metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

A one-dimensional ladder-like coordination polymer: poly[[hexaaquabis(μ -5nitrobenzene-1,3-dicarboxylato- $\kappa^{3}O$,-O',O'')(μ -oxalato- $\kappa^{4}O,O':O'',O'''$)diyttrium(III)] trihydrate]

Zhong Fu, Ying Lin, Yun-You Zhou and Hong-Tao Zhang*

College of Chemistry and Materials Science, Anhui Key Laboratory of Functional Molecular Solids, Anhui Normal University, Wuhu 241000, People's Republic of China

Correspondence e-mail: zht2006@mail.ahnu.edu.cn

Received 14 November 2007; accepted 29 November 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.008 Å; disorder in solvent or counterion; R factor = 0.043; wR factor = 0.112; data-to-parameter ratio = 12.7.

In the crystal structure of the title one-dimensional coordination polymer, $[Y_2(C_8H_3NO_6)_2(C_2O_4)(H_2O)_6]\cdot 3H_2O$, each Y^{III} ion is bridged to its neighbours by two 5-nitrobenzene-1,3dicarboxylate (nbdc) dianions and one oxalate dianion (located on an inversion centre) to form a ladder-like polymeric structure. The two carboxylate groups of nbdc assume different modes of coordination, one is chelating whereas the other is monodentate. Three water molecules coordinate to the Y^{III} ion to complete an eight-coordinate distorted dodecahedral geometry. The ladder-like polymers are assembled together by hydrogen bonding and π - π stacking [centrio-centriod distance = 3.819 (9) Å] in the crystal structure.

Related literature

For general background, see: Biradha (2003); Braga *et al.* (2005); Burrows *et al.* (2003); Kongshaug & Fjellvag (2006); Moulton & Zaworotko (2001); Ohmori *et al.* (2004); Tang *et al.* (2006); Janiak (2003). For related structures, see: Thomas *et al.* (2002); Nordell *et al.* (2003); Janiak (2000). For related literature, see: Ren *et al.* (2006); Si *et al.* (2004).

Experimental

Crystal data

[Y₂(C₈H₃NO₆)₂(C₂O₄)- $\beta = 71.76 \ (3)^{\circ}$ $(H_2O)_6]\cdot 3H_2O$ $\gamma = 80.01 \ (2)^{\circ}$ $M_r = 846.21$ V = 716.5 (3) Å³ Triclinic, $P\overline{1}$ Z = 1a = 7.4270 (15) Å Mo $K\alpha$ radiation b = 9.2070 (18) Å $\mu = 4.14 \text{ mm}^{-1}$ c = 11.522 (2) Å T = 298 (2) K $\alpha = 74.16(3)^{\circ}$ $0.20 \times 0.15 \times 0.12 \text{ mm}$

Data collection

Enraf-Nonius CAD-4 diffractometer Absorption correction: ψ scan (*XCAD4*; Harms & Wocadlo, 1995) $T_{min} = 0.48$, $T_{max} = 0.60$ 3018 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.043$ 220 parameters $wR(F^2) = 0.112$ H-atom parameters constrainedS = 1.05 $\Delta \rho_{max} = 0.67$ e Å $^{-3}$ 2785 reflections $\Delta \rho_{min} = -0.64$ e Å $^{-3}$

2785 independent reflections

3 standard reflections

every 200 reflections

intensity decay: 1.0%

 $R_{\rm int} = 0.097$

2260 reflections with $I > 2\sigma(I)$

Table 1

Selected bond lengths (Å).

01-Y	2.414 (4)	O8-Y	2.361 (3)
O2-Y	2.424 (4)	O9-Y	2.314 (4)
O3-Y ⁱ	2.299 (3)	O10-Y	2.336 (4)
O7-Y ⁱⁱ	2.365 (3)	O11-Y	2.311 (4)

Symmetry codes: (i) x, y + 1, z; (ii) -x + 1, -y, -z + 1.

Table 2Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O9−H9A…O2 ⁱⁱⁱ	0.85	2.14	2.735 (5)	127
O9−H9 <i>B</i> ···O4 ^{iv}	0.85	2.07	2.726 (5)	134
$O10-H10A\cdots O6^{iii}$	0.85	2.36	3.115 (7)	148
$O10-H10B\cdots O12^{ii}$	0.85	2.30	2.778 (6)	116
$O10 - H10B \cdot \cdot \cdot O12^{ii}$	0.85	2.30	2.778 (6)	116
$O11 - H11A \cdots O4^{v}$	0.85	2.09	2.694 (5)	127
$O11 - H11B \cdots O5^{vi}$	0.85	2.57	2.987 (6)	111
$O11 - H11B \cdots O7^{vii}$	0.85	2.23	2.784 (5)	123
$O12 - H12A \cdots O1$	0.85	2.11	2.841 (6)	144
$O12$ H12B $O10^{i}$	0.85	2 21	2 953 (6)	147

Symmetry codes: (i) x, y + 1, z; (ii) -x + 1, -y, -z + 1; (iii) -x + 1, -y, -z; (iv) x + 1, y - 1, z; (v) x, y - 1, z; (vi) -x, -y + 1, -z; (vii) x - 1, y, z.

Data collection: *CAD-4 Software* (Enraf–Nonius, 1989); cell refinement: *CAD-4 Software*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Sheldrick, 2000); software used to prepare material for publication: *SHELXTL*.

This work was funded by the Doctoral Research Launch Foundation of Anhui Normal University and the Youth Research Foundation of Anhui Normal University (grant No. 2006xqn64). Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2377).

References

- Biradha, K. (2003). CrystEngComm, 5, 374-384.
- Braga, D., Brammer, L. & Champness, N. R. (2005). CrystEngComm, 7, 1-19. Burrows, A. D., Harrington, R. W., Mahon, M. F. & Teat, S. J. (2003). Eur. J. Inorg. Chem. pp. 766-776.
- Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.
- Janiak, C. (2003). J. Chem. Soc. Dalton Trans. pp. 2781-2804.

- Kongshaug, K. O. & Fjellvag, H. (2006). Inorg. Chem. 45, 2424-2429.
- Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629-1658.
- Nordell, K. J., Higgins, K. A. & Smith, M. D. (2003). Acta Cryst. E59, m114m115.
- Ohmori, O., Kawano, M. & Fujita, M. (2004). CrystEngComm, 6, 51-53.
- Ren, Y., Chen, S. & Gao, S. (2006). J. Coord. Chem. 59, 2135-2142.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (2000). SHELXTL. Version 6.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Si, S., Li, C., Wang, R. & Li, Y. (2004). J. Mol. Struct. 703, 11-17.
- Tang, E., Dai, Y.-M., Zhang, J., Li, Z.-J., Yao, Y.-G., Zhang, J. & Huang, X.-D. (2006). Inorg. Chem. 45, 6276-6281.
- Thomas, A. M., Neelakanta, G., Mahadevan, S., Nethaji, M. & Chakravarty, A. R. (2002). Eur. J. Inorg. Chem. pp. 2720-2726.

Acta Cryst. (2008). E64, m120–m121 [https://doi.org/10.1107/S1600536807064306]

A one-dimensional ladder-like coordination polymer: poly[[hexaaquabis(μ -5-nitrobenzene-1,3-dicarboxylato- $\kappa^3 O, O', O''$)(μ -oxalato- $\kappa^4 O, O': O'', O'''$)diyttrium(III)] trihydrate]

Zhong Fu, Ying Lin, Yun-You Zhou and Hong-Tao Zhang

S1. Comment

There is an intense research interest for the crystal engineering of coordination polymers owing to their intriguing molecular topologies, such as molecular grids, ladders, rings, diamondoids and honeycombs, and potential applications as functional materials (Biradha, 2003; Braga *et al.*, 2005; Janiak, 2003; Ohmori *et al.*, 2004). In order to construct the infinite structure, plentiful multidentate organic ligands are used to bridge metal ions (Moulton & Zaworotko, 2001). Among them, V-shape molecules, such as isophthalic acid and 5-amino-isophthalic acid, have received much attention because such a molecular geometry can result in unexpected structure comparing with that constructed by linear ligands (Burrows *et al.*, 2003; Tang *et al.*, 2006; Kongshaug & Fjellvag, 2006; Si *et al.*, 2004; Ren *et al.*, 2006). Herein, we present a novel ladder-like coordination polymer (I): $Y_2(C_8H_3NO_6)_2(C_2O_4)(H_2O)_{6.3}(H_2O)$, in which metal ions are bridged by a V-shape ligand, 5-nitrobenzene-1,3-dicarboxylate (5-nitroisophthalate, abbreviated as 5-NIP), and oxalate ligands.

As shown in Figure 1, the Y(III) ion adopts an eight-coordinate geometry which may be described as a distorted dodecahedron (Table 1): it is bounded to three water oxygen atoms (O9, O10 and O11) and five carboxylate oxygen atoms, in which O1, O2 and O3ⁱⁱⁱ [symmetry code: (iii) x, y - 1, z] are from two 5-NIP ligands and O7ⁱ, O8 [symmetry code: (i) 1 - x, -y, 1 - z] are from one oxalate ligand. The H13A/O13/H13B water molecule has a fractional site occupancy of 0.50. The ligand 5-NIP chelates the Y(III) ion via its O1/C1/O2 carboxylate group, while its another O3/C8/O4 carboxylate group coordinates to a symmetry related Y(III) ion in monodentate fashion via the atom O3. The O5/N1/O6 nitro group is almost coplanar with the phenyl ring (C2/C3/C4/C5/C6/C7). The O1/C1/O2 carboxylate group is slightly twisted from the phenyl ring with the dihedral angel of $10.26 (41)^\circ$ based on the phenyl (C2/C3/C4/C5/C6/C7) and the carboxyl (O1/C1/O2) planes. The O3/C8/O4 carboxylate group is out of the phenyl plane with the dihedral angel of 44.41 (36)° based on the phenyl (C2/C3/C4/C5/C6/C7) and the carboxyl (O3/C8/O4) planes. Both two carboxylate groups of the oxalate ligand bridge two symmetry related Y(III) ions in η^{1} : η^{1} : μ_{2} mode. The oxalate is almost perpendicular to the phenyl plane of 5-NIP with the dihedral angel of 87.42 (26)° based on the phenyl (C2/C3/C4/C5/C6/C7) and the oxalate $(O7/C9/O8/C9^i/O7^i/O8^i)$ [symmetry code: (i) 1 - x, -y, 1 - z] planes. The bond distance of two sp^2 C9—C9ⁱ [symmetry code: (i) 1 - x, -y, 1 - z] in oxalate is elongated similar with other coordination compounds containing oxalate (Thomas et al., 2002; Nordell et al., 2003). Thus, the ligands 5-NIP link the neighbouring Y(III) ions in the head-to-tail mode to construct an infinite zigzag chain which runs along the b axis direction. Two adjacent zigzag chains are connected *via* oxalate bridging in the c axis direction to form a ladder-like structure with a grid of 9.207 (11)Å \times 6.138 (17)Å based on the intra-ladder intervals of Yttrium (III) ions.

(Burrows et al., 2003; Tang et al., 2006; Kongshaug & Fjellvag, 2006).

All ladders are assembled together through a number of hydrogen bonding (Table 2) between 5-NIP carboxyl O atoms (O1, O2 and O4), nitro O atoms (O5 and O6), oxalate O7 atom and coordination water O atoms (O9, O10 and O11) as well as lattice water molecules (O12 and O13). Among them, H10A and H11B atoms are involved in a three-centered hydrogen bond, respectively. Moreover, the center-center distance between two adjacent phenyl rings of the different ladders is 3.819 (9) Å. It indicates the presence of π - π staking between two adjacent inter-ladder 5-NIP (Janiak *et al.*, 2000). Therefore all ladders are packing *via* hydrogen bonding and the π - π interactions in the crystal.

S2. Experimental

 Y_2O_3 (22.5 mg, 0.10 mmol), 5-nitro-isophthalic acid (42.2 mg, 0.20 mmol) and $Na_2C_2O_4$ (26.8 mg, 0.20 mmol) were dissolved in 13 ml water. The mixture was placed in a Teflon-lined stainless steel vessel (25 ml). The vessel was sealed and heated at 443 K for 1 week, then cooled to room temperature. Colorless block crystals were collected by filtration, followed by washing with water and ethanol in 45% yield (38.5 mg). The crystals becam opaque when exposed for a long time in air.

S3. Refinement

The lattice O13 water molecule was refined with a fixed site occupancy factor of 0.50. H atoms bonded to C atoms were introduced at calculated positions and refined using a riding model with C—H = 0.93 Å. All water H atoms were located in difference maps at an intermediate stage of the refinement and were then treated as riding, with O—H = 0.85 Å. $U_{iso}(H) = 1.2U_{iso}(C,O)$.

Figure 1

The molecular structure of (I), a drawing of the asymmetric unit (solid line portion) with displacement ellipsoids at the 30% probability level, H Atoms have been omitted for clarity [symmetry code: (i) 1 - x, -y, 1 - z; (iii) x, y - 1, z].

Figure 2

Two adjacent zigzag chains connected *via* oxalate bridging to generate a ladder-like structure with a grid of 9.207 (11)Å \times 6.138 (17) Å. All hydrogen atoms and the lattice water molecules have been omitted for clarity.

Figure 3

A packing diagram of the title compound viewed down the c axis. All hydrogen atoms have been omitted for clarity.

poly[[hexaaquabis(μ -5-nitrobenzene-1,3-dicarboxylato- $\kappa^3 O, O', O''$)(μ - oxalato- $\kappa^4 O, O': O'', O'''$)diyttrium(III)] trihydrate]

Crystal data

-	
$[Y_{2}(C_{8}H_{3}NO_{6})_{2}(C_{2}O_{4})(H_{2}O)_{6}]\cdot 3H_{2}O$ $M_{r} = 846.21$ Triclinic, P1 Hall symbol: -P 1 a = 7.4270 (15) Å b = 9.2070 (18) Å c = 11.522 (2) Å $a = 74.16 (3)^{\circ}$ $\beta = 71.76 (3)^{\circ}$ $\gamma = 80.01 (2)^{\circ}$ $V = 716.5 (3) \text{ Å}^{3}$	Z = 1 F(000) = 424 $D_x = 1.961 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 25 reflections $\theta = 2.3-15.0^{\circ}$ $\mu = 4.14 \text{ mm}^{-1}$ T = 298 K Block, colorless $0.20 \times 0.15 \times 0.12 \text{ mm}$
Data collection	
Enraf–Nonius CAD-4 diffractometer Radiation source: fine-focus sealed tube Graphite monochromator	$\omega/2\theta$ scans Absorption correction: ψ scan (<i>XCAD4</i> ; Harms & Wocadlo, 1995) $T_{\min} = 0.48, T_{\max} = 0.60$

3018 measured reflections 2785 independent reflections 2260 reflections with $I > 2\sigma(I)$ $R_{int} = 0.097$ $\theta_{max} = 26.0^{\circ}, \ \theta_{min} = 1.9^{\circ}$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.043$	Hydrogen site location: inferred from
$wR(F^2) = 0.112$	neighbouring sites
S = 1.05	H-atom parameters constrained
2785 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0432P)^2 + 2.6078P]$
220 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{ m max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.67 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.64 \text{ e } \text{\AA}^{-3}$

 $\begin{array}{l} h = 0 \longrightarrow 9 \\ k = -11 \longrightarrow 11 \end{array}$

 $l = -13 \rightarrow 14$

intensity decay: 1.0%

3 standard reflections every 200 reflections

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
C1	0.3395 (7)	0.2400 (6)	0.1373 (5)	0.0176 (10)	
C2	0.2913 (7)	0.3978 (6)	0.0685 (5)	0.0182 (10)	
C3	0.2644 (7)	0.4243 (6)	-0.0506 (5)	0.0200 (11)	
H3	0.2853	0.3461	-0.0909	0.024*	
C4	0.2095 (7)	0.5698 (6)	-0.1067 (5)	0.0188 (10)	
C5	0.1769 (7)	0.6925 (6)	-0.0509 (5)	0.0187 (10)	
H5	0.1321	0.7878	-0.0904	0.022*	
C6	0.2101 (7)	0.6653 (6)	0.0648 (5)	0.0181 (10)	
C7	0.2687 (7)	0.5187 (6)	0.1238 (5)	0.0201 (11)	
H7	0.2862	0.4994	0.2030	0.024*	
C8	0.1873 (7)	0.7916 (6)	0.1298 (5)	0.0187 (10)	
C9	0.6051 (7)	-0.0058 (6)	0.4632 (5)	0.0177 (10)	
N1	0.1769 (7)	0.5962 (5)	-0.2319 (4)	0.0265 (10)	
01	0.3821 (6)	0.2183 (4)	0.2395 (3)	0.0261 (9)	
O2	0.3332 (5)	0.1288 (4)	0.0962 (3)	0.0228 (8)	
03	0.3182 (5)	0.7902 (4)	0.1793 (3)	0.0223 (8)	
O4	0.0460 (5)	0.8849 (4)	0.1325 (4)	0.0251 (8)	
05	0.1269 (9)	0.7245 (5)	-0.2819 (5)	0.0564 (15)	
O6	0.1979 (8)	0.4894 (5)	-0.2778 (4)	0.0461 (12)	
O7	0.7221 (5)	0.0136 (4)	0.5150 (3)	0.0214 (8)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

O8	0.6444 (5)	-0.0325 (4)	0.3571 (3)	0.0232 (8)	
09	0.6774 (5)	-0.0796 (4)	0.1250 (3)	0.0244 (8)	
H9A	0.6641	-0.0316	0.0534	0.029*	
H9B	0.7642	-0.0428	0.1386	0.029*	
O10	0.4350 (6)	-0.3006 (4)	0.3988 (4)	0.0326 (10)	
H10A	0.5526	-0.3322	0.3807	0.039*	
H10B	0.3968	-0.3009	0.4765	0.039*	
O11	0.0652 (5)	-0.0383 (5)	0.3376 (4)	0.0318 (10)	
H11B	0.0191	0.0193	0.3884	0.038*	
H11A	0.0252	-0.0036	0.2728	0.038*	
O12	0.3768 (8)	0.3842 (5)	0.4156 (5)	0.0492 (13)	
H12B	0.3942	0.4764	0.3793	0.059*	
H12A	0.4299	0.3285	0.3639	0.059*	
O13	0.0067 (15)	0.3583 (14)	0.5020 (11)	0.068 (3)	0.50
H13A	0.0037	0.2670	0.5003	0.081*	0.50
H13B	-0.1035	0.3933	0.5392	0.081*	0.50
Y	0.39399 (7)	-0.05405 (6)	0.27921 (5)	0.01386 (15)	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.018 (2)	0.018 (3)	0.017 (2)	-0.0018 (19)	-0.005 (2)	-0.004 (2)
C2	0.019 (3)	0.017 (3)	0.019 (3)	-0.002 (2)	-0.005 (2)	-0.005 (2)
C3	0.020 (3)	0.020 (3)	0.022 (3)	-0.002 (2)	-0.007(2)	-0.008(2)
C4	0.020 (3)	0.024 (3)	0.015 (2)	-0.004(2)	-0.004(2)	-0.007(2)
C5	0.024 (3)	0.012 (2)	0.022 (3)	-0.002 (2)	-0.011 (2)	-0.002(2)
C6	0.021 (3)	0.018 (3)	0.020 (3)	-0.004 (2)	-0.009 (2)	-0.006(2)
C7	0.022 (3)	0.021 (3)	0.020 (3)	-0.002 (2)	-0.009(2)	-0.005 (2)
C8	0.017 (2)	0.020 (3)	0.018 (2)	-0.004(2)	-0.002(2)	-0.006(2)
C9	0.018 (3)	0.016 (3)	0.019 (3)	-0.0011 (19)	-0.006 (2)	-0.003 (2)
N1	0.034 (3)	0.027 (3)	0.021 (2)	-0.004(2)	-0.013 (2)	-0.004(2)
01	0.044 (2)	0.0195 (19)	0.0213 (19)	-0.0005 (17)	-0.0204 (17)	-0.0047 (15)
O2	0.037 (2)	0.0142 (18)	0.0217 (19)	-0.0004 (15)	-0.0135 (16)	-0.0062 (15)
O3	0.0254 (19)	0.0190 (19)	0.033 (2)	0.0032 (15)	-0.0188 (17)	-0.0132 (16)
O4	0.0216 (19)	0.025 (2)	0.036 (2)	0.0056 (15)	-0.0149 (17)	-0.0160 (17)
05	0.113 (5)	0.028 (3)	0.036 (3)	0.007 (3)	-0.046 (3)	0.000(2)
O6	0.078 (4)	0.038 (3)	0.034 (2)	0.007 (2)	-0.029 (2)	-0.020 (2)
O7	0.0161 (17)	0.036 (2)	0.0171 (18)	-0.0056 (15)	-0.0082 (14)	-0.0089 (16)
08	0.0213 (19)	0.037 (2)	0.0159 (18)	-0.0030 (16)	-0.0066 (15)	-0.0118 (16)
09	0.0205 (19)	0.039 (2)	0.0171 (18)	-0.0029 (16)	-0.0058 (15)	-0.0124 (16)
O10	0.046 (3)	0.028 (2)	0.028 (2)	0.0010 (19)	-0.0182 (19)	-0.0061 (17)
O11	0.0196 (19)	0.057 (3)	0.028 (2)	0.0038 (18)	-0.0103 (16)	-0.027(2)
O12	0.079 (4)	0.036 (3)	0.044 (3)	-0.008 (2)	-0.033 (3)	-0.008 (2)
O13	0.045 (6)	0.075 (8)	0.074 (8)	-0.031 (6)	-0.011 (6)	0.006 (6)
Y	0.0155 (2)	0.0154 (2)	0.0136 (2)	-0.00013 (16)	-0.00695 (17)	-0.00552 (17)

Geometric parameters (Å, °)

C1—02	1.253 (6)	N1—O6	1.204 (6)	
C101	1.269 (6)	N1—O5	1.215 (6)	
C1—C2	1.495 (7)	01—Y	2.414 (4)	
C1—Y	2.790 (5)	O2—Y	2.424 (4)	
C2—C7	1.388 (7)	O3—Y ⁱⁱ	2.299 (3)	
C2—C3	1.398 (7)	O7—Y ⁱ	2.365 (3)	
C3—C4	1.372 (7)	O8—Y	2.361 (3)	
С3—Н3	0.9264	O9—Y	2.314 (4)	
C4—C5	1.397 (7)	O9—H9A	0.8500	
C4—N1	1.484 (7)	O9—H9B	0.8501	
C5—C6	1.380 (7)	O10—Y	2.336 (4)	
С5—Н5	0.9288	O10—H10A	0.8500	
C6—C7	1.398 (7)	O10—H10B	0.8501	
C6—C8	1.507 (7)	O11—Y	2.311 (4)	
С7—Н7	0.9274	O11—H11B	0.8500	
C8—O4	1.233 (6)	O11—H11A	0.8498	
C8—O3	1.268 (6)	O12—H12B	0.8499	
С9—О8	1.247 (6)	O12—H12A	0.8500	
С9—О7	1.258 (6)	O13—H13A	0.8500	
C9—C9 ⁱ	1.527 (9)	O13—H13B	0.8500	
02—C1—O1	119.8 (5)	H10A—O10—H10B	108.3	
O2—C1—C2	120.3 (4)	Y—O11—H11B	110.1	
01—C1—C2	119.9 (4)	Y—011—H11A	109.8	
02—C1—Y	60.2 (3)	H11B—O11—H11A	109.8	
01—C1—Y	59.8 (3)	H12B—O12—H12A	109.7	
C2—C1—Y	174.6 (3)	H13A—O13—H13B	109.5	
С7—С2—С3	119.5 (5)	O3 ⁱⁱⁱ —Y—O11	74.28 (13)	
C7—C2—C1	120.2 (4)	O3 ⁱⁱⁱ —Y—O9	78.95 (13)	
C3—C2—C1	120.3 (4)	O11—Y—O9	147.86 (13)	
C4—C3—C2	118.1 (5)	O3 ⁱⁱⁱ —Y—O10	74.18 (13)	
С4—С3—Н3	121.0	O11—Y—O10	95.62 (16)	
С2—С3—Н3	120.8	O9—Y—O10	93.86 (15)	
C3—C4—C5	123.7 (5)	O3 ⁱⁱⁱ —Y—O8	138.88 (13)	
C3—C4—N1	117.7 (4)	011—Y—08	139.85 (13)	
C5—C4—N1	118.6 (4)	O9—Y—O8	72.16 (12)	
C6—C5—C4	117.4 (5)	O10—Y—O8	79.18 (14)	
C6—C5—H5	122.0	$O3^{iii}$ $Y - O7^{i}$	133.63 (13)	
C4—C5—H5	120.5	$O11$ — Y — $O7^i$	71.41 (12)	
C5—C6—C7	120.3 (5)	O9—Y—O7 ⁱ	140.67 (12)	
C5—C6—C8	121.3 (5)	$O10$ — Y — $O7^i$	79.12 (14)	
C7—C6—C8	118.4 (4)	$O8$ — Y — $O7^{i}$	68.51 (12)	
С2—С7—С6	120.9 (5)	O3 ⁱⁱⁱ —Y—O1	132.35 (12)	
С2—С7—Н7	118.6	011—Y—01	90.19 (15)	
С6—С7—Н7	120.4	O9—Y—O1	94.96 (14)	
O4—C8—O3	125.6 (5)	O10—Y—O1	153.26 (13)	

O4—C8—C6	119.0 (4)	O8—Y—O1	79.61 (13)
O3—C8—C6	115.4 (4)	O7 ⁱ —Y—O1	78.08 (13)
O8—C9—O7	126.2 (4)	O3 ⁱⁱⁱ —Y—O2	79.18 (12)
O8—C9—C9 ⁱ	117.0 (5)	O11—Y—O2	80.27 (14)
O7—C9—C9 ⁱ	116.8 (5)	O9—Y—O2	77.50 (13)
O6—N1—O5	123.2 (5)	O10—Y—O2	153.13 (13)
O6—N1—C4	118.6 (5)	O8—Y—O2	120.73 (13)
O5—N1—C4	118.2 (5)	$O7^{i}$ Y $O2$	123.38 (13)
C1—O1—Y	93.2 (3)	O1—Y—O2	53.60 (12)
C1—O2—Y	93.2 (3)	O3 ⁱⁱⁱ —Y—C1	105.48 (14)
C8—O3—Y ⁱⁱ	136.0 (3)	O11—Y—C1	83.57 (15)
C9—O7—Y ⁱ	118.6 (3)	09—Y—C1	86.78 (14)
C9-08-Y	1190(3)	O10 - Y - C1	179 19 (14)
Y-09-H9A	109.9	08 - Y - C1	101 50 (14)
Y_09_H9B	109.9	07^{i} Y C1	100.69 (14)
H9A = 09 = H9B	108.4	01 - Y - C1	27.01.(13)
V_010_H104	100.4	$0^{2}-Y-C^{1}$	26.64 (13)
V 010 H10B	109.5	02-1-01	20.04 (13)
1—010—1110В	109.8		
03 61 63 67	160 7 (5)	$C_{0} O_{0} V O_{2}^{iii}$	-124.0(4)
02 - C1 - C2 - C7	-8.2(7)	$C_{9} = 0_{8} = 1 = 0_{3}$	-134.9(4)
01 - 01 - 02 - 07	-8.3(7)	$C_{9} = 0_{8} = 1 = 0_{11}$	1.1(3)
02 - C1 - C2 - C3	-8.9(7)	C9 = 08 = Y = 09	1/7.3 (4)
01 - 01 - 02 - 03	1/3.0(5)	C9 = 08 = Y = 010	-84.8 (4)
C/_C2_C3_C4	-2.3(7)	$C9 = 08 = Y = 0/^{1}$	-2.3(4)
C1—C2—C3—C4	176.3 (4)	C9—O8—Y—O1	78.8 (4)
C2—C3—C4—C5	-0.8 (8)	C9—O8—Y—O2	114.6 (4)
C2—C3—C4—N1	-178.6 (4)	C9—O8—Y—C1	94.7 (4)
C3—C4—C5—C6	2.9 (8)	C1—O1—Y—O3 ⁱⁱⁱ	-6.7 (4)
N1—C4—C5—C6	-179.3 (4)	C1—01—Y—011	-75.3 (3)
C4—C5—C6—C7	-1.8 (7)	C1—O1—Y—O9	72.9 (3)
C4—C5—C6—C8	177.3 (4)	C1—O1—Y—O10	-178.3 (3)
C3—C2—C7—C6	3.3 (8)	C1	143.7 (3)
C1—C2—C7—C6	-175.3 (4)	$C1-O1-Y-O7^{i}$	-146.3 (3)
C5—C6—C7—C2	-1.2 (8)	C1—O1—Y—O2	2.4 (3)
C8—C6—C7—C2	179.7 (4)	C1—O2—Y—O3 ⁱⁱⁱ	170.8 (3)
C5—C6—C8—O4	44.6 (7)	C1—O2—Y—O11	95.1 (3)
C7—C6—C8—O4	-136.2 (5)	C1—O2—Y—O9	-108.3 (3)
C5—C6—C8—O3	-136.3(5)	C1—O2—Y—O10	178.3 (3)
C7—C6—C8—O3	42.8 (7)	C1	-48.1(3)
C3—C4—N1—O6	0.8 (7)	$C1 - O2 - Y - O7^{i}$	35.1 (3)
C5—C4—N1—O6	-177.1 (5)	C1—O2—Y—O1	-2.4(3)
C3-C4-N1-O5	179.5 (5)	O2-C1-Y-O3 ⁱⁱⁱ	-9.4(3)
C5-C4-N1-O5	1.5 (8)	$01-C1-Y-03^{iii}$	174.9 (3)
02-C1-01-Y	-4.3(5)	02-C1-Y-011	-811(3)
$C_2 - C_1 - O_1 - Y$	173 8 (4)	01 - C1 - Y - 011	103.2(3)
01 - C1 - 02 - Y	43(5)	$0^{2}-C^{1}-V^{2}-O^{9}$	68 2 (3)
C^{2} C^{1} C^{2} V	$-173 \ 8 \ (4)$	01 - C1 - V - 09	-1075(3)
04-08-03 V ⁱⁱ	-60(8)	$0^{2}-0^{1}$ V 09	120 2 (2)
UT-U0-UJ-I	0.0(0)	02 - 01 - 1 - 00	139.3 (3)

C6—C8—O3—Y ⁱⁱ	175.0 (3)	O1—C1—Y—O8	-36.4 (3)
08—C9—O7—Y ⁱ	-177.9 (4)	$O2-C1-Y-O7^{i}$	-150.8 (3)
$C9^{i}$ — $C9$ — $O7$ — Y^{i}	2.7 (7)	O1-C1-Y-O7 ⁱ	33.5 (3)
O7—C9—O8—Y	-177.5 (4)	O2-C1-Y-O1	175.7 (5)
C9 ⁱ —C9—O8—Y	1.9 (7)	O1—C1—Y—O2	-175.7 (5)

Symmetry codes: (i) -*x*+1, -*y*, -*z*+1; (ii) *x*, *y*+1, *z*; (iii) *x*, *y*-1, *z*.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H···A
09—H9 <i>A</i> ···O2 ^{iv}	0.85	2.14	2.735 (5)	127
O9—H9 <i>B</i> ···O4 ^v	0.85	2.07	2.726 (5)	134
O10—H10A····O6 ^{iv}	0.85	2.36	3.115 (7)	148
O10—H10 <i>B</i> ···O12 ⁱ	0.85	2.30	2.778 (6)	116
O10—H10 <i>B</i> ····O12 ⁱ	0.85	2.30	2.778 (6)	116
O11—H11A···O4 ⁱⁱⁱ	0.85	2.09	2.694 (5)	127
O11—H11 <i>B</i> ····O5 ^{vi}	0.85	2.57	2.987 (6)	111
O11—H11 <i>B</i> ···O7 ^{vii}	0.85	2.23	2.784 (5)	123
O12—H12A…O1	0.85	2.11	2.841 (6)	144
O12—H12B···O10 ⁱⁱ	0.85	2.21	2.953 (6)	147
C3—H3…O9 ^{iv}	0.93	2.54	3.432 (6)	161

Symmetry codes: (i) -*x*+1, -*y*, -*z*+1; (ii) *x*, *y*+1, *z*; (iii) *x*, *y*-1, *z*; (iv) -*x*+1, -*y*, -*z*; (v) *x*+1, *y*-1, *z*; (vi) -*x*, -*y*+1, -*z*; (vii) *x*-1, *y*, *z*.