

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3-(1,3-Benzodioxol-5-yl)-1-phenyl-2,3dihydro-1H-naphtho[1,2-e][1,3]oxazine

Yu-Feng Yang,^a Liang-Ru Yang,^b Zhi-Gang Yin^{c*} and Heng-Yu Qian^c

^aDepartment of Chemistry, Henan Institute of Education, Zhengzhou 450014, People's Republic of China, ^bSchool of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450052, People's Republic of China, and ^eKey Laboratory of Surface and Interface Science of Henan, School of Materials & Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, People's Republic of China

Correspondence e-mail: vinzhigang3141@vahoo.com.cn

Received 24 November 2007; accepted 25 November 2007

Key indicators: single-crystal X-ray study; T = 291 K; mean σ (C–C) = 0.006 Å; R factor = 0.063; wR factor = 0.134; data-to-parameter ratio = 9.1.

In the title compound, $C_{25}H_{19}NO_3$, the oxazine ring displays a half-chair conformation. The fused benzene ring is nearly parallel to the naphthyl ring system, the dihedral angle between this benzene ring and the naphthyl system being 8.52 (11)°. The imino group is not involved in hydrogen bonding in the crystal structure.

Related literature

For general background, see: Katayama & Oshiyama (1997); Mahajan et al. (1991); Mishra et al. (1998).

Experimental

Crystal data

C ₂₅ H ₁₉ NO ₃	V = 907.3 (5) Å ³
$M_r = 381.41$	Z = 2
Monoclinic, P2 ₁	Mo $K\alpha$ radiation
a = 9.180 (3) Å	$\mu = 0.09 \text{ mm}^{-1}$
b = 5.7585 (18) Å	T = 291 (2) K
c = 17.320 (5) Å	$0.30 \times 0.26 \times 0.24$ mm
$\beta = 97.707 \ (4)^{\circ}$	

Data collection

Bruker SMART APEX CCD areadetector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2000) $T_{\min} = 0.97, \ T_{\max} = 0.98$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.063$ $wR(F^2) = 0.134$ S = 1.182412 reflections 265 parameters 1 restraint

2412 independent reflections 1824 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.041$

5964 measured reflections

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{\text{max}} = 0.21 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The authors express their deep appreciation to the Startup Fund for PhDs of the Natural Scientific Research of Zhengzhou University of Light Industry, China (No.2005001).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2388).

References

- Bruker (2000). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Katayama, H. & Oshiyama, T. (1997). Can. J. Chem. 75, 913-919.
- Mahajan, R. N., Havaldar, F. H. & Femandes, P. S. (1991). J. Indian Chem. Soc. 68. 245-249.
- Mishra, P. D., Wahidullah, S. & Kamat, S. Y. (1998). Indian J. Chem. Sect. B, 37, 199-200.

supporting information

Acta Cryst. (2008). E64, o147 [https://doi.org/10.1107/S1600536807063192]

3-(1,3-Benzodioxol-5-yl)-1-phenyl-2,3-dihydro-1H-naphtho[1,2-e][1,3]oxazine

Yu-Feng Yang, Liang-Ru Yang, Zhi-Gang Yin and Heng-Yu Qian

S1. Comment

The oxazine derivatives display various applications and widespresd potential biological and pharmacological activities such as antimicrobial (Mahajan *et al.*, 1991), antitumor (Katayama & Oshiyama, 1997) and antihistaminic (Mishra *et al.*, 1998). In view of these important properties, we reported the crystal structure of the tilte compound.

The oxazine ring in the molecular is not planar. The 1,3-benzodioxole ring makes the dihedral angles of $68.24 (11)^{\circ}$ and $8.52 (11)^{\circ}$ with the benzene ring and the naphthyl ring, respectively, while the plane O1/C1/C10/C11 is co-planar with the naphthalene ring with the dihedral angle 1.43 (11)°. The dihedral angle between the benzene ring and the naphthalene ring is 71.48 (16)°.

S2. Experimental

1-(Amino(phenyl)methyl)naphthalen-2-ol (1 mmol, 0.249 g) was dissolved in anhydrous methanol, the mixture was stirred for several minitutes, 1,3-benzodioxole-5-carbaldehyde (1 mmol, 0.150 g) in methanol (6 ml) was added dropwise and the mixture was stirred at room temperature for 2 h. The product was isolated and recrystallized in dichloromethane. Colorless single crystals of (I) was obtained after 4 d.

S3. Refinement

Imino H atom was located in a difference Fourier map and positional parameters were refined, $U_{iso}(H) = 1.2U_{eq}(N)$. Other H atoms were placed in calculated positions, with C—H = 0.93 Å (aromatic) and 0.97 Å (methylene), and refined in riding mode with $U_{iso}(H)=1.2U_{eq}(C)$. In absence of significant anomalous scattering, Friedel pairs were merged.

The ORTEP plot of (I). Displacement ellipsoids are drawn at the 30% probability level.

3-(1,3-Benzodioxol-5-yl)-1-phenyl-2,3-dihydro-1H-naphtho[1,2-e][1,3]oxazine

Crystal data

 $C_{25}H_{19}NO_3$ $M_r = 381.41$ Monoclinic, $P2_1$ Hall symbol: P 2yb a = 9.180 (3) Å b = 5.7585 (18) Å c = 17.320 (5) Å $\beta = 97.707$ (4)° V = 907.3 (5) Å³ Z = 2

Data collection

Bruker SMART APEX CCD area-detector diffractometer Radiation source: sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2000) $T_{\min} = 0.97, T_{\max} = 0.98$ F(000) = 400 $D_x = 1.396 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 \mathbf{A} Cell parameters from 912 reflections $\theta = 2.1-25.1^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 291 KBlock, colorless $0.30 \times 0.26 \times 0.24 \text{ mm}$

5964 measured reflections 2412 independent reflections 1824 reflections with $I > 2\sigma(I)$ $R_{int} = 0.041$ $\theta_{max} = 28.0^{\circ}, \ \theta_{min} = 1.2^{\circ}$ $h = -12 \rightarrow 12$ $k = -7 \rightarrow 7$ $l = -15 \rightarrow 22$ Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.063$	Hydrogen site location: inferred from
$wR(F^2) = 0.134$	neighbouring sites
S = 1.18	H atoms treated by a mixture of independent
2412 reflections	and constrained refinement
265 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0517P)^2 + 0.1645P]$
1 restraint	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta ho_{ m max} = 0.21 \ m e \ m \AA^{-3}$
	$\Delta \rho_{\rm min} = -0.20 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.4757 (4)	1.2105 (7)	0.2026 (2)	0.0336 (8)
C2	0.5763 (4)	1.3803 (7)	0.1817 (2)	0.0357 (9)
H2	0.5449	1.4902	0.1438	0.043*
C3	0.7154 (4)	1.3826 (8)	0.2163 (2)	0.0394 (9)
Н3	0.7794	1.4958	0.2026	0.047*
C4	0.7663 (4)	1.2181 (7)	0.2729 (2)	0.0333 (8)
C5	0.9118 (4)	1.2228 (7)	0.3104 (2)	0.0366 (9)
Н5	0.9719	1.3457	0.2999	0.044*
C6	0.9709 (5)	1.0510 (8)	0.3631 (2)	0.0407 (10)
H6	1.0664	1.0603	0.3888	0.049*
C7	0.8740 (4)	0.8566 (8)	0.3752 (2)	0.0402 (9)
H7	0.9091	0.7295	0.4052	0.048*
C8	0.7357 (4)	0.8655 (8)	0.3425 (2)	0.0386 (9)
H8	0.6735	0.7503	0.3568	0.046*
C9	0.6719 (4)	1.0330 (7)	0.2877 (2)	0.0321 (8)
C10	0.5191 (4)	1.0343 (8)	0.2527 (2)	0.0376 (9)
C11	0.4128 (4)	0.8432 (8)	0.2724 (2)	0.0400 (9)
H11	0.4613	0.6936	0.2670	0.048*
C12	0.3653 (4)	0.8494 (7)	0.3526 (2)	0.0362 (8)
C13	0.4046 (4)	1.0273 (7)	0.4006 (2)	0.0328 (8)
H13	0.4569	1.1531	0.3849	0.039*
C14	0.3628 (4)	1.0156 (8)	0.4770 (2)	0.0421 (10)
H14	0.3893	1.1363	0.5118	0.051*
C15	0.2837 (5)	0.8292 (9)	0.5011 (3)	0.0461 (10)

supporting information

H15	0.2581	0.8223	0.5512	0.055*
C16	0.2441 (4)	0.6531 (8)	0.4472 (2)	0.0395 (9)
H16	0.1881	0.5293	0.4613	0.047*
C17	0.2874 (4)	0.6570 (9)	0.3703 (3)	0.0441 (10)
H17	0.2642	0.5369	0.3349	0.053*
C18	0.2306 (4)	1.0885 (7)	0.2003 (2)	0.0378 (9)
H18	0.2162	1.1499	0.2515	0.045*
C19	0.0807 (5)	1.1079 (8)	0.1429 (2)	0.0411 (9)
C20	0.0568 (4)	1.2985 (8)	0.0972 (2)	0.0368 (9)
H20	0.1311	1.4084	0.0973	0.044*
C21	-0.0776 (4)	1.3335 (8)	0.0497 (2)	0.0360 (8)
H21	-0.0999	1.4701	0.0219	0.043*
C22	-0.1737 (4)	1.1502 (7)	0.0475 (2)	0.0326 (8)
C23	-0.1516 (5)	0.9640 (8)	0.0947 (2)	0.0427 (10)
C24	-0.0182 (4)	0.9259 (8)	0.1459 (2)	0.0360 (9)
H24	0.0002	0.7955	0.1773	0.043*
C25	-0.3700 (5)	0.9157 (8)	0.0285 (2)	0.0459 (11)
H25A	-0.4622	0.9372	0.0491	0.055*
H25B	-0.3875	0.8163	-0.0170	0.055*
N1	0.2826 (4)	0.8559 (7)	0.2088 (2)	0.0388 (8)
H1	0.246 (5)	0.740 (9)	0.182 (3)	0.047*
O1	0.3362 (3)	1.2333 (5)	0.16696 (15)	0.0380 (7)
O2	-0.3139 (3)	1.1315 (6)	0.00830 (16)	0.0414 (7)
O3	-0.2657 (3)	0.8142 (5)	0.08500 (15)	0.0392 (7)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.039 (2)	0.030 (2)	0.0311 (18)	0.0063 (17)	0.0014 (15)	-0.0124 (15)
C2	0.0389 (19)	0.037 (2)	0.0284 (16)	-0.0056 (18)	-0.0063 (14)	-0.0042 (17)
C3	0.0299 (17)	0.043 (2)	0.047 (2)	0.0083 (18)	0.0127 (16)	0.0024 (19)
C4	0.0272 (17)	0.034 (2)	0.0397 (19)	0.0003 (16)	0.0071 (15)	-0.0007 (16)
C5	0.045 (2)	0.038 (2)	0.0265 (17)	-0.0072 (18)	0.0017 (16)	-0.0114 (16)
C6	0.040 (2)	0.041 (2)	0.038 (2)	0.0099 (19)	-0.0060 (17)	-0.0057 (18)
C7	0.0345 (19)	0.041 (2)	0.044 (2)	0.0158 (19)	0.0009 (16)	0.0089 (19)
C8	0.0339 (18)	0.043 (2)	0.041 (2)	0.0136 (18)	0.0123 (16)	0.0105 (19)
C9	0.0268 (17)	0.033 (2)	0.0381 (18)	0.0110 (16)	0.0101 (14)	-0.0079 (17)
C10	0.0371 (19)	0.043 (2)	0.0286 (17)	-0.0135 (19)	-0.0113 (15)	-0.0011 (17)
C11	0.0356 (18)	0.040 (2)	0.044 (2)	-0.001 (2)	0.0023 (16)	-0.0123 (19)
C12	0.0419 (19)	0.0265 (19)	0.0380 (19)	0.0106 (17)	-0.0025 (16)	-0.0006 (17)
C13	0.0241 (16)	0.034 (2)	0.0412 (19)	0.0112 (15)	0.0079 (14)	-0.0127 (16)
C14	0.046 (2)	0.045 (2)	0.0308 (18)	0.007 (2)	-0.0139 (16)	0.0014 (19)
C15	0.044 (2)	0.048 (3)	0.044 (2)	0.011 (2)	-0.0022 (18)	0.001 (2)
C16	0.0318 (18)	0.042 (2)	0.044 (2)	0.0108 (18)	0.0020 (16)	0.012 (2)
C17	0.037 (2)	0.044 (2)	0.052 (2)	0.0013 (19)	0.0081 (17)	0.007 (2)
C18	0.045 (2)	0.035 (2)	0.0345 (18)	0.0014 (19)	0.0093 (16)	0.0072 (17)
C19	0.046 (2)	0.035 (2)	0.040 (2)	0.0108 (19)	-0.0046 (17)	-0.0032 (18)
C20	0.0304 (17)	0.045 (2)	0.0375 (19)	-0.0078 (18)	0.0136 (15)	0.0042 (19)

supporting information

Geometric parameters (Å, °)

C101	1.351 (4)	C14—H14	0.9300
C1-C10	1.359 (6)	C15—C16	1.393 (7)
C1—C2	1.425 (6)	C15—H15	0.9300
С2—С3	1.336 (5)	C16—C17	1.440 (6)
С2—Н2	0.9300	C16—H16	0.9300
C3—C4	1.398 (6)	C17—H17	0.9300
С3—Н3	0.9300	C18—N1	1.424 (6)
C4—C5	1.405 (5)	C18—O1	1.456 (5)
C4—C9	1.419 (5)	C18—C19	1.589 (6)
C5—C6	1.405 (6)	C18—H18	0.9800
С5—Н5	0.9300	C19—C20	1.354 (6)
С6—С7	1.462 (6)	C19—C24	1.392 (6)
С6—Н6	0.9300	C20—C21	1.403 (5)
С7—С8	1.320 (5)	C20—H20	0.9300
С7—Н7	0.9300	C21—C22	1.373 (5)
C8—C9	1.423 (5)	C21—H21	0.9300
С8—Н8	0.9300	C22—C23	1.347 (6)
C9—C10	1.452 (5)	C22—O2	1.376 (4)
C10-C11	1.539 (6)	C23—O3	1.350 (5)
C11—C12	1.511 (5)	C23—C24	1.429 (5)
C11—N1	1.514 (5)	C24—H24	0.9300
C11—H11	0.9800	C25—O3	1.401 (5)
C12—C13	1.339 (5)	C25—O2	1.408 (6)
C12—C17	1.375 (6)	C25—H25A	0.9700
C13—C14	1.428 (5)	C25—H25B	0.9700
С13—Н13	0.9300	N1—H1	0.86 (5)
C14—C15	1.391 (7)		
O1-C1-C10	122.9 (4)	C14—C15—C16	117.4 (4)
01—C1—C2	115.1 (3)	C14—C15—H15	121.3
C10—C1—C2	122.0 (3)	C16—C15—H15	121.3
C3—C2—C1	120.4 (4)	C15—C16—C17	121.9 (4)
С3—С2—Н2	119.8	C15—C16—H16	119.0
С1—С2—Н2	119.8	C17—C16—H16	119.0
C2—C3—C4	121.2 (4)	C12—C17—C16	115.8 (4)
С2—С3—Н3	119.4	C12—C17—H17	122.1

С4—С3—Н3	119.4	С16—С17—Н17	122.1
C3—C4—C5	121.3 (4)	N1-C18-O1	110.3 (3)
C3—C4—C9	118.7 (3)	N1—C18—C19	112.4 (3)
C5—C4—C9	119.8 (4)	O1—C18—C19	106.2 (3)
C4—C5—C6	123.2 (4)	N1—C18—H18	109.3
С4—С5—Н5	118.4	O1—C18—H18	109.3
С6—С5—Н5	118.4	C19—C18—H18	109.3
C5—C6—C7	116.3 (3)	C20—C19—C24	125.2 (4)
С5—С6—Н6	121.9	C20—C19—C18	118.8 (4)
С7—С6—Н6	121.9	C24—C19—C18	116.0 (4)
C8—C7—C6	118.5 (4)	C19—C20—C21	121.3 (4)
С8—С7—Н7	120.7	С19—С20—Н20	119.3
С6—С7—Н7	120.7	C21—C20—H20	119.3
C7—C8—C9	126.8 (4)	C22—C21—C20	114.6 (4)
С7—С8—Н8	116.6	C22—C21—H21	122.7
С9—С8—Н8	116.6	C20—C21—H21	122.7
C4—C9—C8	115.0 (3)	C23—C22—C21	123.5 (3)
C4—C9—C10	120.0 (3)	C23—C22—O2	107.0 (3)
C8—C9—C10	124.8 (4)	C21—C22—O2	128.9 (3)
C1—C10—C9	117.0 (4)	C22—C23—O3	112.5 (3)
C1-C10-C11	122.3 (3)	C22—C23—C24	123.0 (4)
C9—C10—C11	120.6 (3)	O3—C23—C24	124.4 (4)
C12—C11—N1	111.8 (3)	C19—C24—C23	111.7 (4)
C12—C11—C10	117.1 (3)	C19—C24—H24	124.1
N1-C11-C10	105.4 (3)	C23—C24—H24	124.1
C12—C11—H11	107.3	O3—C25—O2	107.7 (3)
N1-C11-H11	107.3	O3—C25—H25A	110.2
C10—C11—H11	107.3	O2—C25—H25A	110.2
C13—C12—C17	125.6 (4)	O3—C25—H25B	110.2
C13—C12—C11	120.2 (4)	O2—C25—H25B	110.2
C17—C12—C11	114.2 (4)	H25A—C25—H25B	108.5
C12—C13—C14	117.2 (4)	C18—N1—C11	110.0 (3)
C12—C13—H13	121.4	C18—N1—H1	125 (3)
С14—С13—Н13	121.4	C11—N1—H1	125 (3)
C15—C14—C13	122.0 (4)	C1—O1—C18	113.8 (3)
C15—C14—H14	119.0	C22—O2—C25	107.2 (3)
C13—C14—H14	119.0	C23—O3—C25	105.4 (3)