addenda and errata

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Retraction of articles

This article reports the retraction of articles published in *Acta Crystallographica Section E* between 2005 and 2009.

After further thorough investigation (see Harrison *et al.*, 2010), articles are retracted as a result of problems with the data sets or incorrect atom assignments. Full details of all the articles are given in Table 1.

Table 1

Details of articles to be retracted, in order of publication.

Title	Reference	DOI	Refcode
Poly[diaquadi-µ ₃ -malonato-µ-pyrazine-dinickel(II)]	Liu et al. (2005)	10.1107/S1600536805026358	GATWAA
catena-Poly[[[diaqua(6-carboxypyridine-2-carboxylato)samarium(II)]-µ-pyridine-2,6- dicarboxylato] tetrahydrate]	Liu et al. (2006)	10.1107/S1600536806038141	FONCUH03
Poly[[[µ ₄ -4,4'-carbonylbis(benzene-3,4-dicarboxylato)]tetrakis(1,10-phenanthroline)- dipalladium(II)] dihydrate]	Li, Wang, Zhang & Yu (2007e)	10.1107/S1600536807039050	AFELAZ
Poly[diaqua-µ3-malonato-µ-pyrazine-diiron(II)]	Li, Liu et al. (2007)	10.1107/S1600536807038743	AFELON
$Poly[diaqua-di-\mu_3-malonato-\mu-pyrazine-dimanganese(II)]$	Li, Wang, Zhang & Yu (2007f)	10.1107/S1600536807039773	VIJZAQ
$Poly[[aqua(2,2-bipyridine)(\mu_3-pyridine-3,4-dicarboxylato)cobalt(II)]$ monohydrate]	Li, Wang, Zhang & Yu $(2007g)$	10.1107/S1600536807040275	VIKCIC
catena-Poly[[[diaqua(6-carboxypyridine-2-carboxylato)holmium(III)]-µ-pyridine-2,6- dicarboxylato] tetrahydrate]	Li, Wang, Zhang & Yu (2007a)	10.1107/S1600536807041657	DILGEL
catena-Poly[[(2,2'-bipyridine- $\kappa^2 N, N'$)iron(II)]- μ -5-carboxy-4-carboxylatoimidazol-1-ido- $\kappa^4 N^3. O^4: N^1. O^5$]	Li, Wang, Zhang & Yu (2007 <i>h</i>)	10.1107/S1600536807042122	XIKWAQ
$Poly[[aqua(2,2'-bipyridine)(\mu_3-pyridine-3,4-dicarboxylato)nickel(II)] monohydrate]$	Li, Wang, Zhang & Yu (2007b)	10.1107/S1600536807046466	LEVZAO01
2-(Benzyliminomethyl)-6-methoxyphenol	Li, Wang, Zhang & Yu (2007 <i>i</i>)	10.1107/S1600536807042134	SILDEX
$Poly[aqua(2,2'-bipyridine)(\mu_3-pyridine-2,4-dicarboxylato)palladium(II)]$	Li, Wang, Zhang & Yu (2007c)	10.1107/S1600536807047575	SILXAN
μ -Oxido-bis{chlorido[tris(2-pyridylmethyl)amine]iron(III)} bis(hexafluoridophosphate)	Liu, Dou, Li & Zhang (2007)	10.1107/S1600536807049665	TINRIS
µ-Oxido-bis({4,4'-dibromo-2,2'-[ethane-1,2-diylbis(nitrilomethylidyne)]diphenolato]- manganese([II]))	Liu, Dou, Niu & Zhang $(2007a)$	10.1107/S1600536807051008	GIMZAE
Bis[N-(8-quinolyl)pyridine-2-carboxamidato]iron(III) perchlorate monohydrate	(2007 <i>d</i>) Li, Wang, Zhang & Yu (2007 <i>d</i>)	10.1107/S1600536807048556	WIMZIC
µ-Oxido-bis({4,4'-dibromo-2,2'-[ethane-1,2-diylbis(nitrilomethylidyne)]diphenolato]- chromium(III))	(2007 <i>b</i>)	10.1107/S1600536807057996	HIQFIX
µ-Oxido-bis[chlorido[tris(2-pyridylmethyl)amine]chromium(III)} bis(hexafluorido- phosphate)	Li, Wang et al. (2008)	10.1107/S1600536807061296	MIRNAD
μ -Oxido-bis({4,4'-dibromo-2,2'-ethane-1,2-diylbis(nitrilomethylidyne)]diphenolato}- iron(III))	Meng et al. (2008a)	10.1107/S1600536807063143	MIRWUG
$\kappa^{2}O^{1}(O^{4})$	Meng et al. (2008b)	10.1107/S1600536807065051	XISCAE
Oxalatobis(propane-1,3-diamine)manganese(II) chloride monohydrate	Meng et al. (2008e)	10.1107/\$1600536807065361	SISWIB
µ-Oxido-bis{chlorido[tris(2-pyridylmethyl)amine]manganese(III)} bis(hexafluorido- phosphate)	Meng et al. (2008c)	10.1107/S1600536807066512	RISRIV
Bis[N-(8-quinolyl)pyridine-2-carboxamidato-κ ³ N,N',N'']manganese(III) perchlorate monohydrate	Meng et al. (2008d)	10.1107/S1600536808000287	GISLEA
Diaquabis(pyridine-2-carboxylato- $\kappa^2 N, O$)cobalt(II)	Huang (2008)	10.1107/S1600536808010507	WIZPOL
Tetra-µ-2,5-difluorobenzoato-bis[(2,2'-bipyridine)(2,5-difluorobenzoato)gadolinium(III)]	Li, Zhang et al. (2008)	10.1107/S1600536808023507	BOFQIX
catena-Poly[[(2,2'-bipyridine- $\kappa^2 N, N'$)nickel(II)]- μ -oxalato- $\kappa^4 O^1 \cdot O^2 \cdot O^{1'} \cdot O^{2'}$]	Li, Yan et al. (2008)	10.1107/S1600536808028389	NOHYUF
catena-Poly[[aqua(2,2'-bipvridyl)cobalt(II)]-u-5-nitroisophthlalato]	Liu <i>et al.</i> (2008)	10.1107/\$1600536808038178	AFIREN
$Diaguabis(pyridine-2-carboxylato-\kappa^2 N.O)iron(II)$	Xia & Sun (2009)	10.1107/\$1600536809005765	RONFEG
catena-Poly[[[diaquathulium(III]]-µ-6-carboxynicotinato-µ-pyridine-2,5-dicarboxylato] dihydrate]	Li et al. (2009)	10.1107/S1600536809008836	NOQNIR
1-Phenyl-3-(2,4,6-trimethoxyphenyl)prop-2-en-1-one	Liu et al. (2009)	10.1107/S1600536809040227	PUGLOT

References

- Harrison, W. T. A., Simpson, J. & Weil, M. (2010). Acta Cryst. E66, e1-e2.
- Huang, G. S. (2008). Acta Cryst. E64, m685-m686.
- Li, S., Chen, Y., He, H.-M. & Ma, Y.-F. (2009). Acta Cryst. E65, m411.
- Li, S., Wang, S.-B., Zhang, F.-L. & Tang, K. (2008). Acta Cryst. E64, m2.
- Li, S., Yan, X.-L., Wang, S.-B. & Ma, Y.-F. (2008). Acta Cryst. E64, m1258.
- Li, S., Zhang, F.-L., Tang, K. & Ma, Y.-F. (2008). Acta Cryst. E64, m1142.
- Li, Z., Wang, S., Zhang, Q. & Yu, X. (2007*a*). Acta Cryst. E63, m2438–m2439.
- Li, Z., Wang, S., Zhang, Q. & Yu, X. (2007b). Acta Cryst. E63, m2604. Li, Z., Wang, S., Zhang, Q. & Yu, X. (2007c). Acta Cryst. E63, m2642.
- Li, Z., Wang, S., Zhang, Q. & Yu, X. (2007*c*). Acta Cryst. E**03**, m2042. Li, Z., Wang, S., Zhang, Q. & Yu, X. (2007*d*). Acta Cryst. E**63**, m2781.
- Li, Z.-F., Liu, Y., Zhang, Q. & Yu, X.-J. (2007a). Acta Cryst. E63, m2301.
- Li, Z.-F., Eut, I., Zhang, Q. & Tu, X.-J. (2007). Acta Cryst. E03, m2313. Li, Z.-F., Wang, S.-W., Zhang, Q. & Yu, X.-J. (2007e). Acta Cryst. E63, m2312.
- Li, Z.-F., Wang, S.-W., Zhang, Q. & Yu, X.-J. (2007*e*). Acta Cryst. E03, m2512. Li, Z.-F., Wang, S.-W., Zhang, Q. & Yu, X.-J. (2007*f*). Acta Cryst. E63, m2360.
- Li, Z.-F., Wang, S.-W., Zhang, Q. & Yu, X.-J. (2007). Acta Cryst. E03, m2500. Li, Z.-F., Wang, S.-W., Zhang, Q. & Yu, X.-J. (2007g). Acta Cryst. E63, m2373.
- Li, Z.-F., Wang, S.-W., Zhang, Q. & Yu, X.-J. (2007*f*). Acta Cryst. E63, m2245.

- Li, Z.-F., Wang, S.-W., Zhang, Q. & Yu, X.-J. (2007i). Acta Cryst. E63, o3930.
- Liu, Y., Dou, J., Li, D. & Zhang, X. (2007). Acta Cryst. E63, m2722.
- Liu, Y., Dou, J., Niu, M. & Zhang, X. (2007a). Acta Cryst. E63, m2771.
- Liu, Y., Dou, J., Niu, M. & Zhang, X. (2007b). Acta Cryst. E63, m3032.
- Liu, Y., Dou, J., Wang, D., Ma, G. & Li, D. (2005). Acta Cryst. E61, m1834–m1836.
- Liu, Y., Dou, J.-M., Wang, D.-Q., Zhang, X.-X. & Zhou, L. (2006). Acta Cryst. E62, m2794–m2795.
- Liu, Y., He, Q., Zhang, X., Xue, Z. & Lv, C. (2008). Acta Cryst. E64, m1605–m1606.
- Liu, Y., Zhang, X., Xue, Z. & Lv, C. (2009). Acta Cryst. E65, o2724.
- Meng, Q., Wang, L., Liu, Y. & Pang, Y. (2008a). Acta Cryst. E64, m63.
- Meng, Q., Wang, L., Liu, Y. & Pang, Y. (2008b). Acta Cryst. E64, m133.
- Meng, Q., Wang, L., Liu, Y. & Pang, Y. (2008c). Acta Cryst. E64, m204.
- Meng, Q., Wang, L., Liu, Y. & Pang, Y. (2008d). Acta Cryst. E64, m332.
- Meng, Q.-G., Wang, L.-T., Liu, Y.-Z. & Pang, Y. (2008e). Acta Cryst. E64, m170-m171.
- Xia, G. & Sun, Z. (2009). Acta Cryst. E65, m315-m316.

metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis[N-(8-quinolyl)pyridine-2-carboxamidato- $\kappa^3 N, N', N''$]manganese(III) perchlorate monohydrate

Oingguo Meng,* Lintong Wang, Yanzhen Liu and Yan Pang

College of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China Correspondence e-mail: qgmeng_weifang@yahoo.cn

Received 6 November 2007; accepted 4 January 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.008 Å; Hatom completeness 91%; R factor = 0.066; wR factor = 0.190; data-to-parameter ratio = 12.1.

The Mn^{III} ion in the title complex, $[Mn(C_{15}H_{10}N_3O)_2]$ -ClO₄·H₂O, is coordinated meridionally by six N atoms from two tridentate *N*-(8-quinolyl)pyridine-2-carboxamidate ligands, yielding a distorted octahedral coordination geometry. The two ligands are nearly planar and their mean planes are almost perpendicular, with a dihedral angle of 86.7 $(2)^{\circ}$.

Related literature

For related literature, see: Dutta et al. (2000); Ni et al. (2006); Ni (2007); Zhang et al. (2001).

Experimental

Crystal data

[Mn(C15H10N3O)2]ClO4·H2O $\gamma = 90.486 \ (1)^{\circ}$ $M_r = 668.93$ Triclinic, $P\overline{1}$ Z = 2a = 9.2314 (5) Å b = 12.9987(10) Å c = 12.0126 (5) Å $\alpha = 95.786 \ (1)^{\circ}$ $\beta = 91.592(2)^{\circ}$

Data collection

```
Bruker APEXII CCD area-detector
  diffractometer
Absorption correction: multi-scan
  (SADABS: Bruker, 2001)
  T_{\min} = 0.847, T_{\max} = 0.898
```

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.066$ $wR(F^2) = 0.189$ S = 1.004920 reflections

V = 1433.48 (15) Å³ Mo $K\alpha$ radiation $\mu = 0.61 \text{ mm}^{-1}$ T = 293 (2) K $0.28 \times 0.22 \times 0.18 \text{ mm}$

5004 measured reflections 4920 independent reflections 3731 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.029$

406 parameters H-atom parameters constrained $\Delta \rho_{\text{max}} = 0.59 \text{ e } \text{\AA}^ \Delta \rho_{\rm min} = -0.67 \text{ e } \text{\AA}^{-3}$

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL.

The authors thank the Education Department of Shandong Province for research and development projects (J06A55).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CF2173).

References

- Bruker (2001). SAINT-Plus, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dutta, S. K., Beckmann, U., Bill, E., Weyhermuller, T. & Wieghardt, K. (2000). Inorg. Chem. 39, 3355-3364.

Ni, Z.-H. (2007). Acta Cryst. E63, m2531-m2532.

- Ni, Z. H., Kou, H. Z., Zhang, L. F., Ge, C., Wang, R. J. & Cui, A. L. (2006). J. Chem. Crystallogr. 36, 465-472.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Zhang, J.-Y., Liu, Q., Xu, Y., Zhang, Y., You, X.-Z. & Guo, Z.-J. (2001). Acta Cryst. C57, 109-110.

supporting information

Acta Cryst. (2008). E64, m332 [doi:10.1107/S1600536808000287]

Bis[N-(8-quinolyl)pyridine-2-carboxamidato- $\kappa^3 N$,N',N'']manganese(III) perchlorate monohydrate

Qingguo Meng, Lintong Wang, Yanzhen Liu and Yan Pang

S1. Comment

To date, many symmetrical pyridinecarboxamide ligands and their coordination complexes have been synthesized (Ni *et al.*, 2006). However, unsymmetrical pyridinecarboxamide ligands are limited (Zhang *et al.*, 2001). Here we report a new Mn^{III} complex, [Mn(C₁₅H₁₀N₃O)₂]ClO₄.H₂O, (I), containing two unsymmetrical pyridinecarboxamide tridentate ligands, 8-(pyridine-2-carboxamido)quinoline.

The structure and labeling scheme for the title complex are shown in Figure 1. The title compound comprises a $[Mn^{III}(pcq)_2]^+$ (Hpcq = 8-(pyridine-2-carboxamido)quinoline) cation and a ClQ₄ anion as well as an uncoordinated water molecule. The Mn^{III} ion in the cation is coordinated by six nitrogen atoms from two *mer* pcq⁻ ligands, giving a distorted octahedral coordination environment. The C—O, C_{pyridine}—N, and C_{earboxy}—N bond distances in the title complex agree well with those reported for other complexes containing pyridinecarboxamide ligands (Dutta *et al.*, 2000; Ni, 2007) and with the ligand precursor Hpcq (Zhang *et al.*, 2001). The average Mn—N_{pyridine} bond distance is 1.914 Å and the average Mn—N_{amide} bond length is 2.028 Å. The two pcq⁻ ligands in (I) are both nearly planar, and the two mean planes are almost perpendicular, with a dihedral angle of 86.7 (2)°. There is probably a hydrogen bond between water and perchlorate, but the H atoms of the water molecule could not be located.

S2. Experimental

The material Hpcq was synthesized according to the literature (Zhang *et al.*, 2001). Solid Hpcq (500 mg, 2 mmol) was added to a methanol/water solution (20 ml, MeOH/H₂O = 4:1 ν/ν) of Mn^{III} acetate (326 mg, 1 mmol) containing 0.5 ml pyridine The mixture was stirred for about 0.5 h. The mixture was then filtered and the resulting solution was kept at room temperature for about one week, giving rise to pink block crystals. Yield: 50%. Elemental analysis [found (calculated)] for C₃₀H₂₂ClMnN₆O₇: C 53.65 (53.79), H 3.35 (3.31), N 12.39% (12.55%).

S3. Refinement

The H atoms of the water molecule were not located. H atoms bound to C atoms were positioned geometrically, with C—H = 0.93 Å and refined as riding atoms with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

A view of (I) with the unique atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Crystal data
$[Mn(C_{15}H_{10}N_{3}O)_{2}]ClO_{4}\cdot H_{2}O$

 $M_r = 668.93$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 9.2314(5) Å *b* = 12.9987 (10) Å c = 12.0126 (5) Å $\alpha = 95.786 (1)^{\circ}$ $\beta = 91.592 (2)^{\circ}$ $\gamma = 90.486 (1)^{\circ}$ $V = 1433.48 (15) \text{ Å}^3$

Data collection

Bruker APEXII CCD area-detector diffractometer Radiation source: fine-focus sealed tube $R_{\rm int} = 0.029$ Graphite monochromator φ and ω scans $h = -10 \rightarrow 10$ Absorption correction: multi-scan $k = -15 \rightarrow 15$ (SADABS; Bruker, 2001) $l = -14 \rightarrow 14$ $T_{\rm min} = 0.847, \ T_{\rm max} = 0.898$

Z = 2F(000) = 684 $D_{\rm x} = 1.550 {\rm ~Mg} {\rm ~m}^{-3}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 4924 reflections $\theta = 3.1 - 25.0^{\circ}$ $\mu = 0.61 \text{ mm}^{-1}$ T = 293 KBlock, pink $0.28 \times 0.22 \times 0.18 \text{ mm}$

5004 measured reflections 4920 independent reflections 3731 reflections with $I > 2\sigma(I)$ $\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 3.1^{\circ}$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix. Tun	map
$R[F^2 > 2\sigma(F^2)] = 0.066$	Hydrogen site location: inferred from
$wR(F^2) = 0.189$	neighbouring sites
S = 1.00	H-atom parameters constrained
4920 reflections	$w = 1/[\sigma^2(F_o^2) + (0.1288P)^2 + 0.5125P]$
406 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.59 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta ho_{\min} = -0.67 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Z	$U_{\rm iso}$ */ $U_{\rm eq}$
Mn1	1.01973 (6)	0.24180 (4)	0.24794 (4)	0.0384 (2)
Cl1	0.51979 (17)	0.11333 (15)	0.74568 (15)	0.0909 (5)
N2	0.9935 (4)	0.3931 (3)	0.3109 (3)	0.0518 (9)
N6	0.9288 (4)	0.1667 (3)	0.3589 (3)	0.0475 (8)
N5	1.0500 (4)	0.0939 (3)	0.1904 (3)	0.0495 (8)
N4	1.1108 (4)	0.2804 (3)	0.1203 (3)	0.0527 (9)
N1	0.8270 (4)	0.2620 (3)	0.1907 (3)	0.0531 (9)
C21	1.1198 (5)	0.0783 (4)	0.0992 (4)	0.0574 (12)
C8	0.8606 (5)	0.4385 (4)	0.2926 (4)	0.0551 (11)
C30	0.9270 (5)	0.0526 (3)	0.3384 (3)	0.0490 (10)
C22	0.9966 (5)	0.0084 (3)	0.2476 (3)	0.0493 (10)
01	1.1111 (5)	0.5442 (3)	0.4079 (4)	0.0856 (12)
O2	1.1503 (5)	-0.0117 (3)	0.0524 (3)	0.0824 (11)
N3	1.2070 (4)	0.2650 (3)	0.3217 (3)	0.0475 (8)
C20	1.1555 (5)	0.1885 (4)	0.0605 (3)	0.0564 (12)
C29	0.8639 (5)	0.2116 (4)	0.4435 (3)	0.0538 (11)
H29A	0.8655	0.2831	0.4598	0.065*
C10	1.1042 (5)	0.4462 (4)	0.3671 (4)	0.0581 (11)
C26	0.8586 (5)	-0.0202 (4)	0.4046 (4)	0.0599 (12)
С9	0.7712 (5)	0.3641 (4)	0.2238 (4)	0.0542 (11)
C19	1.2233 (6)	0.1982 (6)	-0.0317 (4)	0.0755 (16)
H19A	1.2555	0.1408	-0.0763	0.091*
C16	1.1330 (6)	0.3830 (5)	0.0897 (4)	0.0669 (14)
H16A	1.0992	0.4398	0.1346	0.080*
C3	0.5529 (7)	0.3131 (6)	0.1275 (5)	0.0885 (19)

H3A	0.4579	0.3260	0.1054	0.106*
C4	0.6317 (6)	0.3950 (5)	0.1946 (4)	0.0683 (14)
C27	0.7876 (5)	0.0330 (5)	0.4904 (4)	0.0675 (14)
H27A	0.7353	-0.0039	0.5385	0.081*
C25	0.8682 (6)	-0.1357 (4)	0.3793 (5)	0.0711 (15)
H25A	0.8232	-0.1787	0.4255	0.085*
C1	0.7488 (6)	0.1890 (5)	0.1282 (4)	0.0686 (14)
H1A	0.7861	0.1235	0.1091	0.082*
C7	0.8077 (6)	0.5402 (4)	0.3300 (4)	0.0646 (13)
H7A	0.8676	0.5861	0.3748	0.078*
C15	1.3127 (5)	0.1909 (4)	0.3235 (4)	0.0577 (11)
H15A	1.2969	0.1248	0.2878	0.069*
C28	0.7912 (6)	0.1470 (5)	0.5094 (4)	0.0690 (14)
H28A	0.7411	0.1780	0.5698	0.083*
C24	0.9389 (7)	-0.1761 (4)	0.2934 (6)	0.0758 (16)
H24A	0.9466	-0.2473	0.2773	0.091*
C11	1.2259 (5)	0.3692 (4)	0.3732 (4)	0.0572 (11)
C12	1.3534 (6)	0.3970 (5)	0.4287 (5)	0.0775 (16)
H12A	1.3695	0.4635	0.4636	0.093*
C17	1.2026 (7)	0.3964 (6)	-0.0036 (5)	0.0810 (17)
H17A	1.2204	0.4610	-0.0277	0.097*
C23	1.0035 (6)	-0.1057 (4)	0.2258 (4)	0.0623 (12)
H23A	1.0534	-0.1331	0.1636	0.075*
C2	0.6104 (7)	0.2143 (6)	0.0929 (5)	0.094 (2)
H2A	0.5552	0.1666	0.0465	0.112*
C18	1.2466 (7)	0.3029 (7)	-0.0623 (5)	0.091 (2)
H18A	1.2960	0.3086	-0.1278	0.109*
C14	1.4402 (6)	0.2164 (5)	0.3784 (5)	0.0732 (15)
H14A	1.5138	0.1684	0.3824	0.088*
C13	1.4573 (7)	0.3211 (6)	0.4304 (6)	0.0904 (19)
H13A	1.5449	0.3388	0.4679	0.108*
C5	0.5839 (7)	0.5006 (6)	0.2351 (5)	0.0828 (18)
H5A	0.4908	0.5198	0.2149	0.099*
C6	0.6675 (7)	0.5712 (5)	0.3000 (5)	0.0816 (17)
H6A	0.6336	0.6368	0.3233	0.098*
O3	0.4151 (9)	0.0401 (7)	0.7756 (7)	0.182 (3)
O6	0.6578 (6)	0.0767 (6)	0.7331 (6)	0.142 (2)
O5	0.4784 (9)	0.1497 (12)	0.6457 (8)	0.258 (7)
O4	0.5174 (12)	0.2145 (7)	0.8072 (9)	0.220 (4)
O1W	0.7670 (12)	0.3638 (8)	0.8063 (11)	0.254 (6)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Mn1	0.0473 (4)	0.0421 (4)	0.0250 (3)	0.0047 (2)	0.0057 (2)	-0.0016 (2)
Cl1	0.0727 (9)	0.1085 (13)	0.0909 (11)	0.0234 (9)	0.0159 (8)	0.0013 (9)
N2	0.067 (2)	0.0450 (19)	0.0427 (19)	0.0049 (17)	0.0095 (17)	-0.0011 (16)
N6	0.052 (2)	0.056 (2)	0.0325 (17)	0.0015 (16)	0.0008 (14)	-0.0011 (15)

N5	0.052 (2)	0.062 (2)	0.0333 (17)	0.0084 (17)	0.0005 (14)	-0.0034 (16)
N4	0.053 (2)	0.076 (3)	0.0299 (17)	0.0037 (18)	0.0016 (14)	0.0087 (17)
N1	0.058 (2)	0.069 (2)	0.0309 (17)	0.0032 (18)	0.0042 (15)	0.0008 (16)
C21	0.062 (3)	0.068 (3)	0.038 (2)	0.019 (2)	-0.0008 (19)	-0.013 (2)
C8	0.068 (3)	0.058 (3)	0.041 (2)	0.008 (2)	0.011 (2)	0.011 (2)
C30	0.049 (2)	0.058 (3)	0.040 (2)	-0.0046 (19)	-0.0094 (17)	0.0057 (19)
C22	0.050 (2)	0.051 (2)	0.044 (2)	0.0004 (19)	-0.0096 (18)	-0.0038 (19)
01	0.106 (3)	0.055 (2)	0.090 (3)	0.000 (2)	-0.003 (2)	-0.0202 (19)
O2	0.107 (3)	0.089 (3)	0.0469 (19)	0.027 (2)	0.0061 (19)	-0.0160 (18)
N3	0.050 (2)	0.059 (2)	0.0334 (17)	-0.0011 (16)	0.0063 (14)	0.0023 (15)
C20	0.048 (2)	0.091 (4)	0.029 (2)	0.007 (2)	-0.0020 (16)	-0.004 (2)
C29	0.058 (3)	0.068 (3)	0.035 (2)	0.006 (2)	0.0039 (18)	0.003 (2)
C10	0.068 (3)	0.054 (3)	0.051 (3)	-0.003 (2)	0.007 (2)	-0.006 (2)
C26	0.057 (3)	0.074 (3)	0.050 (3)	-0.015 (2)	-0.012 (2)	0.018 (2)
C9	0.064 (3)	0.063 (3)	0.037 (2)	0.013 (2)	0.0147 (19)	0.0106 (19)
C19	0.067 (3)	0.127 (5)	0.031 (2)	0.003 (3)	0.010(2)	0.000 (3)
C16	0.068 (3)	0.093 (4)	0.042 (3)	0.005 (3)	0.003 (2)	0.020 (3)
C3	0.065 (4)	0.130 (6)	0.071 (4)	0.024 (4)	-0.006 (3)	0.015 (4)
C4	0.066 (3)	0.093 (4)	0.051 (3)	0.023 (3)	0.009 (2)	0.023 (3)
C27	0.056 (3)	0.101 (4)	0.049 (3)	-0.011 (3)	0.001 (2)	0.026 (3)
C25	0.075 (4)	0.068 (3)	0.073 (4)	-0.014 (3)	-0.007 (3)	0.026 (3)
C1	0.065 (3)	0.083 (4)	0.054 (3)	0.014 (3)	-0.008(2)	-0.009 (3)
C7	0.087 (4)	0.053 (3)	0.056 (3)	0.014 (2)	0.017 (2)	0.010 (2)
C15	0.068 (3)	0.063 (3)	0.043 (2)	0.008 (2)	0.003 (2)	0.008 (2)
C28	0.063 (3)	0.106 (4)	0.041 (2)	0.004 (3)	0.012 (2)	0.014 (3)
C24	0.087 (4)	0.051 (3)	0.089 (4)	-0.005 (3)	-0.013 (3)	0.009 (3)
C11	0.067 (3)	0.058 (3)	0.045 (2)	-0.009(2)	0.006 (2)	-0.002(2)
C12	0.073 (4)	0.083 (4)	0.071 (3)	-0.018 (3)	-0.006(3)	-0.015 (3)
C17	0.082 (4)	0.114 (5)	0.051 (3)	-0.006(3)	0.003 (3)	0.027 (3)
C23	0.073 (3)	0.055 (3)	0.056 (3)	0.005 (2)	-0.006(2)	-0.005(2)
C2	0.078 (4)	0.133 (6)	0,064 (4)	0.009 (4)	-0.021 (3)	-0.013 (4)
C18	0.077 (4)	0.154 (7)	0.042 (3)	0.002 (4)	0.014 (3)	0.014 (4)
C14	0.052 (3)	0.099 (4)	0.067 (3)	0.008 (3)	-0.011(2)	0.005 (3)
C13	0.069 (4)	0.108 (5)	0.091 (4)	0.000 (3)	-0.015 (3)	-0.003 (4)
C5	0.077 (4)	0.109 (5)	0.068 (4)	0.032 (4)	0.011 (3)	0.030 (3)
C6	0.096 (4)	0.082 (4)	0.072 (4)	0.026 (3)	0.026 (3)	0.021 (3)
03	0.164 (7)	0.217 (8)	0.172 (7)	-0.050(6)	0.047 (5)	0.050 (6)
06	0.109 (4)	0.176 (6)	0.146 (5)	0.063 (4)	0.029 (4)	0.034 (5)
05	0.138 (7)	0.51 (2)	0.150 (7)	0.019 (9)	0.001 (5)	0.155 (10)
04	0.280 (11)	0.141 (6)	0.231 (10)	0.035 (7)	0.097 (8)	-0.047 (6)
O1W	0.240 (11)	0.150 (7)	0.350 (16)	-0.003 (7)	0.052 (10)	-0.088 (9)

Geometric parameters (Å, °)

Mn1—N4	1.878 (3)	C9—C4	1.398 (7)	
Mn1—N1	1.919 (4)	C19—C18	1.461 (10)	
Mn1—N3	1.928 (4)	C19—H19A	0.930	
Mn1—N6	1.935 (4)	C16—C17	1.334 (7)	

Mn1—N5	2.000 (4)	C16—H16A	0.930
Mn1—N2	2.054 (4)	C3—C2	1.421 (10)
Cl1—O6	1.371 (5)	C3—C4	1.447 (9)
Cl1—O5	1.380 (8)	С3—НЗА	0.930
Cl1—O3	1.429 (7)	C4—C5	1.485 (9)
Cl1—O4	1.442 (8)	C27—C28	1.477 (8)
N2—C10	1.353 (6)	С27—Н27А	0.930
N2—C8	1.388 (6)	C25—C24	1.303 (9)
N6—C29	1.286 (6)	C25—H25A	0.930
N6—C30	1.478 (6)	C1—C2	1.388 (8)
N5—C21	1.286 (6)	C1—H1A	0.930
N5—C22	1.454 (6)	C7—C6	1.406 (9)
N4—C20	1.402 (6)	С7—Н7А	0.930
N4—C16	1.433 (7)	C15—C14	1.355 (7)
N1—C1	1.342 (6)	С15—Н15А	0.930
N1—C9	1.450 (6)	C28—H28A	0.930
C21—O2	1.283 (6)	C24—C23	1.422 (8)
C21—C20	1.585 (8)	C24—H24A	0.930
C8—C9	1.445 (7)	C11—C12	1.364 (7)
C8—C7	1.446 (7)	C12—C13	1.384 (9)
C30—C22	1.360 (6)	C12—H12A	0.930
C30—C26	1.449 (6)	C17—C18	1.411 (10)
C22—C23	1.481 (6)	С17—Н17А	0.930
O1—C10	1.318 (6)	C23-H23A	0.930
N3—C15	1.378 (6)	C2—H2A	0.930
N3—C11	1.438 (6)	C18—H18A	0.930
C20—C19	1.304 (6)	C14—C13	1.444 (9)
C29—C28	1.391 (7)	C14—H14A	0.930
C29—H29A	0.930	C13—H13A	0.930
C10—C11	1.516 (7)	C5—C6	1.362 (9)
C26—C27	1.369 (8)	С5—Н5А	0.930
C26—C25	1.505 (8)	С6—Н6А	0.930
N4—Mn1—N1	94.61 (15)	C8—C9—N1	119.6 (4)
N4—Mn1—N3	85.35 (14)	C20-C19-C18	117.4 (6)
N1—Mn1—N3	162.60 (16)	С20—С19—Н19А	121.3
N4—Mn1—N6	165.15 (17)	C18—C19—H19A	121.3
N1—Mn1—N6	86.06 (15)	C17—C16—N4	119.4 (6)
N3—Mn1—N6	98.42 (14)	C17—C16—H16A	120.3
N4—Mn1—N5	88.36 (16)	N4—C16—H16A	120.3
N1—Mn1—N5	100.50 (16)	C2—C3—C4	124.5 (5)
N3—Mn1—N5	96.89 (15)	С2—С3—НЗА	117.7
N6—Mn1—N5	76.95 (15)	С4—С3—Н3А	117.7
N4—Mn1—N2	92.24 (16)	C9—C4—C3	111.5 (5)
N1—Mn1—N2	81.17 (16)	C9—C4—C5	119.0 (6)
N3—Mn1—N2	81.45 (16)	C3—C4—C5	129.4 (5)
N6—Mn1—N2	102.51 (15)	C26—C27—C28	122.3 (5)
N5—Mn1—N2	178.18 (15)	С26—С27—Н27А	118.8

O6—Cl1—O5	106.8 (5)	С28—С27—Н27А	118.9
O6—C11—O3	115.4 (5)	C24—C25—C26	120.8 (5)
O5—Cl1—O3	110.0 (6)	С24—С25—Н25А	119.6
O6—C11—O4	112.3 (6)	С26—С25—Н25А	119.6
O5—Cl1—O4	93.5 (8)	N1—C1—C2	117.8 (6)
O3—Cl1—O4	116.3 (5)	N1—C1—H1A	121.1
C10—N2—C8	121.8 (4)	C2—C1—H1A	121.1
C10—N2—Mn1	120.3 (3)	C6—C7—C8	121.4 (5)
C8—N2—Mn1	117.9 (3)	С6—С7—Н7А	119.3
C29—N6—C30	120.0 (4)	С8—С7—Н7А	119.3
C29—N6—Mn1	123.0 (3)	C14—C15—N3	118.6 (5)
C30—N6—Mn1	116.8 (3)	C14—C15—H15A	120.7
C21—N5—C22	121.4 (4)	N3—C15—H15A	120.7
C21—N5—Mn1	116.1 (3)	C29—C28—C27	124.8 (5)
C22—N5—Mn1	122.5 (3)	C29—C28—H28A	117.6
C20—N4—C16	126.2 (4)	С27—С28—Н28А	117.6
C20—N4—Mn1	106.4 (3)	C25—C24—C23	116.6 (5)
C16—N4—Mn1	127.4 (3)	C25—C24—H24A	121.7
C1—N1—C9	122.6 (4)	C23—C24—H24A	121.7
C1—N1—Mn1	124.1 (4)	C12—C11—N3	119.2 (5)
C9—N1—Mn1	113.4 (3)	C12-C11-C10	120.7 (5)
O2—C21—N5	123.9 (5)	N3-C11-C10	120.1 (4)
O2—C21—C20	129.2 (4)	C11-C12-C13	116.4 (5)
N5-C21-C20	106.9 (4)	C11-C12-H12A	121.8
N2—C8—C9	107.8 (4)	C13—C12—H12A	121.8
N2—C8—C7	130.8 (5)	C16—C17—C18	113.3 (6)
C9—C8—C7	121.4 (5)	С16—С17—Н17А	123.3
C22—C30—C26	114.5 (4)	C18—C17—H17A	123.3
C22—C30—N6	118.1 (4)	C24—C23—C22	124.4 (5)
C26—C30—N6	127.4 (4)	С24—С23—Н23А	117.8
C30—C22—N5	105.6 (4)	С22—С23—Н23А	117.8
C30—C22—C23	120.3 (4)	C1—C2—C3	120.2 (6)
N5—C22—C23	134,1 (4)	C1—C2—H2A	119.9
C15—N3—C11	123.4 (4)	C3—C2—H2A	119.9
C15—N3—Mn1	124.0 (3)	C17—C18—C19	127.4 (5)
C11—N3—Mn1	112.6 (3)	C17—C18—H18A	116.3
C19—C20—N4	116.3 (5)	C19—C18—H18A	116.3
C19—C20—C21	121.5 (5)	C15—C14—C13	117.4 (5)
N4—C20—C21	122.1 (4)	C15—C14—H14A	121.3
N6—C29—C28	116.1 (5)	C13—C14—H14A	121.3
N6—C29—H29A	121.9	C12—C13—C14	125.0 (5)
С28—С29—Н29А	121.9	С12—С13—Н13А	117.5
O1-C10-N2	129.2 (5)	C14—C13—H13A	117.5
O1-C10-C11	125.3 (4)	C6—C5—C4	124.3 (6)
N2-C10-C11	105.5 (4)	С6—С5—Н5А	117.9
C27—C26—C30	109.2 (5)	C4—C5—H5A	117.8
C27—C26—C25	127.4 (5)	C5—C6—C7	116.8 (6)
C30—C26—C25	123.4 (5)	С5—С6—Н6А	121.6

supporting information

С4—С9—С8	117.0 (5)	С7—С6—Н6А	121.6	
C4—C9—N1	123.3 (5)			

