Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-(Dibutylamino)-3-(4-fluorophenyl)-5,6,7,8-tetrahydro-7-methyl-6,8-diphenylpyridine[3',4':2,3]thieno[5,4-d]pyrimidin-4(3H)-one

Guo-ping Zeng,^a Qing Li^b and Yang-gen Hu^c*

^aDepartment of Chemistry and Life Science, Hubei University of Education, Wuhan 430205, People's Republic of China, ^bTaihe Hospital, Yunyang Medical College, Shiyan 442000, People's Republic of China, and ^cDepartment of Medicinal Chemistry, Yunyang Medical College, Shiyan 442000, People's Republic of China Correspondence e-mail: huyangg111@yahoo.com.cn

Received 15 January 2008; accepted 25 January 2008

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.005 Å; disorder in main residue; R factor = 0.076; wR factor = 0.178; data-to-parameter ratio = 15.1

In the crystal structure of the title compound, $C_{36}H_{39}FN_4OS$, the two fused rings of the thienopyrimidine system are coplanar. The 4-fluorophenyl ring is twisted with respect to the heterocyclic pyrimidinone ring by $67.21 (14)^{\circ}$. The piperidine ring shows a half-chair conformation. One of the *n*-butyl chains is disordered equally over two sites. The crystal packing is stabilized by $C-H \cdots O$ hydrogen bonds.

Related literature

The preparation and biological activity are described by Walter (1999a,b). For related literature, see: Ding et al. (2004). For the crystal structures of other fused pyrimidinone derivatives, see: Hu et al. (2006, 2007).

32225 measured reflections

 $R_{\rm int} = 0.049$

6359 independent reflections

4457 reflections with $I > 2\sigma(I)$

Experimental

Crystal data

$C_{36}H_{39}FN_4OS$	$V = 3249.0 (14) \text{ Å}^3$
$M_r = 594.77$	Z = 4
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
$a = 13.723 (4) \text{\AA}$	$\mu = 0.14 \text{ mm}^{-1}$
b = 9.836 (3) Å	T = 294 (2) K
c = 24.5496 (15) Å	$0.20 \times 0.10 \times 0.10$ mm
$\beta = 101.342 \ (2)^{\circ}$	

Data collection

Bruker SMART 4K CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2001) $T_{\min} = 0.973, \ T_{\max} = 0.986$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.075$	420 parameters
$vR(F^2) = 0.178$	H-atom parameters constrained
S = 1.10	$\Delta \rho_{\rm max} = 0.40 \text{ e } \text{\AA}^{-3}$
359 reflections	$\Delta \rho_{\rm min} = -0.18 \text{ e} \text{ Å}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	<i>D</i> -Н	H···A	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C4-H4\cdots O1^i$	0.93	2.47	3.304 (6)	149

Symmetry code: (i) -x + 1, $y - \frac{1}{2}$, $-z + \frac{1}{2}$.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

The authors gratefully acknowledge financial support of this work by the Key Science Research Project of Hubei Provincial Department of Education (grant No. D200724001) and the Science Research Project of Yunyang Medical College (grant No. 2006QDJ16).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2671).

References

Bruker (2001). SMART (Version 5.628), SAINT-Plus (Version 6.45) and SADABS (Version 2.10). Bruker AXS Inc., Madison, Wisconsin, USA. Ding, M. W., Xu, S. Z. & Zhao, J. F. (2004). J. Org. Chem. 69, 8366-8371. Hu, Y.-G., Li, G.-H. & Zhou, M.-H. (2007). Acta Cryst. E63, o1836-o1838. Hu, Y.-G., Zheng, A.-H. & Li, G.-H. (2006). Acta Cryst. E62, 01457-01459. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122. Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13. Walter, H. (1999a). PCT Int. Appl. No. 44. Walter, H. (1999b). PCT Int. Appl. No. 89.

supporting information

Acta Cryst. (2008). E64, o535 [doi:10.1107/S1600536808002845]

2-(Dibutylamino)-3-(4-fluorophenyl)-5,6,7,8-tetrahydro-7-methyl-6,8-diphenyl-pyridine[3',4':2,3]thieno[5,4-*d*]pyrimidin-4(3*H*)-one

Guo-ping Zeng, Qing Li and Yang-gen Hu

S1. Comment

The derivatives of heterocycles containing the thienopyrimidine system, which are well known bioisosteres of quinazolines, are of great importance because of their remarkable biological properties (Walter, 1999*a*; Walter, 1999*b*; Ding *et al.*, 2004). Recently, we have focused on the synthesis of the fused heterocycle systems containing thienopyrimidine *via* aza-Wittig reaction at room temperature. Some X-ray crystal structures of fused pyrimidinone derivatives have been reported (Hu *et al.*, 2006; 2007). The title compound (Fig. 1) may be used as a precursor for obtaining bioactive molecules. The two fused rings of the thienopyrimidine ring system are coplanar, making a dihedral angle of 0.36 (13)°. The *p*-fluorophenyl ring is twisted with respect to pyrimidinone ring by 67.21 (14)°. The piperidine ring shows a half-chair conformation [φ =25.9 (4)° and θ = 49.9 (3)°, puckering Amplitude = 0.515 (3) Å]. One of the *n*-butyl chains is disordered over two sites. The crystal packing is stabilized by C—H…O hydrogen bonds interactions (Table 1).

S2. Experimental

To a solution of ethyl 2-((*p*-flurophenylimino)methyleneamino)-4,5,6,7-tetrahydro-6-methyl- 5,7-diphenylthieno[2,3*c*]pyridine-3-carboxylate (3 mmol) in dichloromethane (5 ml) was added dibutylamine (3 mmol). After stirring the reaction mixture for 1 h, the solvent was removed and anhydrous ethanol (10 ml) with several drops of EtONa in EtOH was added. The mixture was stirred for 4 h at room temperature. The solution was concentrated under reduced pressure and the residue was recrystallized from dichloromethane and ethanol (v/v = 1:1) to give the title compound in a yield of 80%. Crystals suitable for single-crystal X-ray diffraction were obtained by recrystallization from a mixed solvent of ethanol and dichloromethane (1:3 v/v) at room temperature.

S3. Refinement

All H-atoms were positioned with idealized geometry and refined using a riding model with $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms and $U_{iso}(H) = 1.2U_{eq}(C)$ for all other H atoms and with C—H ranging from 0.93° to 0.98 Å. The methyl groups were allowed to rotate but not to tip. Three atoms of one *n*-butyl chains are disordered over two sites with site occupation factors of 0.540 (12) and 0.460 (12).

Figure 1

Molecular structure of the title compound with labelling and displacement ellipsoids drawn at the 50% probability level

2-(Dibutylamino)-3-(4-fluorophenyl)-5,6,7,8-tetrahydro-7-methyl-6,8- diphenylpyridine[3',4':2,3]thieno[5,4*d*]pyrimidin-4(3*H*)-one

Crystal data	
$C_{36}H_{39}FN_4OS$	F(000) = 1264
$M_r = 594.77$	$D_{\rm x} = 1.216 {\rm Mg} {\rm m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 4792 reflections
a = 13.723 (4) Å	$\theta = 2.2 - 21.1^{\circ}$
b = 9.836(3) Å	$\mu=0.14~\mathrm{mm^{-1}}$
c = 24.5496 (15) Å	T = 294 K
$\beta = 101.342 \ (2)^{\circ}$	Block, colorless
$V = 3249.0 (14) \text{ Å}^3$	$0.20 \times 0.10 \times 0.10$ mm
Z = 4	
Data collection	
Bruker SMART 4K CCD area-detector	32225 measured reflections
diffractometer	6359 independent reflections
Radiation source: fine-focus sealed tube	4457 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.049$
φ and ω scans	$\theta_{\rm max} = 26.0^{\circ}, \ \theta_{\rm min} = 2.0^{\circ}$
Absorption correction: multi-scan	$h = -16 \rightarrow 16$
(SADABS; Bruker, 2001)	$k = -12 \rightarrow 12$
$T_{\min} = 0.973, \ T_{\max} = 0.986$	$l = -29 \rightarrow 30$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.075$	Hydrogen site location: inferred from
$wR(F^2) = 0.178$	neighbouring sites
<i>S</i> = 1.10	H-atom parameters constrained
6359 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0743P)^2 + 1.2986P]$
420 parameters	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta ho_{ m max} = 0.40$ e Å ⁻³
	$\Delta \rho_{\rm min} = -0.18 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
C1	0.3447 (2)	0.2687 (3)	0.22128 (13)	0.0579 (8)	
C2	0.3770 (3)	0.3694 (5)	0.19044 (17)	0.0870 (12)	
H2	0.3466	0.4543	0.1877	0.104*	
C3	0.4545 (4)	0.3456 (7)	0.1635 (2)	0.1172 (18)	
Н3	0.4759	0.4152	0.1431	0.141*	
C4	0.4996 (4)	0.2237 (9)	0.1661 (3)	0.136 (3)	
H4	0.5511	0.2084	0.1472	0.163*	
C5	0.4692 (4)	0.1243 (7)	0.1963 (3)	0.131 (2)	
Н5	0.5001	0.0399	0.1982	0.158*	
C6	0.3933 (3)	0.1448 (4)	0.22453 (19)	0.0905 (13)	
H6	0.3745	0.0750	0.2459	0.109*	
C7	0.2588 (2)	0.2901 (3)	0.25038 (12)	0.0510 (7)	
H7	0.2445	0.2034	0.2668	0.061*	
C8	0.2858 (2)	0.3941 (3)	0.29718 (11)	0.0510 (7)	
H8A	0.3355	0.3555	0.3267	0.061*	
H8B	0.3143	0.4739	0.2832	0.061*	
C9	0.19730 (18)	0.4348 (3)	0.31993 (10)	0.0411 (6)	
C10	0.10476 (18)	0.4041 (3)	0.29181 (11)	0.0427 (6)	
C11	0.1498 (2)	0.2452 (4)	0.16164 (14)	0.0767 (11)	
H11A	0.1524	0.1519	0.1733	0.115*	
H11B	0.1998	0.2612	0.1400	0.115*	
H11C	0.0854	0.2645	0.1396	0.115*	
C12	0.08097 (19)	0.3292 (3)	0.23755 (11)	0.0474 (7)	
H12	0.0669	0.2341	0.2450	0.057*	
C13	-0.0112 (2)	0.3913 (3)	0.20114 (11)	0.0503 (7)	

C14	-0.1018 (2)	0.3286 (4)	0.19700 (14)	0.0644 (9)	
H14	-0.1059	0.2453	0.2143	0.077*	
C15	-0.1881 (3)	0.3895 (5)	0.16690 (18)	0.0912 (13)	
H15	-0.2494	0.3472	0.1643	0.109*	
C16	-0.1813 (3)	0.5119 (5)	0.14142 (17)	0.0936 (14)	
H16	-0.2383	0.5533	0.1217	0.112*	
C17	-0.0902(3)	0.5741 (4)	0.14485 (14)	0.0851 (12)	
H17	-0.0860	0.6567	0.1270	0.102*	
C18	-0.0060(3)	0.5145 (4)	0.17451 (13)	0.0715(10)	
H18	0.0552	0.5571	0.1768	0.086*	
C19	0.19517 (18)	0.5079 (3)	0.37045 (10)	0.0398 (6)	
C20	0 10039 (18)	0.5317(3)	0 37838 (10)	0.0421 (6)	
C21	0.27613(19)	0.5607(3)	0.41048(11)	0.0416(6)	
C22	0 14679 (18)	0.6441(3)	0 45949 (11)	0.0438(7)	
C23	0.32616 (19)	0.6976(3)	0.49318 (11)	0.0434(6)	
C24	0.32010(1)) 0.3317(2)	0.0370(3)	0.49281(12)	0.0539(8)	
H24	0.2826	0.8865	0.4699	0.065*	
C25	0.2020 0.4101 (2)	0.0003	0.7640(15)	0.003	
H25	0.4140	0.9962	0.5271	0.086*	
C26	0.4817(2)	0.9902 0.8244 (4)	0.5271 0.55861 (15)	0.000	
C20	0.4317(2) 0.4788(2)	0.6271(4)	0.55801(13) 0.55940(14)	0.0746(10)	
H27	0.5289	0.6376	0.5819	0.086*	
C28	0.3209	0.6217(3)	0.52600 (12)	0.0581 (8)	
U20	0.3998 (2)	0.5273	0.5258	0.0581 (8)	
C20	0.3302 0.0333 (2)	0.3273 0.7057 (3)	0.3238 0.40500 (14)	0.070	
U29 H20A	0.0335 (2)	0.7937 (3)	0.5205	0.0594 (8)	
1129A	0.0420	0.8720	0.3203	0.071*	
C20	-0.0583(2)	0.8328 0.7227 (4)	0.4377 0.50160 (15)	0.071°	
U20A	-0.0383(2)	0.7227 (4)	0.5387	0.0003 (9)	
1130A 1120D	-0.0704	0.0041	0.3387	0.080*	
C21	-0.1480(2)	0.0404	0.4752 0.40285 (15)	0.080°	
	-0.1469(2) -0.1360	0.8133(4)	0.49285 (15)	0.0700 (10)	
	-0.1309	0.0002	0.3199	0.084*	
	-0.1371	0.8339	0.4302	0.064°	
C32	-0.2429 (3)	0.7447(3)	0.4977 (2)	0.1140(17)	
H32A 1122D	-0.2572	0.0750	0.4099	0.171*	
нэ2в	-0.2965	0.8092	0.4925	0.171*	
H32C	-0.2357	0.7043	0.5339	$0.1/1^{+}$	
	0.1645 (2)	0.0017 (4)	0.56025 (12)	0.0669 (9)	0.540 (12)
H33A	0.1087	0.6153	0.5709	0.080*	0.540 (12)
НЭЭВ	0.2126	0.5920	0.5563	0.080*	0.540 (12)
H33C	0.2243	0.6084	0.5614	0.080*	0.460 (12)
H33D	0.1146	0.6048	0.5/19	0.080*	0.460 (12)
C34	0.2095 (12)	0.7431 (12)	0.6075 (4)	0.066 (3)	0.540 (12)
H34A	0.1596	0.8048	0.6163	0.079*	0.540 (12)
H34B	0.2616	0.7980	0.5971	0.079*	0.540 (12)
C35	0.2531 (8)	0.6640 (10)	0.6590 (3)	0.068 (3)	0.540 (12)
H35A	0.2014	0.6101	0.6704	0.082*	0.540 (12)
нзэв	0.3035	0.6023	0.6509	0.082*	0.540 (12)

C36	0.2984 (9)	0.7568 (10)	0.7053 (4)	0.104 (4)	0.540 (12)
H36A	0.3532	0.8046	0.6952	0.156*	0.540 (12)
H36B	0.3216	0.7044	0.7383	0.156*	0.540 (12)
H36C	0.2494	0.8210	0.7121	0.156*	0.540 (12)
C35′	0.2274 (7)	0.7482 (16)	0.6599 (3)	0.084 (4)	0.460 (12)
H35C	0.2191	0.8236	0.6840	0.101*	0.460 (12)
H35D	0.1883	0.6727	0.6692	0.101*	0.460 (12)
C36′	0.3346 (8)	0.7077 (14)	0.6708 (7)	0.118 (5)	0.460 (12)
H36D	0.3423	0.6263	0.6505	0.177*	0.460 (12)
H36E	0.3570	0.6914	0.7098	0.177*	0.460 (12)
H36F	0.3733	0.7794	0.6591	0.177*	0.460 (12)
C34′	0.1879 (13)	0.7894 (15)	0.6001 (5)	0.073 (4)	0.460 (12)
H34C	0.2365	0.8465	0.5873	0.088*	0.460 (12)
H34D	0.1277	0.8424	0.5982	0.088*	0.460 (12)
F1	0.56013 (15)	0.8889 (3)	0.59104 (11)	0.1141 (9)	
N1	0.16778 (16)	0.3340 (3)	0.21066 (9)	0.0490 (6)	
N2	0.07372 (15)	0.5982 (2)	0.42205 (9)	0.0460 (6)	
N3	0.24634 (15)	0.6284 (2)	0.45583 (9)	0.0425 (5)	
N4	0.12771 (17)	0.7164 (3)	0.50414 (9)	0.0543 (6)	
O1	0.36369 (14)	0.5545 (2)	0.40787 (8)	0.0573 (6)	
S1	0.01216 (5)	0.46324 (8)	0.32512 (3)	0.0508 (2)	

Atomic displacement parameters $(Å^2)$

U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
0.0445 (16)	0.074 (2)	0.0542 (19)	0.0018 (15)	0.0070 (14)	-0.0218 (17)
0.079 (3)	0.107 (3)	0.085 (3)	-0.001 (2)	0.041 (2)	0.002 (2)
0.087 (3)	0.182 (6)	0.097 (3)	-0.014 (4)	0.054 (3)	-0.018 (4)
0.056 (3)	0.235 (8)	0.125 (5)	-0.007 (4)	0.039 (3)	-0.087 (5)
0.061 (3)	0.156 (6)	0.174 (6)	0.032 (3)	0.016 (3)	-0.081 (5)
0.067 (2)	0.089 (3)	0.112 (3)	0.014 (2)	0.008 (2)	-0.025 (2)
0.0510 (16)	0.0564 (18)	0.0459 (17)	0.0009 (14)	0.0106 (13)	-0.0015 (14)
0.0448 (15)	0.068 (2)	0.0388 (15)	0.0030 (14)	0.0046 (12)	-0.0073 (14)
0.0400 (14)	0.0488 (16)	0.0347 (14)	-0.0002 (12)	0.0081 (11)	0.0020 (12)
0.0399 (14)	0.0525 (17)	0.0355 (14)	-0.0058 (12)	0.0066 (11)	-0.0016 (12)
0.058 (2)	0.119 (3)	0.055 (2)	-0.014 (2)	0.0159 (16)	-0.035 (2)
0.0450 (15)	0.0556 (18)	0.0411 (16)	-0.0080 (13)	0.0071 (12)	-0.0064 (13)
0.0488 (16)	0.067 (2)	0.0336 (15)	-0.0044 (14)	0.0038 (12)	-0.0170 (14)
0.0482 (18)	0.077 (2)	0.066 (2)	-0.0068 (16)	0.0060 (15)	-0.0212 (18)
0.053 (2)	0.120 (4)	0.094 (3)	-0.001 (2)	-0.002 (2)	-0.039 (3)
0.084 (3)	0.113 (4)	0.068 (3)	0.033 (3)	-0.023 (2)	-0.029 (3)
0.102 (3)	0.091 (3)	0.051 (2)	0.012 (2)	-0.012 (2)	-0.0048 (19)
0.080(2)	0.080 (3)	0.0490 (19)	-0.0041 (19)	-0.0023 (17)	0.0017 (18)
0.0375 (14)	0.0448 (15)	0.0364 (14)	-0.0001 (11)	0.0058 (11)	0.0009 (12)
0.0377 (14)	0.0516 (17)	0.0358 (14)	0.0007 (12)	0.0042 (11)	0.0012 (12)
0.0390 (15)	0.0494 (17)	0.0355 (14)	0.0040 (12)	0.0051 (11)	0.0017 (12)
0.0379 (14)	0.0559 (17)	0.0366 (15)	0.0056 (12)	0.0051 (11)	-0.0015 (13)
0.0402 (14)	0.0524 (18)	0.0357 (14)	0.0009 (12)	0.0029 (11)	-0.0049 (12)
	$\begin{array}{c} U^{11} \\ \hline 0.0445 (16) \\ 0.079 (3) \\ 0.087 (3) \\ 0.056 (3) \\ 0.061 (3) \\ 0.067 (2) \\ 0.0510 (16) \\ 0.0448 (15) \\ 0.0400 (14) \\ 0.0399 (14) \\ 0.0399 (14) \\ 0.058 (2) \\ 0.0450 (15) \\ 0.0488 (16) \\ 0.0482 (18) \\ 0.053 (2) \\ 0.084 (3) \\ 0.102 (3) \\ 0.080 (2) \\ 0.0375 (14) \\ 0.0390 (15) \\ 0.0379 (14) \\ 0.0379 (14) \\ 0.0402 (14) \\ \end{array}$	U^{11} U^{22} 0.0445 (16)0.074 (2)0.079 (3)0.107 (3)0.087 (3)0.182 (6)0.056 (3)0.235 (8)0.061 (3)0.156 (6)0.067 (2)0.089 (3)0.0510 (16)0.0564 (18)0.0448 (15)0.068 (2)0.0400 (14)0.0488 (16)0.0399 (14)0.0525 (17)0.058 (2)0.119 (3)0.0450 (15)0.0556 (18)0.0488 (16)0.067 (2)0.0482 (18)0.077 (2)0.053 (2)0.120 (4)0.084 (3)0.113 (4)0.102 (3)0.091 (3)0.0375 (14)0.0448 (15)0.0379 (14)0.0559 (17)0.0390 (15)0.0494 (17)0.0379 (14)0.0559 (17)0.0402 (14)0.0524 (18)	U^{11} U^{22} U^{33} 0.0445 (16)0.074 (2)0.0542 (19)0.079 (3)0.107 (3)0.085 (3)0.087 (3)0.182 (6)0.097 (3)0.056 (3)0.235 (8)0.125 (5)0.061 (3)0.156 (6)0.174 (6)0.067 (2)0.089 (3)0.112 (3)0.0510 (16)0.0564 (18)0.0459 (17)0.0448 (15)0.068 (2)0.0388 (15)0.0400 (14)0.0488 (16)0.0347 (14)0.0399 (14)0.0525 (17)0.0355 (14)0.058 (2)0.119 (3)0.055 (2)0.0450 (15)0.0556 (18)0.0411 (16)0.0482 (18)0.077 (2)0.066 (2)0.053 (2)0.120 (4)0.094 (3)0.102 (3)0.091 (3)0.051 (2)0.080 (2)0.080 (3)0.0490 (19)0.0375 (14)0.0516 (17)0.0358 (14)0.0390 (15)0.0494 (17)0.0355 (14)0.0379 (14)0.0559 (17)0.0366 (15)0.0402 (14)0.0524 (18)0.0357 (14)	U^{11} U^{22} U^{33} U^{12} 0.0445 (16)0.074 (2)0.0542 (19)0.0018 (15)0.079 (3)0.107 (3)0.085 (3) $-0.001 (2)$ 0.087 (3)0.182 (6)0.097 (3) $-0.014 (4)$ 0.056 (3)0.235 (8)0.125 (5) $-0.007 (4)$ 0.061 (3)0.156 (6)0.174 (6)0.032 (3)0.067 (2)0.089 (3)0.112 (3)0.014 (2)0.0510 (16)0.0564 (18)0.0459 (17)0.0009 (14)0.0448 (15)0.068 (2)0.0388 (15)0.0030 (14)0.0400 (14)0.0488 (16)0.0347 (14) $-0.0022 (12)$ 0.0399 (14)0.0525 (17)0.0355 (14) $-0.0080 (13)$ 0.0450 (15)0.0556 (18)0.0411 (16) $-0.0080 (13)$ 0.0488 (16)0.067 (2)0.0336 (15) $-0.0014 (2)$ 0.053 (2)0.120 (4)0.094 (3) $-0.001 (2)$ 0.084 (3)0.113 (4)0.068 (3)0.033 (3)0.102 (3)0.091 (3)0.051 (2)0.012 (2)0.080 (2)0.080 (3)0.0490 (19) $-0.0041 (19)$ 0.0375 (14)0.0448 (15)0.0364 (14) $-0.0001 (11)$ 0.0377 (14)0.0516 (17)0.0355 (14)0.0077 (12)0.0390 (15)0.0494 (17)0.0355 (14)0.0007 (12)0.0390 (15)0.0494 (17)0.0355 (14)0.0006 (12)0.0379 (14)0.0559 (17)0.0366 (15)0.0056 (12)0.0402 (14)0.0524 (18)0.0357 (14)0.0099 (12)	U^{11} U^{22} U^{33} U^{12} U^{13} 0.0445 (16)0.074 (2)0.0542 (19)0.0018 (15)0.0070 (14)0.079 (3)0.107 (3)0.085 (3) $-0.001 (2)$ 0.041 (2)0.087 (3)0.182 (6)0.097 (3) $-0.014 (4)$ 0.054 (3)0.056 (3)0.235 (8)0.125 (5) $-0.007 (4)$ 0.039 (3)0.061 (3)0.156 (6)0.174 (6)0.032 (3)0.016 (3)0.067 (2)0.089 (3)0.112 (3)0.014 (2)0.008 (2)0.0510 (16)0.0564 (18)0.0459 (17)0.0009 (14)0.0106 (13)0.0448 (15)0.068 (2)0.0388 (15)0.0030 (14)0.0046 (12)0.0400 (14)0.0488 (16)0.0347 (14) $-0.0058 (12)$ 0.0081 (11)0.0399 (14)0.0525 (17)0.0355 (14) $-0.0080 (13)$ 0.0071 (12)0.0488 (16)0.067 (2)0.0336 (15) $-0.0044 (14)$ 0.0038 (12)0.0482 (18)0.077 (2)0.066 (2) $-0.0080 (13)$ 0.0071 (12)0.0482 (18)0.077 (2)0.066 (2) $-0.0068 (16)$ 0.0060 (15)0.053 (2)0.120 (4)0.094 (3) $-0.001 (2)$ $-0.023 (2)$ 0.084 (3)0.113 (4)0.068 (3)0.033 (3) $-0.023 (17)$ 0.0375 (14)0.0448 (15)0.0364 (14) $-0.0001 (11)$ 0.0058 (11)0.0376 (14)0.0516 (17)0.0355 (14)0.0007 (12)0.0042 (11)0.0390 (15)0.0494 (17)0.0355 (14)0.0056 (12)0.0051 (11)0.0390 (15)

supporting information

C24	0.0487 (16)	0.059 (2)	0.0503 (17)	0.0029 (14)	0.0008 (13)	0.0050 (15)
C25	0.064 (2)	0.061 (2)	0.085 (3)	-0.0114 (17)	0.0048 (18)	-0.0115 (19)
C26	0.0468 (18)	0.093 (3)	0.075 (2)	-0.0105 (18)	-0.0055 (16)	-0.026 (2)
C27	0.0550 (19)	0.083 (3)	0.065 (2)	0.0176 (17)	-0.0177 (16)	-0.0154 (19)
C28	0.0512 (17)	0.0601 (19)	0.0563 (19)	0.0085 (15)	-0.0060 (14)	-0.0049 (15)
C29	0.0628 (19)	0.058 (2)	0.0566 (19)	0.0073 (16)	0.0109 (15)	-0.0101 (16)
C30	0.062 (2)	0.069 (2)	0.071 (2)	0.0080 (17)	0.0174 (17)	-0.0034 (18)
C31	0.061 (2)	0.080 (2)	0.068 (2)	0.0180 (18)	0.0116 (17)	0.0058 (19)
C32	0.068 (3)	0.108 (4)	0.170 (5)	0.010 (2)	0.032 (3)	0.019 (3)
C33	0.0541 (18)	0.104 (3)	0.0436 (18)	0.0043 (18)	0.0125 (14)	-0.0012 (18)
C34	0.075 (8)	0.078 (6)	0.038 (5)	0.001 (5)	-0.003 (4)	0.002 (4)
C35	0.071 (6)	0.074 (6)	0.057 (4)	-0.016 (4)	0.006 (4)	-0.001 (4)
C36	0.123 (8)	0.112 (8)	0.068 (6)	-0.016 (6)	-0.004 (5)	-0.002 (5)
C35′	0.084 (7)	0.113 (11)	0.053 (6)	-0.016 (7)	0.005 (5)	-0.010 (6)
C36′	0.113 (10)	0.119 (10)	0.115 (12)	0.018 (8)	0.005 (8)	0.003 (8)
C34′	0.060 (7)	0.113 (11)	0.042 (6)	0.007 (7)	-0.003 (4)	-0.001 (7)
F1	0.0640 (13)	0.128 (2)	0.132 (2)	-0.0187 (13)	-0.0241 (13)	-0.0511 (17)
N1	0.0426 (13)	0.0682 (16)	0.0365 (12)	-0.0072 (11)	0.0083 (10)	-0.0095 (11)
N2	0.0389 (12)	0.0603 (15)	0.0380 (13)	0.0010 (11)	0.0055 (10)	-0.0082 (11)
N3	0.0376 (12)	0.0517 (14)	0.0365 (12)	0.0029 (10)	0.0028 (9)	-0.0032 (10)
N4	0.0461 (13)	0.0767 (18)	0.0388 (13)	0.0114 (12)	0.0047 (10)	-0.0105 (12)
01	0.0381 (11)	0.0840 (15)	0.0489 (12)	0.0018 (10)	0.0061 (8)	-0.0122 (11)
S 1	0.0361 (4)	0.0717 (5)	0.0441 (4)	-0.0058 (3)	0.0064 (3)	-0.0110 (4)

Geometric parameters (Å, °)

C1—C2	1.373 (5)	C23—C28	1.382 (4)
C1—C6	1.385 (5)	C23—N3	1.452 (3)
C1—C7	1.509 (4)	C24—C25	1.380 (4)
С2—С3	1.378 (6)	C24—H24	0.9300
С2—Н2	0.9300	C25—C26	1.366 (5)
C3—C4	1.345 (8)	С25—Н25	0.9300
С3—Н3	0.9300	C26—C27	1.352 (5)
C4—C5	1.343 (8)	C26—F1	1.363 (3)
C4—H4	0.9300	C27—C28	1.381 (4)
C5—C6	1.374 (7)	C27—H27	0.9300
С5—Н5	0.9300	C28—H28	0.9300
С6—Н6	0.9300	C29—C30	1.485 (4)
C7—N1	1.489 (3)	C29—N4	1.491 (4)
С7—С8	1.528 (4)	C29—H29A	0.9700
С7—Н7	0.9800	C29—H29B	0.9700
С8—С9	1.488 (4)	C30—C31	1.521 (4)
C8—H8A	0.9700	C30—H30A	0.9700
C8—H8B	0.9700	C30—H30B	0.9700
C9—C10	1.355 (3)	C31—C32	1.491 (5)
C9—C19	1.439 (4)	C31—H31A	0.9700
C10-C12	1.501 (4)	C31—H31B	0.9700
C10—S1	1.741 (3)	C32—H32A	0.9600

C11—N1	1.468 (4)	C32—H32B	0.9600
C11—H11A	0.9600	C32—H32C	0.9600
C11—H11B	0.9600	C33—C34	1.444 (9)
C11—H11C	0.9600	C33—N4	1.473 (4)
C12—N1	1.472 (3)	C33—C34′	1.585 (12)
C12—C13	1.525 (4)	С33—Н33А	0.9700
C12—H12	0.9800	С33—Н33В	0.9700
C13—C14	1.374 (4)	С33—Н33С	0.9700
C13—C18	1.385 (5)	C33—H33D	0.9700
C14—C15	1.401 (5)	C34—C35	1.506 (10)
C14—H14	0.9300	C34—H34A	0.9700
C15—C16	1.368 (6)	C34—H34B	0.9700
C15—H15	0.9300	C35—C36	1.494 (10)
C16—C17	1.379 (6)	С35—Н35А	0.9700
C16—H16	0.9300	С35—Н35В	0.9700
C17—C18	1.371 (5)	C36—H36A	0.9600
C17—H17	0.9300	С36—Н36В	0.9600
C18—H18	0.9300	С36—Н36С	0.9600
C19—C20	1.373 (3)	C35′—C36′	1.496 (12)
C19—C21	1.428 (3)	C35′—C34′	1.517 (11)
C20—N2	1.366 (3)	С35′—Н35С	0.9700
C20—S1	1.734 (3)	C35'—H35D	0.9700
C21—O1	1.217 (3)	C36'—H36D	0.9600
C21—N3	1.424 (3)	С36'—Н36Е	0.9600
C22—N2	1.301 (3)	C36′—H36F	0.9600
C22—N4	1.375 (3)	C34′—H34C	0.9700
C22—N3	1.395 (3)	C34′—H34D	0.9700
C23—C24	1.366 (4)		
C2—C1—C6	117.6 (4)	C27—C26—F1	118.6 (3)
C2—C1—C7	121.9 (3)	C27—C26—C25	123.0 (3)
C6—C1—C7	120.5 (3)	F1—C26—C25	118.3 (4)
C1—C2—C3	120.4 (5)	C26—C27—C28	118.6 (3)
C1—C2—H2	119.8	С26—С27—Н27	120.7
С3—С2—Н2	119.8	С28—С27—Н27	120.7
C4—C3—C2	121.4 (6)	C27—C28—C23	119.6 (3)
С4—С3—Н3	119.3	C27—C28—H28	120.2
С2—С3—Н3	119.3	C23—C28—H28	120.2
C5—C4—C3	118.9 (5)	C30—C29—N4	117.4 (3)
C5—C4—H4	120.5	С30—С29—Н29А	108.0
C3—C4—H4	120.5	N4—C29—H29A	108.0
C4—C5—C6	121.4 (6)	С30—С29—Н29В	108.0
C4—C5—H5	119.3	N4—C29—H29B	108.0
С6—С5—Н5	119.3	H29A—C29—H29B	107.2
C5—C6—C1	120.3 (5)	C29—C30—C31	112.4 (3)
С5—С6—Н6	119.9	C29—C30—H30A	109.1
С1—С6—Н6	119.9	C31—C30—H30A	109.1
N1—C7—C1	111.3 (2)	С29—С30—Н30В	109.1

N1—C7—C8	110.3 (2)	C31—C30—H30B	109.1
C1—C7—C8	110.6 (2)	H30A—C30—H30B	107.9
N1—C7—H7	108.2	C32—C31—C30	113.9 (3)
С1—С7—Н7	108.2	С32—С31—Н31А	108.8
С8—С7—Н7	108.2	C30—C31—H31A	108.8
C9—C8—C7	111.5 (2)	C32—C31—H31B	108.8
С9—С8—Н8А	109.3	C30—C31—H31B	108.8
С7—С8—Н8А	109.3	H31A—C31—H31B	107.7
С9—С8—Н8В	109.3	C31—C32—H32A	109.5
C7—C8—H8B	109.3	C31—C32—H32B	109.5
H8A—C8—H8B	108.0	H32A—C32—H32B	109.5
C10—C9—C19	112.0 (2)	C31—C32—H32C	109.5
C10—C9—C8	120.1 (2)	H32A—C32—H32C	109.5
С19—С9—С8	127.9 (2)	H32B—C32—H32C	109.5
C9—C10—C12	125.4 (2)	C34—C33—N4	124.2 (6)
C9—C10—S1	112.6 (2)	N4—C33—C34′	106.1 (6)
C12—C10—S1	121.97 (19)	С34—С33—Н33А	106.3
N1—C11—H11A	109.5	N4—C33—H33A	106.3
N1—C11—H11B	109.5	С34—С33—Н33В	106.3
H11A—C11—H11B	109.5	N4—C33—H33B	106.3
N1—C11—H11C	109.5	H33A—C33—H33B	106.4
H11A—C11—H11C	109.5	N4—C33—H33C	110.9
H11B—C11—H11C	109.5	C34′—C33—H33C	110.1
N1—C12—C10	109.2 (2)	N4—C33—H33D	110.8
N1—C12—C13	112.0 (2)	C34′—C33—H33D	110.2
C10—C12—C13	109.5 (2)	H33C—C33—H33D	108.8
N1—C12—H12	108.7	C33—C34—C35	115.1 (8)
C10—C12—H12	108.7	С33—С34—Н34А	108.5
C13—C12—H12	108.7	С35—С34—Н34А	108.5
C14—C13—C18	119.1 (3)	C33—C34—H34B	108.5
C14—C13—C12	119.9 (3)	C35—C34—H34B	108.5
C18—C13—C12	120.9 (3)	H34A—C34—H34B	107.5
C13—C14—C15	120.4 (4)	C36—C35—C34	111.1 (7)
C13—C14—H14	119.8	С36—С35—Н35А	109.4
C15—C14—H14	119.8	С34—С35—Н35А	109.4
C16—C15—C14	119.3 (4)	С36—С35—Н35В	109.4
C16—C15—H15	120.3	С34—С35—Н35В	109.4
C14—C15—H15	120.3	H35A—C35—H35B	108.0
C15—C16—C17	120.4 (4)	C36'—C35'—C34'	113.4 (10)
C15—C16—H16	119.8	C36'—C35'—H35C	108.9
C17—C16—H16	119.8	C34'—C35'—H35C	108.9
C18—C17—C16	120.1 (4)	C36'—C35'—H35D	108.9
С18—С17—Н17	120.0	C34'—C35'—H35D	108.9
С16—С17—Н17	120.0	H35C—C35'—H35D	107.7
C17—C18—C13	120.6 (4)	C35'—C36'—H36D	109.5
C17—C18—H18	119.7	С35'—С36'—Н36Е	109.5
C13—C18—H18	119.7	H36D—C36′—H36E	109.5
C20—C19—C21	118.1 (2)	C35'—C36'—H36F	109.5

C20—C19—C9	112.8 (2)	H36D—C36′—H36F	109.5
C21—C19—C9	129.0 (2)	H36E—C36′—H36F	109.5
N2-C20-C19	126.9 (2)	$C_{35'} - C_{34'} - C_{33}$	112.1 (9)
N2-C20-S1	121.52(19)	C35'—C34'—H34C	109.2
$C_{19} - C_{20} - S_{1}$	1116(2)	C_{33} $C_{34'}$ H_{34C}	109.2
$01 - C_{21} - N_{3}$	120.2(2)	$C_{35'} - C_{34'} - H_{34D}$	109.2
01 - C21 - C19	126.2(2)	C_{33} $C_{34'}$ H_{34D}	109.2
N3-C21-C19	113.8(2)	$H_{34C} - C_{34'} - H_{34D}$	107.9
N2_C22_N4	1201(2)	$\frac{11}{10} = \frac{11}{10} = 11$	107.9 109.2(2)
$N_2 = C_{22} = N_3$	120.1(2) 123.0(2)	C11 - N1 - C7	109.2(2) 110.4(2)
NAC22_N3	125.0(2) 116.8(2)	C12 N1 $C7$	110.4(2)
C_{24} C_{23} C_{28}	120.5(2)	$C_{12} = N_1 = C_7$	110.2(2)
$C_{24} = C_{23} = C_{26}$	120.0(3)	$C_{22} = N_2 = C_{20}$	113.0(2) 122.5(2)
$C_{24} = C_{23} = N_3$	120.0(2) 110 A(3)	$C_{22} = N_3 = C_{23}$	122.3(2) 122.3(2)
$C_{23} = C_{23} = 103$	119.4(3)	$C_{22} = N_3 = C_{23}$	122.3(2)
$C_{23} = C_{24} = C_{23}$	120.0 (3)	$C_{21} = N_{3} = C_{23}$	114.0(2)
$C_{23} = C_{24} = H_{24}$	120.0	C_{22} N4 C_{20}	116.2(2)
$C_{23} = C_{24} = H_{24}$	120.0 118.2(2)	C_{22} N4 C_{20}	110.3(2)
$C_{20} = C_{25} = C_{24}$	110.5 (5)	$C_{33} = 104 = 0.029$	117.4(2)
$C_{20} = C_{23} = H_{23}$	120.9	C20—S1—C10	91.05 (12)
C24—C25—H25	120.9		
C6—C1—C2—C3	0.7 (6)	C24—C25—C26—F1	178.8 (3)
C7—C1—C2—C3	-178.7 (4)	F1—C26—C27—C28	-179.4(3)
C1—C2—C3—C4	0.7 (7)	C25—C26—C27—C28	0.1 (6)
C2—C3—C4—C5	-1.0(9)	C26—C27—C28—C23	-0.2(5)
C3—C4—C5—C6	0.0 (9)	C24—C23—C28—C27	0.9 (5)
C4—C5—C6—C1	1.5 (8)	N3—C23—C28—C27	176.4 (3)
C2-C1-C6-C5	-1.8 (5)	N4—C29—C30—C31	178.4 (3)
C7—C1—C6—C5	177.7 (4)	C29—C30—C31—C32	178.4 (4)
C2—C1—C7—N1	56.1 (4)	N4—C33—C34—C35	-172.7(8)
C6—C1—C7—N1	-123.3 (3)	C34′—C33—C34—C35	157 (5)
C2—C1—C7—C8	-66.9 (4)	C33—C34—C35—C36	179.6 (12)
C6—C1—C7—C8	113.7 (3)	C36'—C35'—C34'—C33	78.0 (18)
N1-C7-C8-C9	46.5 (3)	C34—C33—C34′—C35′	-25(3)
C1—C7—C8—C9	170.1 (3)	N4—C33—C34′—C35′	-179.7(10)
C7—C8—C9—C10	-14.1(4)	C10—C12—N1—C11	172.2 (3)
C7—C8—C9—C19	166.6 (3)	C13—C12—N1—C11	-66.3(3)
C19—C9—C10—C12	179.6 (2)	C10—C12—N1—C7	50.8 (3)
C8-C9-C10-C12	0.3 (4)	C13 - C12 - N1 - C7	172.3 (2)
C19 - C9 - C10 - S1	0.3 (3)	C1-C7-N1-C11	48.7 (3)
C8-C9-C10-S1	-179.0(2)	C8-C7-N1-C11	171.9 (3)
C9-C10-C12-N1	-186(4)	C1-C7-N1-C12	1694(2)
S1-C10-C12-N1	160.7 (2)	C8-C7-N1-C12	-67.5(3)
C9—C10—C12—C13	-141.6 (3)	N4-C22-N2-C20	177.8 (2)
S1-C10-C12-C13	37.6 (3)	N3-C22-N2-C20	0.5 (4)
N1-C12-C13-C14	137.7 (3)	C19-C20-N2-C22	0.6 (4)
C10-C12-C13-C14	-100.9(3)	S1—C20—N2—C22	179.5 (2)
N1-C12-C13-C18	-45 9 (4)	N_{2} C_{22} N_{3} C_{21}	01(4)
012 013 010		1,2 022 113 021	~~ (')

C10-C12-C13-C18	75.4 (3)	N4—C22—N3—C21	-177.3 (2)
C18—C13—C14—C15	-1.0 (5)	N2—C22—N3—C23	170.3 (3)
C12—C13—C14—C15	175.4 (3)	N4—C22—N3—C23	-7.1 (4)
C13—C14—C15—C16	0.3 (5)	O1—C21—N3—C22	176.8 (3)
C14—C15—C16—C17	0.6 (6)	C19—C21—N3—C22	-1.6 (4)
C15—C16—C17—C18	-0.9 (6)	O1—C21—N3—C23	5.9 (4)
C16—C17—C18—C13	0.2 (5)	C19—C21—N3—C23	-172.5 (2)
C14—C13—C18—C17	0.7 (5)	C24—C23—N3—C22	-64.1 (4)
C12—C13—C18—C17	-175.6 (3)	C28—C23—N3—C22	120.4 (3)
C10—C9—C19—C20	-0.8 (3)	C24—C23—N3—C21	106.9 (3)
C8—C9—C19—C20	178.5 (3)	C28—C23—N3—C21	-68.6 (3)
C10—C9—C19—C21	-178.4 (3)	N2-C22-N4-C33	119.2 (3)
C8—C9—C19—C21	0.9 (5)	N3—C22—N4—C33	-63.3 (4)
C21-C19-C20-N2	-2.2 (4)	N2-C22-N4-C29	-29.2 (4)
C9—C19—C20—N2	180.0 (3)	N3—C22—N4—C29	148.3 (3)
C21—C19—C20—S1	178.8 (2)	C34—C33—N4—C22	138.2 (9)
C9—C19—C20—S1	1.0 (3)	C34′—C33—N4—C22	148.7 (8)
C20-C19-C21-O1	-175.9 (3)	C34—C33—N4—C29	-73.7 (9)
C9—C19—C21—O1	1.5 (5)	C34′—C33—N4—C29	-63.2 (8)
C20-C19-C21-N3	2.5 (4)	C30-C29-N4-C22	85.0 (4)
C9—C19—C21—N3	179.9 (2)	C30-C29-N4-C33	-63.7 (4)
C28—C23—C24—C25	-1.5 (5)	N2-C20-S1-C10	-179.7 (2)
N3—C23—C24—C25	-177.0 (3)	C19—C20—S1—C10	-0.7 (2)
C23—C24—C25—C26	1.3 (5)	C9—C10—S1—C20	0.2 (2)
C24—C25—C26—C27	-0.6 (6)	C12-C10-S1-C20	-179.2 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
C4—H4···O1 ⁱ	0.93	2.47	3.304 (6)	149

Symmetry code: (i) -x+1, y-1/2, -z+1/2.