0.021 (4)	0.030 (5)	0.027 (5)	0.007 (4)	0.009 (4)	0.004 (4)
O7	0.027 (5)	0.035 (5)	0.018 (4)	0.002 (4)	0.010 (4)	0.005 (4)
08	0.021 (4)	0.027 (4)	0.019 (4)	0.001 (3)	0.005 (3)	-0.002 (3)
09	0.028 (5)	0.041 (5)	0.020 (4)	0.009 (4)	0.018 (4)	0.004 (4)
O10	0.020 (4)	0.037 (5)	0.024 (5)	0.006 (4)	0.005 (4)	0.006 (4)
011	0.022 (4)	0.031 (5)	0.012 (4)	-0.009(4)	0.002 (3)	-0.003 (3)
O12	0.019 (4)	0.040 (5)	0.022 (4)	-0.002(4)	0.009 (3)	-0.010 (4)
013	0.027 (5)	0.039 (5)	0.024 (5)	0.006 (4)	0.014 (4)	0.007 (4)
O14	0.027 (5)	0.039 (5)	0.016 (4)	0.006 (4)	0.016 (4)	0.002 (4)
O15	0.013 (4)	0.053 (6)	0.018 (4)	0.002 (4)	0.000 (3)	-0.002 (4)
O16	0.022 (4)	0.047 (5)	0.015 (4)	0.001 (4)	0.007 (3)	0.004 (4)
O17	0.024 (4)	0.020 (4)	0.017 (4)	0.002 (3)	0.012 (3)	0.004 (3)
O18	0.018 (4)	0.044 (5)	0.018 (4)	0.002 (4)	0.011 (3)	0.006 (4)

O19	0.021 (4)	0.036 (5)	0.018 (4)	-0.002(4)	0.007 (3)	0.011 (4)
O20	0.030 (5)	0.034 (5)	0.022 (5)	0.003 (4)	0.011 (4)	-0.002(4)
O21	0.015 (4)	0.038 (5)	0.019 (4)	-0.002(4)	0.005 (3)	-0.005 (4)
O22	0.013 (4)	0.033 (5)	0.014 (4)	-0.007 (3)	0.001 (3)	-0.005(3)
O23	0.031 (5)	0.036 (5)	0.019 (4)	-0.010 (4)	0.006 (4)	0.001 (4)
O24	0.021 (4)	0.046 (5)	0.018 (4)	0.009 (4)	0.010 (3)	-0.009(4)
C1	0.010 (5)	0.033 (7)	0.014 (6)	-0.003 (5)	0.005 (4)	-0.007 (5)
C2	0.019 (6)	0.015 (5)	0.019 (6)	-0.007 (5)	0.008 (5)	0.003 (5)
C3	0.016 (6)	0.016 (6)	0.024 (6)	0.000 (4)	0.013 (5)	-0.006 (5)
C4	0.010 (5)	0.027 (6)	0.019 (6)	-0.004 (5)	0.007 (4)	0.002 (5)
C5	0.015 (6)	0.017 (6)	0.024 (7)	0.001 (4)	0.009 (5)	0.000 (5)
C6	0.014 (6)	0.033 (7)	0.021 (6)	0.004 (5)	0.014 (5)	0.004 (5)
C7	0.021 (6)	0.022 (6)	0.019 (6)	-0.001 (5)	0.012 (5)	-0.002(5)
C8	0.024 (7)	0.023 (6)	0.027 (7)	-0.003 (5)	0.014 (5)	0.002 (5)
C9	0.018 (6)	0.016 (6)	0.021 (6)	0.001 (4)	0.011 (5)	0.000 (5)
C10	0.018 (6)	0.013 (5)	0.010 (5)	-0.002 (4)	0.008 (4)	0.000 (4)
C11	0.021 (6)	0.023 (6)	0.017 (6)	0.005 (5)	0.011 (5)	0.003 (5)
C12	0.015 (6)	0.019 (6)	0.015 (6)	0.005 (4)	0.006 (4)	0.002 (4)
C13	0.010 (5)	0.021 (6)	0.017 (6)	-0.003 (5)	-0.001 (4)	-0.005 (5)
C14	0.012 (5)	0.020 (6)	0.018 (6)	0.000 (4)	0.006 (4)	-0.003 (5)
C15	0.013 (5)	0.023 (6)	0.013 (6)	-0.002(5)	0.003 (4)	-0.012 (5)
C16	0.009 (5)	0.022 (6)	0.022 (6)	0.002 (4)	0.008 (4)	0.001 (5)
C17	0.014 (5)	0.017 (6)	0.022 (6)	-0.001 (4)	0.008 (5)	-0.006 (5)
C18	0.013 (5)	0.009 (5)	0.021 (6)	-0.002 (4)	0.002 (4)	-0.002 (4)
C19	0.016 (6)	0.026 (6)	0.019 (6)	-0.002 (5)	0.002 (5)	-0.001 (5)
C20	0.023 (6)	0.011 (5)	0.022 (6)	0.000 (5)	0.006 (5)	-0.004 (5)
C21	0.014 (5)	0.013 (5)	0.021 (6)	0.001 (4)	0.006 (4)	0.001 (4)
C22	0.019 (6)	0.032 (7)	0.015 (6)	0.008 (5)	0.009 (5)	0.003 (5)
C23	0.017 (6)	0.029 (6)	0.013 (6)	0.010 (5)	0.004 (4)	0.006 (5)
C24	0.025 (6)	0.016 (6)	0.012 (6)	0.003 (5)	0.004 (4)	0.002 (4)
C25	0.028 (7)	0.023 (6)	0.028 (7)	0.007 (5)	0.019 (5)	0.011 (5)
C26	0.036 (7)	0.014 (6)	0.015 (6)	0.003 (5)	0.010 (5)	-0.004 (5)
C27	0.014 (6)	0.025 (6)	0.019 (6)	0.008 (5)	0.005 (4)	0.002 (5)
C28	0.021 (6)	0.011 (5)	0.027 (7)	0.008 (4)	0.015 (5)	0.001 (5)
C29	0.017 (6)	0.024 (6)	0.025 (7)	0.003 (5)	0.007 (5)	0.002 (5)
C30	0.010 (5)	0.034 (7)	0.022 (6)	-0.001 (5)	0.001 (4)	-0.005 (5)
C31	0.022 (6)	0.020 (6)	0.023 (6)	0.000 (5)	0.019 (5)	0.001 (5)
C32	0.017 (6)	0.019 (6)	0.019 (6)	-0.001 (5)	0.006 (5)	0.006 (5)
C33	0.018 (6)	0.022 (6)	0.031 (7)	0.005 (5)	0.011 (5)	0.009 (5)
C34	0.018 (6)	0.020 (6)	0.016 (6)	-0.002(5)	0.006 (5)	-0.004(5)
C35	0.021 (6)	0.018 (6)	0.013 (6)	-0.006 (5)	0.006 (5)	0.002 (4)
C36	0.019 (6)	0.028 (6)	0.021 (6)	-0.003 (5)	0.014 (5)	-0.008 (5)
C37	0.021 (6)	0.017 (6)	0.014 (6)	0.002 (5)	0.007 (5)	0.001 (4)
C38	0.024 (6)	0.020 (6)	0.011 (6)	0.001 (5)	0.001 (5)	0.004 (4)
C39	0.019 (6)	0.025 (6)	0.016 (6)	-0.003 (5)	-0.001 (5)	0.000 (5)
C40	0.015 (6)	0.023 (6)	0.012 (6)	-0.003 (5)	0.006 (4)	0.004 (4)
C41	0.017 (6)	0.014 (5)	0.015 (6)	0.000 (4)	0.005 (4)	0.005 (4)
C42	0.011 (5)	0.019 (5)	0.011 (6)	-0.002 (4)	0.008 (4)	-0.002 (4)

C43	0.012 (5)	0.022 (6)	0.010 (5)	0.011 (4)	0.004 (4)	-0.001 (4)
C44	0.019 (6)	0.026 (6)	0.024 (7)	-0.001 (5)	0.014 (5)	-0.002(5)
C45	0.020 (6)	0.020 (6)	0.012 (6)	0.001 (5)	0.005 (4)	0.002 (4)
C46	0.011 (5)	0.016 (6)	0.027 (7)	-0.005 (4)	0.007 (5)	0.001 (5)
C47	0.014 (5)	0.018 (6)	0.015 (6)	0.003 (4)	0.006 (4)	0.008 (4)
C48	0.017 (6)	0.018 (6)	0.017 (6)	-0.005 (5)	0.004 (5)	-0.005 (5)
C49	0.014 (6)	0.021 (6)	0.019 (6)	0.002 (5)	0.009 (5)	-0.002(5)
C50	0.014 (5)	0.024 (6)	0.016 (6)	0.000 (5)	0.008 (4)	0.002 (5)
C51	0.013 (5)	0.020 (6)	0.010 (5)	0.006 (4)	0.007 (4)	0.005 (4)
C52	0.012 (5)	0.013 (5)	0.017 (6)	-0.001 (4)	0.003 (4)	-0.002 (4)
C53	0.013 (5)	0.016 (6)	0.022 (6)	0.000 (4)	0.005 (4)	0.003 (5)
C54	0.021 (6)	0.024 (6)	0.012 (6)	-0.007 (5)	0.010 (4)	-0.006 (5)
C55	0.015 (6)	0.026 (6)	0.020 (6)	0.002 (5)	0.006 (5)	-0.001 (5)
C56	0.017 (6)	0.026 (6)	0.011 (5)	-0.003 (5)	0.010 (4)	-0.002 (4)
C57	0.013 (5)	0.023 (6)	0.013 (6)	0.000 (5)	0.005 (4)	0.000 (5)
C58	0.015 (5)	0.016 (5)	0.017 (6)	0.005 (4)	0.006 (4)	0.002 (4)
C59	0.015 (6)	0.021 (6)	0.018 (6)	-0.002 (5)	0.006 (4)	0.001 (5)
C60	0.008 (5)	0.023 (6)	0.019 (6)	0.000 (4)	0.003 (4)	0.005 (5)
C61	0.019 (6)	0.025 (6)	0.014 (6)	-0.015 (5)	0.001 (5)	-0.006 (5)
C62	0.023 (6)	0.021 (6)	0.020 (6)	-0.005 (5)	0.008 (5)	-0.001 (5)
C63	0.012 (5)	0.014 (5)	0.019 (6)	-0.002 (4)	0.001 (4)	0.009 (4)
C64	0.020 (6)	0.018 (6)	0.035 (7)	-0.004 (5)	0.015 (5)	0.003 (5)
C65	0.017 (6)	0.024 (6)	0.014 (6)	-0.007 (5)	0.010 (4)	-0.007 (5)
C66	0.022 (6)	0.013 (6)	0.030(7)	0.000 (5)	0.009 (5)	-0.002 (5)
C67	0.019 (6)	0.018 (6)	0.020 (6)	0.001 (5)	0.012 (5)	-0.001 (5)
C68	0.016 (6)	0.028 (6)	0.023 (6)	-0.003 (5)	0.003 (5)	0.001 (5)
C69	0.018 (6)	0.022 (6)	0.021 (6)	-0.002 (5)	0.004 (5)	0.004 (5)
C70	0.019 (6)	0.023 (6)	0.017 (6)	0.003 (5)	0.008 (5)	-0.003 (5)
C71	0.013 (5)	0.018 (6)	0.019 (6)	-0.009 (4)	0.013 (4)	-0.005 (5)
C72	0.014 (5)	0.019 (6)	0.019 (6)	-0.005 (4)	0.011 (4)	-0.006 (5)

Geometric parameters (Å, °)

Ho1—O1	2.313 (8)	C17—C18 ⁱⁱⁱ	1.395 (16)
Ho1—O3 ⁱ	2.335 (7)	C17—C17 ⁱⁱⁱ	1.45 (2)
Ho1—O5	2.277 (8)	C18—C17 ⁱⁱⁱ	1.395 (16)
Ho1—O10 ⁱⁱ	2.314 (8)	C18—H18	0.9500
Ho1—O15 ⁱⁱⁱ	2.309 (8)	C19—C20	1.519 (16)
Ho1-023 ^{iv}	2.847 (9)	C20—C21	1.402 (15)
Ho1—O24 ^{iv}	2.311 (8)	C20—C30	1.420 (16)
Ho1—O2W	2.370 (8)	C21—C22	1.415 (15)
Но2—О2	2.299 (8)	C21—H21	0.9500
Но2—Об	2.316 (8)	C22—C23	1.431 (16)
Но2—О7	2.338 (8)	C22—C28	1.437 (16)
Но2—О11	2.264 (8)	C23—C24	1.365 (15)
Но2—О13	2.347 (8)	С23—Н23	0.9500
Но2—О19 ^{іі}	2.338 (8)	C24—C25	1.425 (16)
Ho2—O20 ⁱⁱ	2.876 (8)	C24—H24	0.9500

Ho2—O3W	2.423 (9)	C25—C27	1.383 (16)
Но3—О8	2.410 (8)	C25—C26	1.482 (16)
Но3—О12	2.337 (8)	C27—C28	1.420 (16)
Но3—О14	2.356 (8)	С27—Н27	0.9500
Но3—О17	2.299 (7)	C28—C29	1.441 (16)
Ho3—O20 ⁱⁱ	2.299 (8)	C29—C30	1.346 (16)
Ho3—O21	2.300 (8)	C29—H29	0.9500
Ho3—O4W	2.469 (8)	С30—Н30	0.9500
Ho3-05W	2.640 (6)	C31—C32	1.503 (16)
H_04-04^{v}	2,360 (8)	C_{32} - C_{33}	1 397 (16)
Ho4—O9 ^{vi}	2.382(7)	C_{32} = C_{36}	1 400 (16)
H_04 — $O16^{vii}$	2.302(7) 2 342(8)	C_{33} C_{34}	1.357 (16)
$H_{0}A = 0.18$	2.342(0) 2 337(7)	C33 H33	0.9500
$H_0 4 = 0.22$	2.337(7)	$C_{34} C_{35}$	1.426(15)
$H_0 4 = 0.22$	2.270(7)	$C_{34} = C_{33}$	0.0500
Ho4 05W	2.290(6)	$C_{24} = 1134$	1.280(16)
$H_04 = 0.0$ W	2.071(0)	$C_{35} = C_{35}$	1.380 (10)
H04—06W	2.453 (10)	$C_{35} = C_{35}$	1.43(2)
	1.258 (13)	$C_{35} = C_{34}$	1.426 (15)
02	1.239 (13)	C36—H36	0.9500
03-08	1.269 (14)	C37—C38	1.494 (15)
O3—Hol ¹	2.335 (7)	C38—C48	1.364 (15)
O4—C8	1.254 (14)	C38—C39	1.443 (16)
O4—Ho4 ^v	2.360 (8)	C39—C40	1.352 (16)
O5—C13	1.240 (13)	С39—Н39	0.9500
O6—C13	1.272 (13)	C40—C41	1.421 (15)
O7—C19	1.246 (14)	C40—H40	0.9500
O8—C19	1.269 (14)	C41—C42	1.410 (15)
O9—C26	1.268 (14)	C41—C47	1.429 (15)
O9—Ho4 ^{iv}	2.382 (7)	C42—C43	1.383 (15)
O10—C26	1.297 (14)	C42—H42	0.9500
O10—Ho1 ^{viii}	2.314 (8)	C43—C45	1.429 (15)
O11—C31	1.245 (14)	C43—C44	1.470 (16)
O12—C31	1.249 (13)	C44—Ho4 ^{vii}	3.005 (12)
O13—C37	1.241 (13)	C45—C46	1.359 (16)
O14—C37	1.271 (13)	C45—H45	0.9500
O15—C44	1.249 (14)	C46—C47	1.433 (15)
O15—Ho1 ⁱⁱⁱ	2.309 (7)	C46—H46	0.9500
O16—C44	1.250 (13)	C47—C48	1.428 (15)
O16—Ho4 ^{vii}	2.342 (8)	C48—H48	0.9500
017-C49	1.266 (13)	C49—C50	1.486 (15)
018-049	1 255 (13)	C50—C60	1 404 (14)
019-056	1 266 (13)	C50—C51	1 408 (15)
019 —Ho 2^{viii}	2 338 (8)	C51—C52	1417(14)
020-026	1 266 (14)	C51—H51	0.9500
O20 - O30	2.200(17)	$C_{51} - 1151$	1 424 (15)
$\begin{array}{c} 020 \\ -103 \\ 020 \\ H_0 2^{\text{viii}} \end{array}$	2.275 (0)	$C_{52} = C_{53}$	1.727(13) 1.430(15)
020-1102 021 - C61	2.070(0) 1.263(13)	C_{32} C_{33} C_{54}	1.437(13)
021 - 001	1.203(13) 1.205(12)	$C_{53} = C_{54}$	1.301(13)
022-001	1.203 (13)	C33—II33	0.9300

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O23—C68	1.243 (14)	C54—C55	1.431 (15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O23—Ho4 ⁱⁱ	2.296 (8)	С54—Н54	0.9500
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O23—Ho1 ^{vi}	2.847 (9)	C55—C57	1.366 (15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O24—C68	1.267 (14)	C55—C56	1.495 (15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O24—Ho1 ^{vi}	2.311 (8)	C56—Ho2 ^{viii}	2.942 (11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—C2	1.496 (15)	C57—C58	1.409 (15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2—C3	1.375 (16)	С57—Н57	0.9500
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2—C12	1.422 (15)	C58—C59	1.438 (15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3—C4	1.433 (16)	C59—C60	1.340 (15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С3—Н3	0.9500	С59—Н59	0.9500
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4—C5	1.414 (16)	С60—Н60	0.9500
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4—C10	1.422 (15)	C61—C62	1.496 (16)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5—C6	1.379 (16)	C62—C72	1.390 (16)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С5—Н5	0.9500	C62—C63	1.428 (15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6—C7	1.419 (15)	C63—C64	1.366 (16)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С6—Н6	0.9500	С63—Н63	0.9500
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C7—C9	1.373 (16)	C64—C65	1.431 (16)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C7—C8	1.485 (16)	C64—H64	0.9500
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C9—C10	1.415 (15)	C65—C66	1.406 (16)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С9—Н9	0.9500	C65—C71	1.421 (14)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C10—C11	1.428 (15)	C66—C67	1.386 (16)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C11—C12	1.349 (15)	С66—Н66	0.9500
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C11—H11	0.9500	C67—C69	1.428 (15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C12—H12	0.9500	C67—C68	1.500 (16)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C13—C14	1.487 (15)	C68—Ho1 ^{vi}	2.890 (12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C14—C18	1.367 (15)	C69—C70	1.322 (16)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C14—C15	1.423 (15)	С69—Н69	0.9500
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C15—C16	1.371 (16)	C70—C71	1.412 (15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C15—H15	0.9500	С70—Н70	0.9500
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C16—C17	1.421 (15)	C71—C72	1.419 (15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C16—H16	0.9500	С72—Н72	0.9500
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O5—Ho1—O15 ⁱⁱⁱ	94.3 (3)	C9—C10—C11	120.8 (10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O5—Ho1—O24 ^{iv}	120.7 (3)	C4C10C11	119.5 (10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O15 ⁱⁱⁱ —Ho1—O24 ^{iv}	129.4 (3)	C12-C11-C10	120.5 (10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O5—Ho1—O1	81.0 (3)	C12—C11—H11	119.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O15 ⁱⁱⁱ —Ho1—O1	153.5 (3)	C10-C11-H11	119.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O24 ^{iv} —Ho1—O1	73.5 (3)	C11—C12—C2	121.6 (10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O5—Ho1—O10 ⁱⁱ	77.0 (3)	C11—C12—H12	119.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O15 ⁱⁱⁱ —Ho1—O10 ⁱⁱ	77.3 (3)	C2—C12—H12	119.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O24 ^{iv} —Ho1—O10 ⁱⁱ	76.7 (3)	O5—C13—O6	124.3 (10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O1—Ho1—O10 ⁱⁱ	126.1 (3)	O5—C13—C14	118.9 (9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O5—Ho1—O3 ⁱ	148.8 (3)	O6—C13—C14	116.6 (9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O15 ⁱⁱⁱ —Ho1—O3 ⁱ	82.9 (3)	C18—C14—C15	119.5 (10)
O1—Ho1—O3i87.7 (3)C15—C14—C13119.7 (9)O10ii—Ho1—O3i131.6 (3)C16—C15—C14120.3 (10)O5—Ho1—O2W77.9 (3)C16—C15—H15119.8	$O24^{iv}$ —Ho1—O3 ⁱ	83.0 (3)	C18—C14—C13	120.7 (10)
O10 ⁱⁱ —Ho1—O3 ⁱ 131.6 (3)C16—C15—C14120.3 (10)O5—Ho1—O2W77.9 (3)C16—C15—H15119.8	O1—Ho1—O3 ⁱ	87.7 (3)	C15—C14—C13	119.7 (9)
O5—Ho1—O2W 77.9 (3) C16—C15—H15 119.8	O10 ⁱⁱ —Ho1—O3 ⁱ	131.6 (3)	C16—C15—C14	120.3 (10)
	O5—Ho1—O2W	77.9 (3)	C16—C15—H15	119.8

O15 ⁱⁱⁱ —Ho1—O2W	77.1 (3)	C14—C15—H15	119.8
O24 ^{iv} —Ho1—O2W	140.8 (3)	C15—C16—C17	121.2 (10)
O1—Ho1—O2W	76.4 (3)	C15—C16—H16	119.4
O10 ⁱⁱ —Ho1—O2W	142.3 (3)	C17—C16—H16	119.4
O3 ⁱ —Ho1—O2W	71.2 (3)	C18 ⁱⁱⁱ —C17—C16	123.1 (10)
O5—Ho1—O23 ^{iv}	146.5 (3)	C18 ⁱⁱⁱ —C17—C17 ⁱⁱⁱ	119.2 (12)
O15 ⁱⁱⁱ —Ho1—O23 ^{iv}	81.2 (3)	C16—C17—C17 ⁱⁱⁱ	117.7 (13)
024 ^{iv} —Ho1—023 ^{iv}	49.1 (2)	C14—C18—C17 ⁱⁱⁱ	121.9 (10)
Ω_1 —Ho1— $\Omega_2 3^{iv}$	1167(3)	C14-C18-H18	119.0
010^{ii} Ho1 023^{iv}	69.6 (3)	$C17^{iii}$ $-C18$ $-H18$	119.0
O_{3i}^{i} Ho1 O_{23i}^{iv}	64.0(3)	07-C19-08	124.6(11)
O_2W Hol O_2^{3iv}	1320(3)	07 - C19 - C20	124.0(11) 117.2(10)
$O_2 W - Ho1 - O_2 S$	132.0(2)	0^{-1}	117.2(10)
03 - 101 - 008	142.0(3) 106.2(2)	C_{21} C_{20} C_{20}	110.2(10)
$O13^{$	100.2(3)	$C_{21} = C_{20} = C_{30}$	120.2(10)
024° Hol -068°	25.2 (3)	$C_{21} = C_{20} = C_{19}$	118.8 (10)
	92.7 (3)	C30—C20—C19	120.6 (10)
010 ⁿ —Ho1—C68 ^{iv}	76.8 (3)	C20—C21—C22	120.5 (10)
$O3^{i}$ —Ho1—C68 ^{iv}	67.1 (3)	C20—C21—H21	119.8
O2W—Ho1—C68 ^{iv}	137.3 (3)	C22—C21—H21	119.8
O23 ^{iv} —Ho1—C68 ^{iv}	25.0 (3)	C21—C22—C23	122.5 (10)
O11—Ho2—O2	94.6 (3)	C21—C22—C28	119.2 (10)
O11—Ho2—O6	152.3 (3)	C23—C22—C28	118.3 (10)
O2—Ho2—O6	84.2 (3)	C24—C23—C22	119.7 (11)
O11—Ho2—O19 ⁱⁱ	127.4 (3)	С24—С23—Н23	120.1
O2—Ho2—O19 ⁱⁱ	120.9 (3)	С22—С23—Н23	120.1
O6—Ho2—O19 ⁱⁱ	74.8 (3)	C23—C24—C25	122.2 (11)
O11—Ho2—O7	77.7 (3)	C23—C24—H24	118.9
O2—Ho2—O7	74.0 (3)	C25—C24—H24	118.9
O6—Ho2—O7	127.7 (3)	C27—C25—C24	119.5 (10)
019 ⁱⁱ —Ho2—O7	76.9 (3)	$C_{27} - C_{25} - C_{26}$	119.5 (10)
$011 - H_0^2 - 013$	81 2 (3)	C_{24} C_{25} C_{26}	120.9(11)
$02 - H_02 - 013$	1534(3)	09-C26-010	120.9(11) 122.8(10)
$06 - H_0^2 - 013$	87.6 (3)	$09-C^{2}6-C^{2}5$	122.8(10) 120.8(10)
010^{ii} Ho2 013	80.9 (3)	010 $C26$ $C25$	120.0(10)
019 - 1102 - 013 07 + 102 - 013	120.6(3)	$C_{20} = C_{20} = C_{23}$	110.4(10)
0/-102-013	129.0(3)	$C_{25} = C_{27} = C_{28}$	119.8 (10)
011 - H02 - 03W	70.8(3)	$C_{23} = C_{27} = H_{27}$	120.1
02 - H02 - 03W	76.9 (3)	$C_{28} = C_{27} = H_{27}$	120.1
06 - H02 - 03W	/6.0 (3)	$C_2/-C_{28}-C_{22}$	120.4 (10)
019 ⁿ —Ho2—O3W	143.6 (3)	$C_{27} = C_{28} = C_{29}$	121.8 (10)
07—Ho2—O3W	139.2 (3)	C22—C28—C29	117.8 (10)
O13—Ho2—O3W	76.5 (3)	C30—C29—C28	122.3 (11)
O11—Ho2—O20 ⁱⁱ	78.7 (3)	С30—С29—Н29	118.9
O2—Ho2—O20 ⁱⁱ	141.2 (3)	C28—C29—H29	118.9
O6—Ho2—O20 ⁱⁱ	118.7 (3)	C29—C30—C20	120.0 (10)
O19 ⁱⁱ —Ho2—O20 ⁱⁱ	49.0 (2)	С29—С30—Н30	120.0
O7—Ho2—O20 ⁱⁱ	67.2 (3)	С20—С30—Н30	120.0
O13—Ho2—O20 ⁱⁱ	64.0 (3)	O11—C31—O12	122.1 (11)
O3W—Ho2—O20 ⁱⁱ	136.0 (3)	O11—C31—C32	119.4 (9)

O11—Ho2—C56 ⁱⁱ	103.8 (3)	Q12—C31—C32	118.0 (10)
Ω_{2} —Ho2—C56 ⁱⁱ	138.5 (3)	011—C31—Ho3	75.5 (6)
06—Ho2—C56 ⁱⁱ	94.9 (3)	012—C31—Ho3	49.1 (6)
019^{ii} —Ho2—C56 ⁱⁱ	24.5 (3)	C32—C31—Ho3	153.4 (7)
$07 - H_0^2 - C_56^{ii}$	74 1 (3)	C_{33} C_{32} C_{36}	119.8(11)
$013 - H_0^2 - C56^{ii}$	67 4 (3)	C_{33} C_{32} C_{31}	120.8(10)
$O3W - Ho2 - C56^{ii}$	1431(3)	$C_{36} - C_{32} - C_{31}$	1192(10)
020^{ii} Ho2 $-C56^{ii}$	25.1 (3)	C_{34} C_{33} C_{32}	121.1(11)
020^{ii} Ho3 017	145.8(3)	C_{34} C_{33} H_{33}	119.5
$O20^{ii}$ Ho3 $O21$	86.6.(3)	C32—C33—H33	119.5
$017 - H_03 - 021$	90.7(3)	C_{33} C_{34} C_{35}^{v}	120.1 (10)
020^{ii} Ho3 012	125 3 (3)	C_{33} C_{34} H_{34}	119.9
$017 H_{03} 012$	78.2(3)	$C_{35}^{v} = C_{34}^{v} = H_{34}^{v}$	119.9
017 - 103 - 012 021 + 103 - 012	1361(3)	$C_{35} = C_{35} = C_{35}$	119.9 110.6(13)
$O20^{ii}$ Ho3 $O14$	75.0(3)	$C_{36} = C_{35} = C_{35}$	117.0(15)
$017 H_{0}^{2} 014$	13.9(3)	$C_{30} = C_{30} = C_{34}$	121.0(10) 118.8(12)
017 - 1103 - 014 $021 + H_{2}^{2} - 014$	79.6 (3)	$C_{33} = C_{33} = C_{34}$	110.0(12)
021 - 103 - 014	70.0(3)	$C_{35} = C_{30} = C_{32}$	120.4 (10)
012 - 103 - 014 020 H ₂ 2 - 08	91.1(3)	$C_{33} = C_{30} = H_{30}$	119.8
020 - 103 - 08	81.3(3)	C_{32} C_{30} C_{130} C_{130} C_{14}	119.0
017 - 103 - 08 021 + 103 - 08	1.2(3)	013 - 037 - 014	123.4(10)
021 - 103 - 08	76.2(3)	013 - 000	119.2(10)
012 - 103 - 08	70.5(3)	$C_{14} = C_{28} = C_{20}$	113.4(9)
014 - 103 - 08	129.5(5)	$C_{48} = C_{28} = C_{27}$	119.5 (10)
020^{-} H03 $-04W$	73.3(3)	$C_{48} = C_{38} = C_{37}$	118.0(10)
017 - H03 - 04W	73.2 (3)	$C_{39} = C_{38} = C_{37}$	122.7(10)
021 - H03 - 04W	73.2 (3)	C40 - C39 - C38	120.5 (10)
012—H03—04W	139.3 (3)	C40—C39—H39	119.7
014—H03—04W	139.1 (3)	C38—C39—H39	119.7
08 - H03 - 04W	/1.1 (3)	$C_{39} = C_{40} = C_{41}$	121.8 (10)
020	138.4 (3)	C39—C40—H40	119.1
017—Ho3—O5W	70.8 (2)	C41 - C40 - H40	119.1
021—Ho3—O5W	70.1 (3)	C42—C41—C40	123.8 (10)
012—Ho3—05W	66.2 (3)	C42—C41—C47	118.4 (10)
014—Ho3—05W	66.2 (3)	C40—C41—C47	117.8 (10)
08—Ho3—O5W	136.6 (2)	C43—C42—C41	122.5 (9)
O4W—Ho3—O5W	127.3 (2)	C43—C42—H42	118.8
O20 ⁿ —Ho3—C31	101.9 (3)	C41—C42—H42	118.8
O17—Ho3—C31	96.7 (3)	C42—C43—C45	118.1 (10)
O21—Ho3—C31	151.5 (3)	C42—C43—C44	121.9 (10)
012—Но3—С31	23.8 (3)	C45—C43—C44	119.6 (9)
O14—Ho3—C31	77.1 (3)	O15—C44—O16	121.7 (11)
O8—Ho3—C31	64.3 (3)	O15—C44—C43	119.0 (10)
O4W—Ho3—C31	135.3 (3)	O16—C44—C43	119.0 (10)
O5W—Ho3—C31	86.4 (3)	O15—C44—Ho4 ^{vii}	77.3 (7)
O22—Ho4—O23 ^{viii}	146.1 (3)	O16—C44—Ho4 ^{vii}	47.1 (6)
O22—Ho4—O18	90.9 (3)	C43—C44—Ho4 ^{vii}	153.7 (8)
O23 ^{viii} —Ho4—O18	86.7 (3)	C46—C45—C43	121.4 (10)
O22—Ho4—O16 ^{vii}	79.3 (3)	C46—C45—H45	119.3

	1246(2)	C42 C45 H45	110.2
023 - 104 - 010	124.0(3) 124.8(2)	$C_{45} = C_{45} = 1145$	119.5
010 - 104 - 010	134.0(3) 125.0(2)	C45 - C40 - C47	120.0 (10)
O_{22} H_{04} O_{4}	155.9(5)	C43 - C40 - H40	119.7
023 - 104 - 04	70.1(3)	C47 - C40 - H40	119.7
$016 - 104 - 04^{\circ}$	/0.4 (5)	C48 = C47 = C41	119.5 (10)
$010^{-10} - H04 - 04^{-10}$	80.7 (3)	C48 - C47 - C46	121.0 (10)
$022 - H04 - 09^{11}$	83.4 (5)	C41 - C47 - C46	118.8 (10)
023^{m} H04-09 ^m	81.4 (3)	$C_{38} = C_{48} = C_{47}$	120.9 (10)
$O18 - H04 - O9^{\text{vi}}$	148.5 (3)	C38—C48—H48	119.5
$O16^{vn}$ —Ho4— $O9^{vn}$	74.6 (3)	C47—C48—H48	119.5
O4v—Ho4—O9vi	127.6 (3)	018—C49—017	124.2 (10)
O22—Ho4—O6W	73.5 (3)	O18—C49—C50	119.6 (10)
O23 ^{viii} —Ho4—O6W	73.2 (3)	O17—C49—C50	116.1 (9)
O18—Ho4—O6W	76.3 (3)	C60—C50—C51	120.0 (10)
O16 ^{vii} —Ho4—O6W	139.0 (3)	C60—C50—C49	119.8 (10)
O4 ^v —Ho4—O6W	139.6 (3)	C51—C50—C49	120.1 (9)
O9 ^{vi} —Ho4—O6W	72.4 (3)	C50—C51—C52	119.3 (9)
O22—Ho4—O5W	70.5 (3)	С50—С51—Н51	120.4
O23 ^{viii} —Ho4—O5W	138.4 (3)	C52—C51—H51	120.4
O18—Ho4—O5W	69.8 (3)	C51—C52—C58	120.0 (9)
O16 ^{vii} —Ho4—O5W	65.3 (3)	C51—C52—C53	121.0 (9)
O4 ^v —Ho4—O5W	65.4 (3)	C58—C52—C53	119.0 (10)
O9 ^{vi} —Ho4—O5W	135.1 (3)	C54—C53—C52	119.7 (10)
O6W—Ho4—O5W	129.2 (3)	С54—С53—Н53	120.1
O22—Ho4—C44 ^{vii}	97.5 (3)	С52—С53—Н53	120.1
O23 ^{viii} —Ho4—C44 ^{vii}	102.0 (3)	C53—C54—C55	120.7 (10)
O18—Ho4—C44 ^{vii}	148.7 (3)	С53—С54—Н54	119.6
O16 ^{vii} —Ho4—C44 ^{vii}	23.0 (3)	С55—С54—Н54	119.6
O4v—Ho4—C44 ^{vii}	76.7 (3)	C57—C55—C54	120.1 (10)
O9 ^{vi} —Ho4—C44 ^{vii}	62.7 (3)	C57—C55—C56	119.4 (10)
O6W—Ho4—C44 ^{vii}	135.0 (3)	C54—C55—C56	119.8 (10)
O5W—Ho4—C44 ^{vii}	84.6 (3)	019-056-020	122.3 (10)
Ho3—O5W—Ho4	126.7 (3)	019-056-055	117.6 (10)
C1 - O1 - Ho1	154 4 (8)	020-056-055	1197(9)
C1 - O2 - Ho2	143 2 (8)	$019 - C56 - H_0 2^{viii}$	50.0 (5)
$C8-O3-Ho1^{i}$	1374(8)	$020 - C56 - Ho2^{viii}$	74 5 (6)
C_{8} O_{4} $H_{04^{v}}$	129.9 (8)	$C_{55} = C_{56} = H_0 2^{viii}$	155 2 (8)
C13 - 05 - Ho1	129.9(0) 149.4(7)	$C_{55} = C_{50} = 1102$	133.2(0) 120.9(10)
$C_{13} = 05 = 101$	147.4(7)	C55 C57 H57	110.5
$C_{13} = 00 = 102$	141.3(7) 128.7(8)	$C_{55} = C_{57} = H_{57}$	119.5
$C_{19} = 07 = 102$	126.7(6) 125.0(7)	$C_{58} = C_{57} = H_{57}$	119.5
$C_{19} = 08 = 103$	133.0(7)	$C_{57} = C_{58} = C_{52}$	119.2(10)
$C_{20} = 0.0 = 10^{-10}$	138.0(7)	C_{5}^{-}	122.3(10)
$C_{20} = 010 = \Pi 01^{11}$	129.0(7)	C_{22}	110.0(10)
$C_{21} = O_{12} = H_{12}$	$1/1.\delta(/)$	$C_{00} = C_{50} = U_{50}$	121.2 (10)
C31—O12—H03	10/.0(/)	Cou-Coy-Hoy	119.4
C3/	136.7 (7)	C38—C39—H39	119.4
C3/	127.7 (7)	C59—C60—C50	121.4 (10)
C44—O15—Ho1 ^m	170.7 (8)	С59—С60—Н60	119.3

C44—O16—Ho4 ^{vii}	109.8 (7)	С50—С60—Н60	119.3
С49—О17—Но3	136.5 (7)	O21—C61—O22	124.3 (10)
C49—O18—Ho4	138.1 (7)	O21—C61—C62	119.3 (10)
С56—О19—Но2 ^{viii}	105.6 (7)	O22—C61—C62	116.2 (10)
С56—О20—Но3 ^{viii}	176.9 (7)	C72—C62—C63	120.5 (10)
С56—О20—Но2 ^{viii}	80.4 (6)	C72—C62—C61	120.8 (10)
$Ho3^{viii}$ — $O20$ — $Ho2^{viii}$	101.8 (3)	C63—C62—C61	118.6 (10)
С61—О21—Но3	138.2 (7)	C64—C63—C62	119.3 (10)
С61—022—Но4	1353(7)	C64—C63—H63	120.4
C68—O23—Ho4 ⁱⁱ	176.8 (8)	С62—С63—Н63	120.4
$C68 - 023 - Ho1^{vi}$	79 4 (7)	C63 - C64 - C65	1213(10)
H_04^{ii} O_23 H_01^{vi}	102.5(3)	C63—C64—H64	1193
$C68 - O24 - Ho1^{vi}$	103.9(7)	C65—C64—H64	119.3
$0^{2}-C^{1}-O^{1}$	1244(10)	C66-C65-C71	118.3 (10)
02 - C1 - C2	112.1.1(10) 118.8(10)	C66-C65-C64	1222(10)
01 - C1 - C2	116.7 (9)	C71 - C65 - C64	122.2(10) 119.4(10)
$C_1 = C_1 = C_2$	110.7(0)	C67 C66 C65	119.4(10) 121.9(10)
C_{3} C_{2} C_{1}	119.0(10) 121.8(10)	C67 - C66 + H66	121.9 (10)
$C_{12} = C_{2} = C_{1}$	121.3(10) 110.2(10)	C65 C66 H66	119.1
$C_1 = C_2 = C_1$	119.2(10) 121.5(10)	C65 - C60 - 1100	117.1
$C_2 = C_3 = C_4$	110.2	C66 C67 C68	117.9(10) 117.9(10)
$C_2 = C_3 = H_3$	119.2	C69 C67 C68	117.9(10) 123.8(10)
$C_{4} = C_{3} = H_{3}$	117.8 (10)	0^{23} C68 0^{24}	123.8(10) 122.3(11)
$C_{5} = C_{4} = C_{10}$	117.0(10) 124.2(10)	023 - 008 - 024	122.3(11)
$C_{3} - C_{4} - C_{3}$	124.3(10) 118.0(10)	023 - 008 - 007	110.0(10)
$C_{10} - C_{4} - C_{3}$	110.0(10) 122.0(10)	024 - 008 - 007	119.1(10)
$C_{0} = C_{3} = C_{4}$	122.0 (10)	023 - 008 - 001	73.0 (7) 50.0 (6)
$C_0 = C_5 = H_5$	119.0	$C67 - C68 - Ho1^{11}$	30.9 (0) 152 8 (8)
$C_{4} = C_{5} = C_{6} = C_{7}$	119.0	C70 - C60 - C67	132.8(8)
$C_{5} = C_{6} = C_{7}$	119.0 (11)	$C_{0} = C_{0} = C_{0}$	120.8 (10)
С5—С6—Н6	120.2	С/0—С69—Н69	119.6
C = C = C = C	120.2	C67 - C69 - H69	119.6
$C_{9} - C_{7} - C_{8}$	119.8 (10)	C69 - C70 - U70	122.5 (10)
$C_{9} - C_{7} - C_{8}$	118.7 (10)	C69—C70—H70	118.8
$C_{0} - C_{0} - C_{8}$	121.4 (10)	C/1 - C/0 - H/0	118.8
04 - 03 - 03	123.2 (11)	C/0 - C/1 - C/2	122.9 (10)
04 - 08 - 07	118.9 (10)	C/0 - C/1 - C65	118.3 (10)
03-08-07	117.8 (10)	C/2 = C/1 = C65	118.6 (10)
C/C9C10	121.1 (10)	C62—C72—C71	120.7 (10)
C/C9H9	119.5	C62—C72—H72	119.7
С10—С9—Н9	119.5	C/1—C/2—H/2	119.7
C9—C10—C4	119.7 (10)		
O20 ⁱⁱ —Ho3—O5W—Ho4	-119.2 (4)	C20—C21—C22—C28	0.6 (16)
O17—Ho3—O5W—Ho4	38.6 (3)	C21—C22—C23—C24	-176.0 (10)
O21—Ho3—O5W—Ho4	-59.5 (4)	C28—C22—C23—C24	1.7 (16)
O12—Ho3—O5W—Ho4	123.8 (4)	C22—C23—C24—C25	-2.8 (17)
O14—Ho3—O5W—Ho4	-145.6 (4)	C23—C24—C25—C27	1.5 (17)
O8—Ho3—O5W—Ho4	91.3 (5)	C23—C24—C25—C26	177.8 (10)

O4W—Ho3—O5W—Ho4	-11.0 (5)	Ho4 ^{iv}	-14.1 (19)
C31—Ho3—O5W—Ho4	136.9 (4)	Ho4 ^{iv} —O9—C26—C25	165.6 (8)
O22—Ho4—O5W—Ho3	38.8 (4)	Ho1 ^{viii} —O10—C26—O9	52.1 (15)
O23 ^{viii} —Ho4—O5W—Ho3	-119.3 (4)	Ho1 ^{viii} —O10—C26—C25	-127.6 (9)
O18—Ho4—O5W—Ho3	-59.7 (4)	C27—C25—C26—O9	-39.3 (16)
O16 ^{vii} —Ho4—O5W—Ho3	125.6 (5)	C24—C25—C26—O9	144.3 (11)
O4 ^v —Ho4—O5W—Ho3	-143.5 (5)	C27—C25—C26—O10	140.3 (11)
O9 ^{vi} —Ho4—O5W—Ho3	96.9 (5)	C24—C25—C26—O10	-36.0 (15)
O6W—Ho4—O5W—Ho3	-8.5 (6)	C24—C25—C27—C28	0.9 (17)
C44 ^{vii} —Ho4—O5W—Ho3	138.7 (4)	C26—C25—C27—C28	-175.5 (10)
O5—Ho1—O1—C1	-111.2 (17)	C25—C27—C28—C22	-1.9 (16)
O15 ⁱⁱⁱ —Ho1—O1—C1	167.1 (15)	C25—C27—C28—C29	177.8 (11)
O24 ^{iv} —Ho1—O1—C1	14.6 (16)	C21—C22—C28—C27	178.4 (10)
O10 ⁱⁱ —Ho1—O1—C1	-44.6 (18)	C23—C22—C28—C27	0.6 (16)
O3 ⁱ —Ho1—O1—C1	97.9 (17)	C21—C22—C28—C29	-1.3 (16)
O2W—Ho1—O1—C1	169.2 (17)	C23—C22—C28—C29	-179.2 (10)
O23 ^{iv} —Ho1—O1—C1	38.7 (17)	C27—C28—C29—C30	-179.9 (11)
C68 ^{iv} —Ho1—O1—C1	31.0 (17)	C22—C28—C29—C30	-0.2 (17)
O11—Ho2—O2—C1	174.7 (14)	C28—C29—C30—C20	2.4 (18)
O6—Ho2—O2—C1	22.5 (14)	C21—C20—C30—C29	-3.2 (17)
O19 ⁱⁱ —Ho2—O2—C1	-46.0 (15)	C19—C20—C30—C29	-176.0 (10)
O7—Ho2—O2—C1	-109.5 (14)	Ho3—O12—C31—O11	-20.8 (13)
O13—Ho2—O2—C1	95.3 (15)	Ho3—O12—C31—C32	151.5 (8)
O3W—Ho2—O2—C1	99.4 (14)	O20 ⁱⁱ —Ho3—C31—O11	-7.7 (7)
O20 ⁱⁱ —Ho2—O2—C1	-107.6 (13)	O17—Ho3—C31—O11	-158.8 (6)
C56 ⁱⁱ —Ho2—O2—C1	-68.4 (15)	O21—Ho3—C31—O11	97.2 (8)
O15 ⁱⁱⁱ —Ho1—O5—C13	168.4 (16)	O12—Ho3—C31—O11	161.9 (11)
O24 ^{iv} —Ho1—O5—C13	-50.0 (16)	O14—Ho3—C31—O11	64.7 (6)
O1—Ho1—O5—C13	14.7 (15)	O8—Ho3—C31—O11	-81.9 (6)
O10 ⁱⁱ —Ho1—O5—C13	-115.7 (16)	O4W—Ho3—C31—O11	-85.9 (7)
O3 ⁱ —Ho1—O5—C13	84.9 (17)	O5W—Ho3—C31—O11	131.0 (6)
O2W—Ho1—O5—C13	92.6 (16)	O20 ⁱⁱ —Ho3—C31—O12	-169.6 (7)
O23 ^{iv} —Ho1—O5—C13	-111.1 (15)	O17—Ho3—C31—O12	39.3 (8)
C68 ^{iv} —Ho1—O5—C13	-68.3 (17)	O21—Ho3—C31—O12	-64.7 (10)
O11—Ho2—O6—C13	166.5 (10)	O14—Ho3—C31—O12	-97.2 (7)
O2—Ho2—O6—C13	-104.7 (12)	O8—Ho3—C31—O12	116.2 (8)
O19 ⁱⁱ —Ho2—O6—C13	19.5 (11)	O4W—Ho3—C31—O12	112.2 (7)
O7—Ho2—O6—C13	-40.0 (13)	O5W—Ho3—C31—O12	-30.9 (7)
O13—Ho2—O6—C13	100.7 (12)	O20 ⁱⁱ —Ho3—C31—C32	120.3 (16)
O3W—Ho2—O6—C13	177.4 (12)	O17—Ho3—C31—C32	-30.8 (17)
O20 ⁱⁱ —Ho2—O6—C13	42.3 (12)	O21—Ho3—C31—C32	-134.8 (15)
C56 ⁱⁱ —Ho2—O6—C13	33.7 (12)	O12—Ho3—C31—C32	-70.1 (17)
O11—Ho2—O7—C19	-0.8 (9)	O14—Ho3—C31—C32	-167.3 (17)
O2—Ho2—O7—C19	-99.2 (10)	O8—Ho3—C31—C32	46.1 (16)
O6—Ho2—O7—C19	-168.5 (9)	O4W—Ho3—C31—C32	42.1 (18)
O19 ⁱⁱ —Ho2—O7—C19	132.8 (10)	O5W—Ho3—C31—C32	-100.9 (16)
O13—Ho2—O7—C19	66.7 (10)	O11—C31—C32—C33	-9.9 (16)
O3W—Ho2—O7—C19	-53.0 (11)	O12—C31—C32—C33	177.6 (10)

O20 ⁱⁱ —Ho2—O7—C19	82.0 (9)	Ho3—C31—C32—C33	-128.7 (14)
C56 ⁱⁱ —Ho2—O7—C19	107.6 (10)	O11—C31—C32—C36	165.2 (10)
O20 ⁱⁱ —Ho3—O8—C19	-32.2 (10)	O12—C31—C32—C36	-7.3 (16)
O17—Ho3—O8—C19	177.4 (11)	Ho3—C31—C32—C36	46 (2)
O21—Ho3—O8—C19	-103.7 (11)	C36—C32—C33—C34	-3.4(17)
O12—Ho3—O8—C19	97.5 (10)	C31—C32—C33—C34	171.6 (10)
O14—Ho3—O8—C19	31.5 (11)	C32—C33—C34—C35 ^v	2.0 (17)
O4W—Ho3—O8—C19	-107.4 (11)	C35 ^v —C35—C36—C32	-3.0 (19)
O5W—Ho3—O8—C19	127.9 (10)	C34 ^v —C35—C36—C32	178.6 (10)
С31—Но3—О8—С19	75.6 (10)	C33—C32—C36—C35	3.9 (17)
O20 ⁱⁱ —Ho3—O12—C31	12.5 (9)	C31—C32—C36—C35	-171.2(10)
O17—Ho3—O12—C31	-140.0 (8)	Ho2-013-C37-014	-22.7 (19)
O21—Ho3—O12—C31	141.4 (7)	Ho2—O13—C37—C38	156.1 (8)
O14—Ho3—O12—C31	78.2 (7)	Ho3—O14—C37—O13	57.0 (15)
O8—Ho3—O12—C31	-56.3 (7)	Ho3—O14—C37—C38	-121.8 (9)
O4W—Ho3—O12—C31	-93.9 (8)	O13—C37—C38—C48	-38.8 (15)
O5W—Ho3—O12—C31	146.0 (8)	O14—C37—C38—C48	140.0 (11)
O11—Ho2—O13—C37	38.7 (11)	O13—C37—C38—C39	142.3 (11)
O2—Ho2—O13—C37	121.3 (11)	O14—C37—C38—C39	-38.9 (15)
O6—Ho2—O13—C37	-166.7 (11)	C48—C38—C39—C40	2.3 (17)
O19 ⁱⁱ —Ho2—O13—C37	-91.7 (11)	C37—C38—C39—C40	-178.8 (10)
O7—Ho2—O13—C37	-27.2(13)	C38—C39—C40—C41	-1.2 (17)
O3W—Ho2—O13—C37	117.1 (12)	C39—C40—C41—C42	176.2 (11)
O20 ⁱⁱ —Ho2—O13—C37	-43.0 (11)	C39—C40—C41—C47	-2.1(16)
C56 ⁱⁱ —Ho2—O13—C37	-70.4 (11)	C40—C41—C42—C43	-178.7(10)
O20 ⁱⁱ —Ho3—O14—C37	5.3 (8)	C47—C41—C42—C43	-0.4 (16)
O17—Ho3—O14—C37	173.3 (8)	C41—C42—C43—C45	-3.5 (15)
O21—Ho3—O14—C37	94.6 (9)	C41—C42—C43—C44	169.5 (10)
O12—Ho3—O14—C37	-124.6 (9)	Ho4 ^{vii} —O16—C44—O15	22.1 (14)
O8—Ho3—O14—C37	-60.6 (10)	Ho4 ^{vii} —O16—C44—C43	-152.1 (8)
O4W—Ho3—O14—C37	47.6 (10)	C42—C43—C44—O15	-166.0 (10)
O5W—Ho3—O14—C37	167.6 (9)	C45—C43—C44—O15	7.0 (16)
С31—Но3—О14—С37	-100.6 (9)	C42—C43—C44—O16	8.4 (16)
O20 ⁱⁱ —Ho3—O17—C49	-166.4 (9)	C45—C43—C44—O16	-178.7 (10)
O21—Ho3—O17—C49	108.6 (10)	C42—C43—C44—Ho4 ^{vii}	-42 (2)
O12—Ho3—O17—C49	-28.6 (10)	C45—C43—C44—Ho4 ^{vii}	130.7 (14)
O14—Ho3—O17—C49	34.6 (11)	C42—C43—C45—C46	4.1 (16)
O8—Ho3—O17—C49	-106.3 (10)	C44—C43—C45—C46	-169.1 (10)
O4W—Ho3—O17—C49	-179.2 (10)	C43—C45—C46—C47	-0.7 (16)
O5W—Ho3—O17—C49	40.1 (9)	C42—C41—C47—C48	-174.1 (9)
С31—Но3—О17—С49	-43.7 (10)	C40—C41—C47—C48	4.3 (15)
O22—Ho4—O18—C49	-31.4 (12)	C42—C41—C47—C46	3.8 (15)
O23 ^{viii} —Ho4—O18—C49	-177.7 (12)	C40—C41—C47—C46	-177.8 (10)
O16 ^{vii} —Ho4—O18—C49	44.2 (13)	C45—C46—C47—C48	174.6 (10)
O4 ^v —Ho4—O18—C49	105.9 (12)	C45—C46—C47—C41	-3.3 (16)
O9 ^{vi} —Ho4—O18—C49	-110.2 (11)	C39—C38—C48—C47	-0.1 (17)
O6W—Ho4—O18—C49	-104.2 (12)	C37—C38—C48—C47	-179.0 (10)
O5W—Ho4—O18—C49	37.4 (11)	C41—C47—C48—C38	-3.3 (16)

C44 ^{vii} —Ho4—O18—C49	74.5 (13)	C46—C47—C48—C38	178.9 (11)
O20 ⁱⁱ —Ho3—O21—C61	179.4 (12)	Ho4—O18—C49—O17	17.4 (18)
O17—Ho3—O21—C61	-34.7 (11)	Ho4—O18—C49—C50	-165.5 (8)
O12—Ho3—O21—C61	38.9 (13)	Ho3—O17—C49—O18	-83.7 (14)
O14—Ho3—O21—C61	103.1 (12)	Ho3—O17—C49—C50	99.1 (11)
O8—Ho3—O21—C61	-110.6 (11)	O18—C49—C50—C60	-165.1 (10)
O4W—Ho3—O21—C61	-107.0(12)	O17—C49—C50—C60	12.2 (15)
O5W—Ho3—O21—C61	34.5 (11)	O18—C49—C50—C51	11.2 (16)
C31—Ho3—O21—C61	70.7 (14)	O17—C49—C50—C51	-171.4(10)
O23 ^{viii} —Ho4—O22—C61	-167.4(9)	C60—C50—C51—C52	3.5 (16)
O18—Ho4—O22—C61	107.3 (10)	C49—C50—C51—C52	-172.8(9)
O16 ^{vii} —Ho4—O22—C61	-28.3(10)	C50—C51—C52—C58	-2.0(15)
O4 ^v —Ho4—O22—C61	36.1 (11)	C50—C51—C52—C53	176.9 (10)
09^{vi} —Ho4—O22—C61	-103.8(10)	C51—C52—C53—C54	-172.7(10)
O6W—Ho4—O22—C61	-177.3(10)	C58—C52—C53—C54	6.2 (16)
$05W - H_04 - 022 - C61$	39.1 (10)	C52—C53—C54—C55	-2.1(16)
$C44^{vii}$ —Ho4—O22—C61	-42.5(10)	C_{53} C_{54} C_{55} C_{57}	-2.5(17)
$H_0^2 - O^2 - C^1 - O^1$	-4(2)	C_{53} C_{54} C_{55} C_{56}	168.0(10)
$H_{0}^{2} = 0^{2} = C_{1}^{2} = C_{2}^{2}$	-1794(8)	$H_02^{viii} - 019 - C56 - 020$	-19.2(12)
$H_{01} - 01 - 01 - 02$	92 (2)	$H_02^{viii} - 019 - C56 - C55$	153.9 (8)
$H_{01} - 01 - C1 - C2$	-92(2)	$H_02^{viii} - O20 - C56 - O19$	155.5(0)
$0^{2}-C^{1}-C^{2}-C^{3}$	-182(17)	$H_02^{viii} - O20 - C56 - C55$	-1579(10)
01 - C1 - C2 - C3	165.8(11)	C57 - C55 - C56 - 019	-12.4(16)
$0^{2}-C^{1}-C^{2}-C^{1}$	160.1(11)	$C_{54} = C_{55} = C_{56} = 0.19$	12.1(10) 177.0(10)
01 - C1 - C2 - C12	-159(15)	C57 - C55 - C56 - O20	161.0(10)
C12 - C2 - C3 - C4	-0.2(16)	$C_{54} - C_{55} - C_{56} - O_{20}$	-9.6(16)
C1 - C2 - C3 - C4	178 1 (10)	$C57 - C55 - C56 - H_02^{viii}$	41 (2)
$C_2 = C_3 = C_4 = C_5$	179.2 (11)	$C54 - C55 - C56 - Ho2^{viii}$	-1297(15)
$C_2 = C_3 = C_4 = C_{10}$	0.8 (16)	$C_{54} = C_{55} = C_{50} = H_{02}$	29(17)
C_{10} C_{4} C_{5} C_{6}	-11(16)	$C_{56} - C_{55} - C_{57} - C_{58}$	-167.6(10)
C_{3} C_{4} C_{5} C_{6}	-1795(11)	$C_{55} = C_{57} = C_{58} = C_{52}$	13(16)
$C_{4}^{-}C_{5}^{-}C_{6}^{-}C_{7}^{-}$	36(17)	$C_{55} - C_{57} - C_{58} - C_{52}$	1.5(10) 1750(11)
C_{2}^{-}	-3.2(17)	C_{51} C_{52} C_{58} C_{57}	173.1 (9)
$C_5 C_6 C_7 C_8$	-179.6(10)	$C_{51} = C_{52} = C_{50} = C_{57}$	-5.8(15)
$H_0A^{v} = OA = C B = O3$	-55.0(16)	$C_{55} = C_{52} = C_{56} = C_{57}$	-0.9(15)
$H_04^v - 04 - C8 - C7$	121.4(10)	C_{3} C_{3} C_{52} C_{58} C_{59}	-1799(9)
$H_{01}^{i} - 03 - 08 - 04$	121.4(10) 14.9(19)	$C_{55} = C_{52} = C_{50} = C_{55}$	-171.3(10)
Holi O3 C8 C7	-1615(8)	$C_{57} = C_{58} = C_{59} = C_{60}$	26(16)
$C_{0}^{0} C_{1}^{0} C_{8}^{0} C_{1}^{0} C_{8}^{0} C_{1}^{0}$	-1384(12)	$C_{32} = C_{38} = C_{39} = C_{60}$	2.0(10)
$C_{3} - C_{1} - C_{3} - C_{4}$	380(16)	$C_{50} = C_{50} = C_{60} = C_{50}$	1.2(17)
$C_{0} = C_{7} = C_{8} = O_{4}^{3}$	38.0(10)	$C_{31} = C_{30} = C_{00} = C_{39}$	1.3(17) 174.4(10)
$C_{5} - C_{7} - C_{8} - O_{3}$	-145.4(11)	$H_{2}^{2} = 0.01 - 0.02$	1/4.4(10)
$C_{0} - C_{1} - C_{8} - C_{3}$	-143.4(11)	$H_{03} = 021 = C_{01} = 022$	-1610(8)
$C_{0}^{8} = C_{1}^{7} = C_{1}^{9} = C_{1}^{10}$	0.4(17)	$H_{04} = 022 = C61 = C02$	-950(14)
$C_{7} = C_{9} = C_{10} = C_{4}$	2 1 (16)	$H_{04} = 0.022 = 0.01 = 0.021$	03.7(14) 08 5 (11)
$C_7 = C_9 = C_{10} = C_4$	2.1(10) 170 8 (10)	021 C61 C62 C72	70.3(11)
$C_{1} = C_{2} = C_{10} = C_{11}$	-1.7(16)	021 - 001 - 002 - 072	-1710(10)
$C_{3} = C_{4} = C_{10} = C_{9}$	1.7(10) 176 8 (0)	022 - 001 - 002 - 072	-165.0(10)
U3-U4-U10-U9	1/0.8 (9)	021 - 001 - 002 - 003	-103.0 (10)

C5-C4-C10-C11	-179.5 (10)	O22—C61—C62—C63	10.9 (15)
C3—C4—C10—C11	-0.9 (16)	C72—C62—C63—C64	-2.6 (16)
C9—C10—C11—C12	-177.2 (10)	C61—C62—C63—C64	175.6 (10)
C4—C10—C11—C12	0.5 (16)	C62—C63—C64—C65	-1.0 (16)
C10-C11-C12-C2	0.1 (16)	C63—C64—C65—C66	-173.8 (10)
C3—C2—C12—C11	-0.3 (16)	C63—C64—C65—C71	3.8 (16)
C1—C2—C12—C11	-178.6 (10)	C71—C65—C66—C67	-3.6 (16)
Ho1—O5—C13—O6	-10(2)	C64—C65—C66—C67	173.9 (10)
Ho1	175.0 (10)	C65—C66—C67—C69	6.3 (16)
Ho2—O6—C13—O5	88.6 (15)	C65—C66—C67—C68	-166.6 (10)
Ho2	-96.4 (13)	Ho1 ^{vi} —O23—C68—O24	21.2 (11)
O5—C13—C14—C18	-15.3 (16)	Ho1 ^{vi} —O23—C68—C67	-154.9 (10)
O6—C13—C14—C18	169.3 (10)	Ho1 ^{vi} —O24—C68—O23	-26.8 (13)
O5—C13—C14—C15	165.3 (10)	C66—C67—C68—O23	159.0 (11)
O6—C13—C14—C15	-10.0 (15)	C69—C67—C68—O23	-13.5 (17)
C18—C14—C15—C16	3.1 (16)	C66—C67—C68—O24	-17.2 (16)
C13—C14—C15—C16	-177.5 (10)	C69—C67—C68—O24	170.3 (11)
C14—C15—C16—C17	-2.4 (16)	C66—C67—C68—Ho1 ^{vi}	43 (2)
C15—C16—C17—C18 ⁱⁱⁱ	-178.1 (10)	C69—C67—C68—Ho1 ^{vi}	-129.5 (15)
C15—C16—C17—C17 ⁱⁱⁱ	-0.1 (18)	C66—C67—C69—C70	-4.5 (16)
C15—C14—C18—C17 ⁱⁱⁱ	-1.3 (16)	C68—C67—C69—C70	168.0 (11)
C13—C14—C18—C17 ⁱⁱⁱ	179.3 (10)	C67—C69—C70—C71	-0.1 (17)
Но2—О7—С19—О8	-57.9 (16)	C69—C70—C71—C72	-172.6 (11)
Но2—О7—С19—С20	121.5 (9)	C69—C70—C71—C65	2.9 (16)
Но3—О8—С19—О7	15.9 (18)	C66—C65—C71—C70	-1.0 (15)
Но3—О8—С19—С20	-163.5 (7)	C64—C65—C71—C70	-178.7 (10)
O7—C19—C20—C21	-137.2 (11)	C66—C65—C71—C72	174.7 (10)
O8—C19—C20—C21	42.2 (15)	C64—C65—C71—C72	-3.0 (15)
O7—C19—C20—C30	35.8 (16)	C63—C62—C72—C71	3.3 (16)
O8—C19—C20—C30	-144.8 (11)	C61—C62—C72—C71	-174.8 (9)
C30—C20—C21—C22	1.7 (16)	C70—C71—C72—C62	175.0 (10)
C19—C20—C21—C22	174.6 (10)	C65—C71—C72—C62	-0.5 (15)
C20—C21—C22—C23	178.3 (11)		

Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) x-1/2, -y+1/2, z-1/2; (iii) -x+1, -y+1, -z+1; (iv) x-1/2, -y+1/2, z+1/2; (v) -x+2, -y+1, -z+2; (vi) x+1/2, -y+1/2, z-1/2; (vii) -x+2, -y+1, -z+2; (vii) x+1/2, -y+1/2, z-1/2; (vii) -x+2, -y+1, -z+2; (vii) x+1/2, -y+1/2, z+1/2; (v) -x+2, -y+1, -z+2; (vi) x+1/2, -y+1/2, -z+1/2; (v) -x+2, -y+1/2; -z+1/2; (v) -x+2, -y+1/2; -z+1/2; (v) -x+2, -y+1/2; -z+1/2; (v) -x+2, -y+1/2; -z+1/2; (v) -x+2; (v) -x+2; (v) -x+2; (v) -x+2; (v) -x+2