Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Bis(4-chloropyridinium) tetrachloridonickelate(II)

Lili Cao, ${ }^{\text {a }}$ Ulli Englert ${ }^{\text {b }}$ and Qi Lia*

${ }^{\text {a College of Chemistry, Beijing Normal University, Xinjiekouwai Street 19, Beijing }}$ 100875, People's Republic of China, and ${ }^{\text {b }}$ Institut für Anorganische Chemie, RWTH Aachen, Prof.-Pirlet-Strasse 1, 52074 Aachen, Germany
Correspondence e-mail: qili@bnu.edu.cn
Received 7 January 2008; accepted 14 January 2008
Key indicators: single-crystal X-ray study; $T=298 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$; R factor $=0.045 ; w R$ factor $=0.124 ;$ data-to-parameter ratio $=23.6$.

In the title compound, $\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{ClN}\right)_{2}\left[\mathrm{NiCl}_{4}\right]$, the dianion lies on a twofold rotation axis. Two cations are linked to each anion by classical $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds, and short $\mathrm{Cl} \cdots \mathrm{Cl}$ contacts and $\mathrm{Cl} \cdots \pi$ stacking interactions [with distances of 3.376 (2) and 3.684 (2) A, respectively] extend this pattern into a chain. The $\left[\mathrm{NiCl}_{4}\right]^{2-}$ anion shows significant deviation from ideal tetrahedral geometry.

Related literature

For related literature, see: Espallargas et al. (2006); Luque et al. (2001); Willett et al. (2003).

Experimental

Crystal data
$\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{ClN}\right)_{2}\left[\mathrm{NiCl}_{4}\right]$
$M_{r}=429.61$
$b=7.2862(11) \AA$
$c=13.948(2) \AA$
$\beta=100.526(3)^{\circ} \AA^{3}$
$V=1650.0(4) \AA^{3}$
$Z=4$

Mo $K \alpha$ radiation
$\mu=2.13 \mathrm{~mm}^{-1}$
$T=298$ (2) K
$0.36 \times 0.28 \times 0.26 \mathrm{~mm}$

Data collection
Bruker SMART APEX CCD areadetector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 1999)
$T_{\text {min }}=0.46, T_{\text {max }}=0.57$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.045 \quad 87$ parameters
$w R\left(F^{2}\right)=0.123 \quad \mathrm{H}$-atom parameters constrained
$S=1.07$
2049 reflections
$\Delta \rho_{\text {max }}=0.80 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-0.98 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA,^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 2-\mathrm{H} 2 A \cdots \mathrm{Cl} 3$	0.93	2.79	$3.586(4)$	145
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{Cl}^{\mathrm{i}}$	0.86	2.41	$3.158(3)$	145
$\mathrm{C} 5-\mathrm{H} 5 A \cdots \mathrm{Cl}^{\mathrm{ii}}$	0.93	2.75	$3.633(4)$	159

Symmetry codes: (i) $-x+1,-y,-z+1$; (ii) $-x+\frac{1}{2},-y+\frac{1}{2},-z+1$.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL.

Support from the NSFC (grant No. 20571012) and the NSFBJ (grant No. 2042013) is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2533).

References

Bruker (1999). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2001). SMART. Version 5.624. Bruker AXS Inc., Madison, Wisconson, USA.
Espallargas, G. M., Brammer, L. \& Sherwood, P. (2006). Angew. Chem. Int. Ed. 45, 435-440.
Luque, A., Sertucha, J., Casillo, O. \& Romain, P. (2001). New J. Chem. 25, 1208-1214.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Willett, R. D., Awwadi, F. \& Butcher, R. (2003). Cryst. Growth Des. 3, 301-311.

supporting information

Acta Cryst. (2008). E64, m377 [doi:10.1107/S1600536808001360]

Bis(4-chloropyridinium) tetrachloridonickelate(II)

Lili Cao, Ulli Englert and Qi Li

S1. Comment

Short intermolecular $X \cdots X(X=\mathrm{F}, \mathrm{Cl}, \mathrm{Br})$ interactions in crystals have attracted increasing attention. The title compound is isotypic and probably isomorphous with $\left(4-X^{\prime} \mathrm{pyH}\right)_{2}\left[\mathrm{Co} X_{4}\right]$, wherein $X^{\prime}=\mathrm{Cl}, X=\mathrm{Cl}$ or $X^{\prime}=\mathrm{Br}, X=\mathrm{Cl}$ (Espallargas et al., 2006). Studies by Willett et al. have been devoted to bromopyridinium tetrahalocuprate salts (Willett et al., 2003), and methyl pyridinium derivatives were reported earlier by Luque and his coworkers (Luque et al., 2001). In the structure communicated here, the anionic building block is a $\left[\mathrm{NiCl}_{4}\right]^{2-}$ group with site symmetry 2 and metal-halide distances of 2.2280 (9) and 2.2833 (10) \AA and $\mathrm{Cl}-\mathrm{Ni}-\mathrm{Cl}$ bond angles ranging from 98.06 (6) to 115.62 (4) ${ }^{\circ}$. The 4-chloropyridinium cation is located in general position and planar within error. A displacement ellipsoid plot of the ionic constituents is given in Fig. 1. Fig. 2 shows the classical hydrogen bonds and the short interhalogen contacts (dashed red lines, $\mathrm{Cl} \cdots \mathrm{Cl}=3.3762(16) \AA$). Shortest interatomic distances between neighbouring cations amount to $c a 3.5 \AA$ and indicate π interactions. A projection of the unit cell is provided in Fig. 3. The above-mentioned contacts and the classical $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ bonds result in a chain which extends in [101] direction. Adjacent strands are crosslinked by additional weak non-classical H bonds.

S2. Experimental

$2.0 \mathrm{mmol} \mathrm{NiCl} 2_{2} .6 \mathrm{H}_{2} \mathrm{O}(476 \mathrm{mg})$ were dissolved in $c a 10 \mathrm{ml}$ conc hydrochloric acid. 4.0 mmol 4-chloropyridine (600 mg) in $2 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$ were added. The mixture was stirred at room temp for 1 h . After several days of isothermal evaporation, 1.9 $\mathrm{mmol}, 816 \mathrm{mg}$ of the product were obtained, corresp to yield of 95%.
The product does not melt but decomposes at temperatures above 443 K . At this temperature, pyridine may be sublimed off under vacuum.
Microanalytical data, found: C 27.14, H 2.71, N 6.37\%. Calculated for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{Cl}_{6} \mathrm{~N}_{2} \mathrm{Ni}$: C $27.96, \mathrm{H} 2.35, \mathrm{~N} 6.52 \%$.

S3. Refinement

All H atoms were placed in idealized positions and treated as riding atoms with $\mathrm{C}-\mathrm{H}$ distance of $0.93 \AA$ and and $\mathrm{N}-\mathrm{H}$ distance of $0.86 \AA$, and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$.

Figure 1

Displacement ellipsoid plot (50% probability level) of the cation (left) and anion in the title compound; symmetry code: i $=1-x, y, 1.5-z$.

Figure 2
Closest intermolecular interactions between cations and anions; hydrogen bonds and $\mathrm{Cl} \cdots \mathrm{Cl}$ contacts are drawn as dashed lines. Symmetry codes: $\mathrm{ii}=1-x,-y, 1-z ; \mathrm{iii}=x,-y, z-1 / 2 ; \mathrm{iv}=x-1 / 2, y+1 / 2, z ; \mathrm{v}=0.5-x, 0.5-y, 1-z$.

Figure 3
Packing diagram of the titie compound. Shortest interactions (shown in Fig. 2) extend along [101].
Bis(4-chloropyridinium) tetrachloridonickelate(II)

Crystal data

$\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{ClN}\right)_{2}\left[\mathrm{NiCl}_{4}\right]$
$M_{r}=429.61$
Monoclinic, C2/c
Hall symbol: -C 2yc
$a=16.513$ (2) \AA
$b=7.2862(11) \AA$
$c=13.948(2) \AA$
$\beta=100.526(3)^{\circ}$
$V=1650.0(4) \AA^{3}$
$Z=4$
$F(000)=856$
$D_{\mathrm{x}}=1.729 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 5779 reflections
$\theta=2.5-28.3^{\circ}$
$\mu=2.13 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
Block, light green
$0.36 \times 0.28 \times 0.26 \mathrm{~mm}$

Data collection

Bruker SMART APEX CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
$T_{\text {min }}=0.46, T_{\text {max }}=0.57$

> 5779 measured reflections
> 2049 independent reflections
> 1820 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.026$
> $\theta_{\max }=28.3^{\circ}, \theta_{\min }=2.5^{\circ}$
> $h=-12 \rightarrow 22$
> $k=-9 \rightarrow 9$
> $l=-16 \rightarrow 18$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.045$
$w R\left(F^{2}\right)=0.123$
$S=1.07$
2049 reflections
87 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\dot{A}^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
Ni1	0.5000	$0.04605(7)$	0.7500	$0.03657(17)$
C11	$0.23687(6)$	$0.54295(11)$	$0.57163(7)$	$0.0551(2)$
N1	$0.4043(2)$	$0.3152(4)$	$0.3908(3)$	$0.0575(8)$
H1	0.4372	0.2717	0.3553	0.069^{*}
C6	$0.3310(2)$	$0.3788(5)$	$0.3468(3)$	$0.0561(8)$
H6A	0.3162	0.3745	0.2792	0.067^{*}
C5	$0.2776(2)$	$0.4503(4)$	$0.4014(3)$	$0.0488(7)$
H5A	0.2262	0.4942	0.3719	0.059^{*}
C4	$0.30238(19)$	$0.4555(4)$	$0.5012(2)$	$0.0425(6)$
C3	$0.3784(2)$	$0.3868(5)$	$0.5454(3)$	$0.0557(8)$
H3A	0.3947	0.3887	0.6129	0.067^{*}
C2	$0.4285(2)$	$0.3161(5)$	$0.4867(3)$	$0.0604(9)$
H2A	0.4798	0.2685	0.5141	0.072^{*}
C12	$0.42552(5)$	$-0.15941(15)$	$0.64578(9)$	$0.0716(3)$
C13	$0.59081(7)$	$0.21312(15)$	$0.68764(8)$	$0.0692(3)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	$U^{\beta 3}$	U^{12}	U^{13}	U^{23}
Ni1	$0.0316(3)$	$0.0336(3)$	$0.0470(3)$	0.000	$0.0137(2)$	0.000
C11	$0.0570(5)$	$0.0507(5)$	$0.0633(5)$	$0.0008(4)$	$0.0259(4)$	$-0.0050(3)$
N1	$0.0537(17)$	$0.0489(15)$	$0.077(2)$	$0.0035(13)$	$0.0319(16)$	$-0.0008(14)$
C6	$0.063(2)$	$0.0528(18)$	$0.0570(18)$	$0.0012(17)$	$0.0217(16)$	$0.0033(15)$
C5	$0.0463(17)$	$0.0456(16)$	$0.0560(18)$	$0.0044(13)$	$0.0130(14)$	$0.0072(13)$
C4	$0.0402(15)$	$0.0360(14)$	$0.0538(16)$	$-0.0028(11)$	$0.0146(13)$	$-0.0009(12)$
C3	$0.0510(19)$	$0.0515(18)$	$0.062(2)$	$0.0024(15)$	$0.0026(16)$	$0.0000(16)$
C2	$0.0416(17)$	$0.0540(19)$	$0.085(3)$	$0.0063(15)$	$0.0112(17)$	$-0.0002(18)$
C12	$0.0384(4)$	$0.0777(6)$	$0.0951(7)$	$0.0017(4)$	$0.0026(4)$	$-0.0373(6)$
C13	$0.0636(6)$	$0.0751(6)$	$0.0769(6)$	$-0.0151(5)$	$0.0337(5)$	$0.0112(5)$

Geometric parameters ($A,{ }^{\circ}$)

Ni1-Cl3	2.2280 (9)	C6-C5	1.368 (5)
Ni1-Cl3 ${ }^{\text {i }}$	2.2280 (9)	C6-H6A	0.9300
Ni1-Cl2	2.2833 (10)	C5-C4	1.379 (5)
Ni1-Cl2 ${ }^{\text {i }}$	2.2833 (10)	C5-H5A	0.9300
Cl 1 - C 4	1.712 (3)	C4-C3	1.387 (5)
N1-C2	1.324 (5)	C3-C2	1.368 (5)
N1-C6	1.336 (5)	C3-H3A	0.9300
N1—H1	0.8600	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9300
$\mathrm{Cl} 3-\mathrm{Ni} 1-\mathrm{Cl3}^{\text {i }}$	113.76 (6)	C6-C5-C4	118.0 (3)
$\mathrm{Cl} 3-\mathrm{Ni} 1-\mathrm{Cl} 2$	115.62 (4)	C6-C5-H5A	121.0
C13 ${ }^{\text {i }}$ - $\mathrm{Ni} 1-\mathrm{Cl} 2$	106.51 (4)	C4-C5-H5A	121.0
$\mathrm{Cl} 3-\mathrm{Ni} 1-\mathrm{Cl} 2^{\text {i }}$	106.51 (4)	C5-C4-C3	121.1 (3)
$\mathrm{Cl} 3-\mathrm{Ni} 1-\mathrm{Cl2}{ }^{\text {i }}$	115.62 (4)	C5-C4-Cl1	119.2 (3)
$\mathrm{Cl} 2-\mathrm{Ni} 1-\mathrm{Cl} 2^{\text {i }}$	98.06 (6)	C3-C4-Cl1	119.6 (3)
C2-N1-C6	122.9 (3)	C2-C3-C4	117.8 (3)
C2-N1-H1	118.5	C2-C3-H3A	121.1
C6-N1-H1	118.5	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	121.1
N1-C6-C5	119.9 (3)	N1-C2-C3	120.2 (3)
N1-C6-H6A	120.1	N1-C2-H2A	119.9
C5-C6-H6A	120.1	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	119.9

Symmetry code: (i) $-x+1, y,-z+3 / 2$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 2 — \mathrm{H} 2 A \cdots \mathrm{Cl} 3$	0.93	2.79	$3.586(4)$	145
$\mathrm{~N} 1 — \mathrm{H} 1 \cdots \mathrm{Cl} 2^{\mathrm{ii}}$	0.86	2.41	$3.158(3)$	145
$\mathrm{C} 5 — \mathrm{H} 5 A \cdots \mathrm{Cl} 2^{\mathrm{iii}}$	0.93	2.75	$3.633(4)$	159

[^0]
[^0]: Symmetry codes: (ii) $-x+1,-y,-z+1$; (iii) $-x+1 / 2,-y+1 / 2,-z+1$.

