

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis(4-aminopyridinium) bis(oxalato- $\kappa^2 O, O'$)cuprate(II) dihydrate

Zi-Cai Pan,^a Kou-Lin Zhang^a and Seik Weng Ng^{b*}

^aCollege of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, People's Republic of China, and ^bDepartment of Chemistry, University of Malaya, 50603, Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 19 November 2007; accepted 20 November 2007

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.004 Å; R factor = 0.037; wR factor = 0.109; data-to-parameter ratio = 10.4.

The Cu^{II} atom in the title salt, $(C_5H_7N_2)_2[Cu(C_2O_4)_2] \cdot 2H_2O$, is located on a center of inversion and is chelated by two oxalate groups in a square-planar coordination geometry. The cation, anion and water molecules interact through hydrogen bonds, forming a three-dimensional hydrogen-bonded network.

Related literature

See Geiser et al. (1987) for the square-planar pyridinium dioxalatocuprate(II) oxalic acid co-crystal. See Sun et al. (2004) for 2,6-bis(4'-pyridyl-1'-pyridinium)pyrazine bis(bis(oxalato)cuprate(II), which is also square planar. In bis(2aminoanilinium) bis(oxalato)cuprate(II), the amino groups coordinate to the metal atom, which exhibits octahedral coordination (Keene et al., 2003).

Experimental

Crystal data

 $(C_5H_7N_2)_2[Cu(C_2O_4)_2]\cdot 2H_2O$ $M_r = 465.86$ Monoclinic, $P2_1/c$ a = 3.7105 (3) Å b = 20.311 (1) Å c = 11.9261 (9) Å $\beta = 90.450 \ (1)^{\circ}$

 $V = 898.8 (1) \text{ Å}^3$ Z = 2Mo $K\alpha$ radiation $\mu = 1.28 \text{ mm}^{-1}$ T = 295 (2) K $0.14 \times 0.10 \times 0.08 \; \mathrm{mm}$ $R_{\rm int} = 0.016$

2623 measured reflections

1590 independent reflections

1498 reflections with $I > 2\sigma(I)$

Data collection

Bruker SMART area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.764, T_{\max} = 0.905$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.037$	H atoms treated by a mixture of
$wR(F^2) = 0.109$	independent and constrained
S = 1.12	refinement
1590 reflections	$\Delta \rho_{\rm max} = 0.23 \text{ e } \text{\AA}^{-3}$
153 parameters	$\Delta \rho_{\rm min} = -0.49 \text{ e} \text{ Å}^{-3}$
5 restraints	

Table 1

Selected geometric parameters (Å, °).

Cu1-O1	1.932 (2)	Cu1-O3	1.927 (2)
O1-Cu1-O3	85.4 (1)		

Table 2	
Hydrogen-bond geometry (Å, °).	

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots \mathbf{A}$
O1 <i>w</i> −H11···O1	0.85 (3)	2.03 (2)	2.852 (3)	164 (5)
$O1w - H12 \cdots O3^{i}$	0.85 (3)	2.12 (5)	2.931 (3)	160 (5)
$N1 - H1 \cdots O2$	0.85 (3)	2.12 (2)	2.858 (4)	146 (4)
$N2-H21\cdots O4^{ii}$	0.85 (1)	2.07 (1)	2.906 (4)	168 (4)
$N2-H22\cdotsO1w^{iii}$	0.85 (3)	2.02 (3)	2.867 (4)	176 (4)
Summating and as ((::) 1	1 - 1. (:::)

Symmetry codes: -x + 2, -y + 1, -z + 1; (ii) $x + 1, -y + \frac{1}{2}, z - \frac{1}{2};$ (iii) (i) -x + 3, -y + 1, -z.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2008).

We thank the Foundation of Jiangsu Provincial Key Program of Physical Chemistry in Yangzhou University, China, and the University of Malava for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2384).

References

- Barbour, L. J. (2001). J. Supramol. Chem., 1, 189-191.
- Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Winconsin, USA.
- Geiser, U., Ramakrishna, B. L., Willett, R. D., Hulsberg, F. B. & Reedijk, J. (1987). Inorg. Chem. 26, 3750-3756.
- Keene, T. D., Hursthouse, M. B. & Price, D. J. (2003). Acta Cryst. E59, m1131m1133
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of
- Göttingen, Germany. Sun, Y.-Q., Zhang, J., Chen, J.-L. & Yang, G.-Y. (2004). Eur. J. Inorg. Chem. pp. 3837-3841
- Westrip, S. P. (2008). publCIF. In preparation.

supporting information

Acta Cryst. (2008). E64, m221 [https://doi.org/10.1107/S160053680706117X] Bis(4-aminopyridinium) bis(oxalato-κ²O,O')cuprate(II) dihydrate

Zi-Cai Pan, Kou-Lin Zhang and Seik Weng Ng

S1. Comment

There are many crystallographic studies of coordination compounds of oxalic acid (Cambridge Structural Database, Version 5.28, Nov. 2006). The copper(II) center in the title compound shows square-planar coordination (Table 1); the cations, anions and lattice water molecules interact through hydrogen bonds (Table 2) to give rise to a three-dimensional network motif.

S2. Experimental

Potassium oxalate monohydrate (0.036 g, 0.2 mmol) dissolved in water (5 ml) was reacted with copper nitrate trihydrate (0.048 g, 0.2 mmol) in water (5 ml). To this solution was added $4-C_5H_4N-NH-C(O)-C(O)-NH-4-C_5H_4N$ (0.048 g, 0.2 mmol) dissolved in methanol (15 ml). Blue crystals separated after a few days in 60% yield. CH&N elemental analysis. Calc. for $C_{14}H_{18}CuN_4O_{10}$: C 36.09, H 3.89, N 12.02%. Found: C 36.43, H 3.74, N 12.18%.

S3. Refinement

The carbon-bound H atoms were placed in calculated positions and were allowed to ride on the parent atoms. The oxygen- and nitrogen-bound H atoms were refined with a distance restraint $O-H = N-H = 0.85\pm0.01$ Å. Their temperature factors were freely refined.

Figure 1

Thermal ellipsoid plot of $2[C_5H_7N_2]^+[Cu(C_2O_4)_2]^{2-2}H_2O$; Displacement ellipsoids are drawn at the 50% probability level, and H atoms as spheres of arbitrary radii.

Bis(4-aminopyridinium) bis(oxalato- $\kappa^2 O, O'$)cuprate(II) dihydrate

Crystal data

 $(C_{5}H_{7}N_{2})_{2}[Cu(C_{2}O_{4})_{2}]\cdot 2H_{2}O$ $M_{r} = 465.86$ Monoclinic, $P2_{1}/c$ Hall symbol: -P 2ybc a = 3.7105 (3) Å b = 20.311 (1) Å c = 11.9261 (9) Å $\beta = 90.450$ (1)° V = 898.8 (1) Å³ Z = 2

Data collection

Bruker SMART area-detector	2623 measured reflections
diffractometer	1590 independent reflections
Radiation source: fine-focus sealed tube	1498 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.016$
φ and ω scans	$\theta_{\rm max} = 25.1^{\circ}, \ \theta_{\rm min} = 2.0^{\circ}$
Absorption correction: multi-scan	$h = -4 \rightarrow 4$
(SADABS; Sheldrick, 1996)	$k = -21 \rightarrow 24$
$T_{\min} = 0.764, \ T_{\max} = 0.905$	$l = -8 \rightarrow 14$

F(000) = 478

 $\theta = 2.0 - 25.1^{\circ}$

 $\mu = 1.28 \text{ mm}^{-1}$

 $0.14 \times 0.10 \times 0.08 \text{ mm}$

T = 295 K

Block, blue

 $D_x = 1.721 \text{ Mg m}^{-3}$

Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å Cell parameters from 2198 reflections

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.037$	Hydrogen site location: inferred from
$wR(F^2) = 0.109$	neighbouring sites
S = 1.12	H atoms treated by a mixture of independent
1590 reflections	and constrained refinement
153 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0536P)^2 + 1.2237P]$
5 restraints	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.001$
direct methods	$\Delta \rho_{\rm max} = 0.23 \text{ e} \text{ Å}^{-3}$
	$\Delta \rho_{\rm min} = -0.49 \text{ e} \text{ Å}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cu1	0.5000	0.5000	0.5000	0.0283 (2)	
01	0.8063 (6)	0.52464 (11)	0.37661 (18)	0.0352 (5)	
O2	1.0084 (7)	0.48225 (12)	0.21648 (19)	0.0399 (6)	
03	0.4985 (6)	0.41370 (10)	0.43287 (17)	0.0313 (5)	
O4	0.7190 (7)	0.36328 (11)	0.28166 (19)	0.0386 (5)	
O1w	1.1418 (8)	0.65099 (13)	0.3772 (2)	0.0477 (6)	
N1	1.1417 (8)	0.37249 (17)	0.0727 (2)	0.0439 (7)	
N2	1.5342 (8)	0.27528 (14)	-0.1995 (2)	0.0365 (6)	
C1	0.8457 (8)	0.47791 (15)	0.3044 (2)	0.0275 (6)	
C2	0.6748 (8)	0.41168 (14)	0.3400 (2)	0.0275 (6)	
C3	1.1500 (8)	0.3067 (2)	0.0721 (3)	0.0411 (8)	
H3	1.0674	0.2837	0.1343	0.049*	

C4	1.2757 (8)	0.27283 (17)	-0.0171 (3)	0.0354 (7)	
H4	1.2776	0.2270	-0.0160	0.043*	
C5	1.4040 (7)	0.30699 (15)	-0.1115 (2)	0.0266 (6)	
C6	1.3848 (8)	0.37643 (16)	-0.1090 (3)	0.0344 (7)	
H6	1.4609	0.4011	-0.1702	0.041*	
C7	1.2545 (9)	0.40679 (17)	-0.0167 (3)	0.0428 (8)	
H7	1.2429	0.4525	-0.0151	0.051*	
H11	1.045 (13)	0.6140 (13)	0.363 (4)	0.084 (17)*	
H12	1.268 (11)	0.642 (3)	0.434 (3)	0.077 (17)*	
H1	1.068 (10)	0.3915 (18)	0.132 (2)	0.046 (11)*	
H21	1.563 (10)	0.2337 (6)	-0.199 (3)	0.042 (10)*	
H22	1.621 (11)	0.2979 (18)	-0.253 (2)	0.055 (12)*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U ²³
Cu1	0.0380 (3)	0.0234 (3)	0.0237 (3)	-0.00362 (19)	0.0082 (2)	-0.00456 (18)
01	0.0493 (13)	0.0257 (11)	0.0309 (11)	-0.0074 (10)	0.0139 (10)	-0.0061 (9)
02	0.0526 (14)	0.0358 (12)	0.0314 (12)	-0.0023 (11)	0.0165 (11)	-0.0029 (10)
03	0.0416 (12)	0.0258 (11)	0.0265 (11)	-0.0047 (9)	0.0058 (9)	-0.0030 (8)
O4	0.0550 (14)	0.0256 (11)	0.0354 (12)	-0.0043 (10)	0.0117 (10)	-0.0088 (9)
O1w	0.0663 (17)	0.0358 (14)	0.0411 (14)	-0.0106 (12)	-0.0018 (13)	0.0083 (11)
N1	0.0379 (15)	0.064 (2)	0.0295 (15)	0.0085 (14)	-0.0009 (12)	-0.0171 (14)
N2	0.0476 (16)	0.0320 (15)	0.0300 (14)	0.0043 (12)	0.0065 (12)	-0.0016 (12)
C1	0.0325 (15)	0.0265 (15)	0.0236 (15)	0.0023 (12)	0.0016 (12)	-0.0007 (11)
C2	0.0310 (14)	0.0277 (15)	0.0240 (14)	0.0019 (11)	0.0004 (12)	-0.0020 (12)
C3	0.0321 (16)	0.065 (2)	0.0265 (16)	0.0059 (15)	-0.0001 (13)	0.0060 (16)
C4	0.0328 (15)	0.0393 (17)	0.0342 (16)	0.0024 (13)	-0.0023 (13)	0.0077 (14)
C5	0.0248 (13)	0.0307 (15)	0.0244 (14)	0.0030 (11)	-0.0051 (11)	-0.0015 (12)
C6	0.0353 (16)	0.0330 (16)	0.0348 (17)	0.0010 (13)	0.0012 (13)	0.0021 (13)
C7	0.0436(18)	0.0353 (18)	0.049(2)	0.0056(14)	-0.0018(16)	-0.0133(16)

Geometric parameters (Å, °)

Cu1—O1	1.932 (2)	N2—C5	1.325 (4)
Cu1—O3	1.927 (2)	N2—H21	0.85 (1)
Cu1—O3 ⁱ	1.927 (2)	N2—H22	0.85 (3)
Cu1—O1 ⁱ	1.932 (2)	C1—C2	1.548 (4)
01—C1	1.290 (4)	C3—C4	1.352 (5)
O2—C1	1.217 (4)	С3—Н3	0.9300
O3—C2	1.291 (4)	C4—C5	1.409 (4)
O4—C2	1.216 (4)	C4—H4	0.9300
O1w—H11	0.85 (3)	C5—C6	1.413 (4)
O1w—H12	0.85 (3)	C6—C7	1.355 (5)
N1—C3	1.337 (5)	С6—Н6	0.9300
N1—C7	1.343 (5)	C7—H7	0.9300
N1—H1	0.85 (3)		

180	O4—C2—O3	126.0 (3)
94.7 (1)	O4—C2—C1	119.2 (3)
85.4 (1)	O3—C2—C1	114.8 (2)
85.4 (1)	N1—C3—C4	121.4 (3)
94.7 (1)	N1—C3—H3	119.3
180	С4—С3—Н3	119.3
112.83 (19)	C3—C4—C5	119.9 (3)
112.66 (18)	C3—C4—H4	120.0
101 (5)	C5—C4—H4	120.0
120.4 (3)	N2C5C4	121.4 (3)
118 (3)	N2—C5—C6	121.4 (3)
122 (3)	C4—C5—C6	117.2 (3)
122 (3)	C7—C6—C5	119.3 (3)
118 (3)	С7—С6—Н6	120.3
120 (4)	С5—С6—Н6	120.3
125.5 (3)	N1—C7—C6	121.7 (3)
120.4 (3)	N1—C7—H7	119.2
114.0 (2)	С6—С7—Н7	119.2
53(2)	$0^{2}-1^{2}-0^{3}$	-1777(3)
-1747(2)	02 - 01 - 02 - 03	4 2 (4)
1772(2)	C7-N1-C3-C4	1.2(1)
-2.8(2)	N1 - C3 - C4 - C5	0.5(5)
1757(3)	C_{3} C_{4} C_{5} N_{2}	1789(3)
-63(3)	C_{3} C_{4} C_{5} C_{6}	-1.7(4)
179.1 (3)	N2-C5-C6-C7	-179.1(3)
0.2(3)	C4-C5-C6-C7	1.6 (4)
3.3 (4)	C3—N1—C7—C6	-1.1 (5)
-174.8 (3)	C5—C6—C7—N1	-0.2 (5)
	180 94.7 (1) 85.4 (1) 85.4 (1) 94.7 (1) 180 112.83 (19) 112.66 (18) 101 (5) 120.4 (3) 118 (3) 122 (3) 122 (3) 122 (3) 123 (3) 120 (4) 125.5 (3) 120.4 (3) 114.0 (2) 5.3 (2) -174.7 (2) 177.2 (2) -2.8 (2) 175.7 (3) -6.3 (3) 179.1 (3) 0.2 (3) 3.3 (4) -174.8 (3) $10 10 10 10 10 10 10 10 $	180 $04-C2-O3$ $94.7 (1)$ $04-C2-C1$ $85.4 (1)$ $03-C2-C1$ $85.4 (1)$ $N1-C3-C4$ $94.7 (1)$ $N1-C3-H3$ 180 $C4-C3-H3$ $112.83 (19)$ $C3-C4-C5$ $112.66 (18)$ $C3-C4-H4$ $101 (5)$ $C5-C4-H4$ $101 (5)$ $C5-C4-H4$ $120.4 (3)$ $N2-C5-C6$ $122 (3)$ $C4-C5-C6$ $122 (3)$ $C4-C5-C6$ $122 (3)$ $C7-C6-C5$ $118 (3)$ $N2-C5-C6$ $120 (4)$ $C5-C6-H6$ $120 (4)$ $C5-C6-H6$ $120 (4)$ $C5-C6-H6$ $120.4 (3)$ $N1-C7-H7$ $114.0 (2)$ $C6-C7-H7$ $5.3 (2)$ $02-C1-C2-03$ $-174.7 (2)$ $01-C1-C2-03$ $177.2 (2)$ $C7-N1-C3-C4$ $-2.8 (2)$ $N1-C3-C4-C5$ $175.7 (3)$ $C3-C4-C5-N2$ $-6.3 (3)$ $C3-C4-C5-C6-C7$ $17.1 (3)$ $N2-C5-C6-C7$ $0.2 (3)$ $C4-C5-C6-C7$ $0.2 (3$

Symmetry code: (i) -x+1, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
01 <i>w</i> —H11…O1	0.85 (3)	2.03 (2)	2.852 (3)	164 (5)
O1 <i>w</i> —H12···O3 ⁱⁱ	0.85 (3)	2.12 (5)	2.931 (3)	160 (5)
N1—H1…O2	0.85 (3)	2.12 (2)	2.858 (4)	146 (4)
N2—H21···O4 ⁱⁱⁱ	0.85 (1)	2.07 (1)	2.906 (4)	168 (4)
N2—H22···O1 <i>w</i> ^{iv}	0.85 (3)	2.02 (3)	2.867 (4)	176 (4)

Symmetry codes: (ii) -x+2, -y+1, -z+1; (iii) x+1, -y+1/2, z-1/2; (iv) -x+3, -y+1, -z.