

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-Benzoylpyridine semicarbazone

Daniel F. de Lima,^a* Anayive Pérez-Rebolledo,^b Javier Ellena^a and Heloisa Beraldo^b

^aInstituto de Física de São Carlos-USP, Cx Postal 369, 13560-970 São Carlos, SP, Brazil, and ^bDepartamento de Química (ICEX), Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil Correspondence e-mail: danielfl@sc.usp.br

Received 23 November 2007; accepted 30 November 2007

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.003 Å; R factor = 0.047; wR factor = 0.150; data-to-parameter ratio = 14.1.

The title compound, $C_{13}H_{12}N_4O$, crystallizes with two independent molecules in the asymmetric unit. The compound crystallizes as the ZE isomer, where Z and E refer to the configuration around the C=N and N-C bonds, respectively, with an N-H···N_{py} (py is pyridine) intramolecular hydrogen bond. The dihedral angles between the least-squares planes through the semicarbazone group and the pyridyl ring are 22.70 (9) and 27.26 (9)° for the two molecules. There are intermolecular N-H···O hydrogen bonds.

Related literature

For related literature, see: Beraldo & Gambino (2004); Beraldo *et al.* (2002); Teixeira *et al.* (2003); Farrell (2002); Pérez-Rebolledo *et al.* (2006).

Experimental

Crystal data $C_{13}H_{12}N_4O$ $M_r = 240.27$ Monoclinic, C2/c a = 22.9281 (7) Å b = 9.1868 (2) Å

c = 23.1869 (7) Å $\beta = 93.049 (1)^{\circ}$ $V = 4877.1 (2) \text{ Å}^{3}$ Z = 16Mo $K\alpha$ radiation organic compounds

 $0.18 \times 0.14 \times 0.04~\text{mm}$

Data collection

Nonius KappaCCD diffractometer4588 independent reflectionsAbsorption correction: none3011 reflections with $I > 2\sigma(I)$ 16551 measured reflections $R_{int} = 0.066$

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.047 & 325 \text{ parameters} \\ wR(F^2) &= 0.150 & H\text{-atom parameters constrained} \\ S &= 1.07 & \Delta\rho_{max} &= 0.27 \text{ e } \text{\AA}^{-3} \\ 4588 \text{ reflections} & \Delta\rho_{min} &= -0.22 \text{ e } \text{\AA}^{-3} \end{split}$$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N11 - H11A \cdots O1^{i}$	0.86	2.17	3.029 (2)	178
$N11 - H11B \cdot \cdot \cdot O2^{ii}$	0.86	2.33	2.917 (2)	126
$N21 - H21B \cdot \cdot \cdot O1^{ii}$	0.86	2.27	2.883 (2)	128
$N21 - H21A \cdot \cdot \cdot O2^{iii}$	0.86	2.15	3.005 (2)	173
N12−H12···N14	0.86	2.06	2.683 (2)	129
$N22 - H22 \cdot \cdot \cdot N24$	0.86	2.10	2.712 (2)	128
Symmetry codes: (i	$-x + \frac{1}{2} - $	$v + \frac{1}{2} - 7$; (ji	i) $-x + \frac{1}{2}, y + \frac{1}{2}$	$-z + \frac{1}{2}$ (iii)

 $-x + \frac{1}{2}, -y + \frac{1}{2}, -z + 1.$

Data collection: *COLLECT* (Enraf–Nonius, 2000); cell refinement: *SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO* (Otwinowski & Minor, 1997) and *SCALEPACK*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

This work was supported by the Brazilian agency CNPq.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WW2110).

References

- Beraldo, H. & Gambino, D. (2004). Mini Rev. Med. Chem. 4, 31-39.
- Beraldo, H., Sinisterra, R. D., Teixeira, L. R., Vieira, R. P. & Doretto, M. C. (2002). Biochem. Biophys. Res. Commun. 296, 241–246.

Enraf-Nonius (2000). COLLECT. Enraf-Nonius BV, Delft, The Netherlands. Farrell, N. (2002). Coord. Chem. Rev. 232, 1–4.

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Pérez-Rebolledo, A., Piro, O. E., Castellano, E. E., Teixeira, L. R., Batista, A. A. & Beraldo, H. (2006). *J. Mol. Struct.* **794**, 18–23.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Teixeira, L. R., Sinisterra, R. D., Vieira, R. P., Doretto, M. C. & Beraldo, H. (2003). J. Inclus. Phenom. Macro. Chem. 47, 77–82.

supporting information

Acta Cryst. (2008). E64, o177 [https://doi.org/10.1107/S1600536807064628]

2-Benzoylpyridine semicarbazone

Daniel F. de Lima, Anayive Pérez-Rebolledo, Javier Ellena and Heloisa Beraldo

S1. Comment

Semicarbazones present a wide range of biological applications as antitumoral, anticonvulsant, anti-trypanosomal, herbicidal and biocidal agents (Beraldo & Gambino, 2004; Beraldo *et al.*, 2002; Teixeira *et al.*, 2003). In some cases complexation to metal ions can improve properties of these ligands, such as lipophilicity and pharmacological activity. Moreover, mechanisms of action of bioactive compounds can involve coordination to metal-containing enzymes (Farrell, 2002). As part of our research aiming to understand the molecular and biological properties of semicarbazones we previously prepared 2-Benzoylpyridine semicarbazone (H2Bz4PS) and its Cu(II) and Zn(II) complexes (Pérez-Rebolledo *et al.*, 2006). Here we describe the synthesis and crystal structure of H2Bz4PS (Fig. 1).

The molecular conformation can be described using three planar groups, the phenyl ring, the pyridyl ring and the semicarbazone group. The dihedral angles between the least-square planes through the semicarbazone group and the pyridyl ring are 22.70° and 27.26°, for molecule I and II respectively. The angle between the least-square planes through the semicarbazone group and phenyl ring are almost the same, 32.96° and 32.49°, for molecule I and II respectively. The dihedral angles between the phenyl and the pyridyl rings are 53.12° and 53.99° for molecule I and II respectively. The molecular conformation is fixed by an intramolecular interactions of the N—H…N type, N12—H12…N14 for molecule I and N22—H22…N24 for molecule II. The crystal packing is stabilized by N—H…O intermolecular interactions that form centrosymmetric dimers (Fig. 2). Another N—H…O hydrogen bond gives rise to the formation of infinite chains along the *b* axis.

S2. Experimental

2-Benzoylpyridine semicarbazone (H2Bz4PS) was prepared by adding portion-wise an aqueous solution containing equimolar amounts (2 mmol) of semicarbazide hydrochloride and sodium acetate to 2-Benzoylpyridine (2 mmol) in ethanol at room temperature. The reaction mixture was kept under stirring for 20 h. The resulting solid was filtered off and washed with distilled water and ether and then dried. H2Bz4PS: Yield: 69.4%. Melting point: 181.5–182.7 °C. Anal. Calc: C, 64.99; H, 5.03; N, 23.32%. Found: C, 64.02; H, 4.95; N, 23.05%.

S3. Refinement

The model was refined by full-matrix least squares on F^2 with *SHELXL97* (Sheldrick, 1997). All the hydrogen atoms were stereochemically positioned and refined with the riding model. Hydrogen atoms of the CH, NH and NH₂ groups were set isotropic with a thermal parameter 20% greater than the equivalent isotropic displacement parameter of the atom to which each one was bonded.

Figure 1

The molecular structure of the title. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

Centrosymmetric dimers linking two molecules of H2Bz4PS in the crystal packing. The dotted lines represent the hydrogen bonds of the type N—H \cdots O.

2-Benzoylpyridine semicarbazone

```
Crystal data
```

C₁₃H₁₂N₄O $M_r = 240.27$ Monoclinic, C2/c Hall symbol: -C 2yc a = 22.9281 (7) Å b = 9.1868 (2) Å c = 23.1869 (7) Å $\beta = 93.049$ (1)° V = 4877.1 (2) Å³ Z = 16 F(000) = 2016 $D_x = 1.309 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 \u00e5 Cell parameters from 23344 reflections $\theta = 2.9-25.7^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 294 KPrism, colourless $0.18 \times 0.14 \times 0.04 \text{ mm}$

Data collection

KappaCCD diffractometer φ scans and ω scans with κ offsets 16551 measured reflections 4588 independent reflections 3011 reflections with $I > 2\sigma(I)$	$R_{int} = 0.066$ $\theta_{max} = 25.7^{\circ}, \ \theta_{min} = 3.5^{\circ}$ $h = -27 \rightarrow 27$ $k = -10 \rightarrow 11$ $l = -28 \rightarrow 28$
Refinement	
Refinement on F^2	0 restraints

	o i cottanito
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.047$	$w = 1/[\sigma^2(F_o^2) + (0.0842P)^2]$
$wR(F^2) = 0.150$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.07	$(\Delta/\sigma)_{\rm max} < 0.001$
4588 reflections	$\Delta \rho_{\rm max} = 0.27 \text{ e} \text{ Å}^{-3}$
325 parameters	$\Delta \rho_{\min} = -0.22 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and	l isotropic or	equivalent	isotropic	displacement	parameters	$(Å^2)$?)
-----------------------------------	----------------	------------	-----------	--------------	------------	---------	----

	x	у	Ζ	$U_{\rm iso}^*/U_{\rm eq}$
01	0.32552 (5)	0.15282 (12)	0.00628 (6)	0.0579 (4)
N11	0.30310 (7)	0.38523 (15)	0.02708 (7)	0.0638 (5)
H11A	0.2668	0.3735	0.0168	0.077*
H11B	0.3154	0.4685	0.0396	0.077*
N12	0.39721 (7)	0.30226 (14)	0.03898 (7)	0.0560 (4)
H12	0.4234	0.2373	0.0338	0.067*
N13	0.41230 (6)	0.43452 (15)	0.06270 (6)	0.0518 (4)
N14	0.50663 (7)	0.22107 (17)	0.07080 (8)	0.0646 (5)
C11	0.33995 (8)	0.27542 (18)	0.02374 (8)	0.0472 (4)
C12	0.46602 (8)	0.46234 (18)	0.07889 (7)	0.0503 (4)
C13	0.47417 (8)	0.60980 (18)	0.10515 (8)	0.0507 (5)
C14	0.43912 (9)	0.7256 (2)	0.08574 (9)	0.0615 (5)
H14	0.4120	0.7117	0.0550	0.074*
C15	0.44422 (10)	0.8602 (2)	0.11153 (11)	0.0717 (6)
H15	0.4210	0.9369	0.0977	0.086*
C16	0.48359 (10)	0.8818 (2)	0.15773 (11)	0.0752 (6)
H16	0.4864	0.9723	0.1756	0.090*
C17	0.51862 (10)	0.7691 (2)	0.17715 (10)	0.0728 (6)
H17	0.5458	0.7840	0.2078	0.087*
C18	0.51390 (9)	0.6347 (2)	0.15160 (9)	0.0612 (5)
H18	0.5376	0.5590	0.1655	0.073*
C19	0.51699 (8)	0.36475 (18)	0.07344 (8)	0.0526 (5)
C110	0.57304 (9)	0.4197 (2)	0.07022 (8)	0.0625 (5)
H110	0.5795	0.5196	0.0709	0.075*

C111	0.61896 (9)	0.3247 (3)	0.06597 (10)	0.0745 (6)
H111	0.6568	0.3601	0.0642	0.089*
C112	0.60892 (10)	0.1782 (3)	0.06428 (10)	0.0746 (6)
H112	0.6395	0.1124	0.0620	0.090*
C113	0.55268 (10)	0.1312 (2)	0.06610 (10)	0.0732 (6)
H113	0.5456	0.0316	0.0640	0.088*
O2	0.24288 (6)	0.15322 (12)	0.42544 (5)	0.0583 (4)
N21	0.21621 (7)	0.38036 (15)	0.44999 (7)	0.0600 (4)
H21A	0.2252	0.3660	0.4860	0.072*
H21B	0.2025	0.4632	0.4386	0.072*
N22	0.20957 (7)	0.30602 (15)	0.35554 (6)	0.0568 (4)
H22	0.2161	0.2435	0.3291	0.068*
N23	0.18510 (7)	0.43784 (15)	0.34154 (6)	0.0529 (4)
N24	0.17683 (8)	0.22916 (17)	0.24561 (7)	0.0621 (4)
C21	0.22340 (8)	0.27519 (17)	0.41217 (7)	0.0468 (4)
C22	0.17017 (8)	0.46887 (18)	0.28832 (7)	0.0507 (4)
C23	0.14314 (8)	0.61504 (18)	0.28004 (8)	0.0517 (5)
C24	0.16044 (9)	0.7306 (2)	0.31577 (9)	0.0618 (5)
H24	0.1901	0.7173	0.3442	0.074*
C25	0.13392 (11)	0.8647 (2)	0.30944 (9)	0.0726 (6)
H25	0.1458	0.9412	0.3336	0.087*
C26	0.09007 (11)	0.8860 (2)	0.26773 (10)	0.0758 (7)
H26	0.0722	0.9765	0.2637	0.091*
C27	0.07268 (10)	0.7732 (2)	0.23192 (10)	0.0720 (6)
H27	0.0430	0.7876	0.2035	0.086*
C28	0.09885 (9)	0.6396 (2)	0.23788 (9)	0.0620 (5)
H28	0.0868	0.5641	0.2133	0.074*
C29	0.17786 (8)	0.37337 (19)	0.23733 (8)	0.0532 (5)
C210	0.18628 (9)	0.4333 (2)	0.18346 (8)	0.0666 (6)
H210	0.1890	0.5336	0.1790	0.080*
C211	0.19057 (11)	0.3423 (3)	0.13692 (10)	0.0781 (6)
H211	0.1953	0.3808	0.1004	0.094*
C212	0.18792 (10)	0.1954 (3)	0.14452 (10)	0.0742 (6)
H212	0.1901	0.1324	0.1133	0.089*
C213	0.18198 (10)	0.1423 (2)	0.19957 (10)	0.0717 (6)
H213	0.1815	0.0420	0.2050	0.086*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0576 (8)	0.0475 (7)	0.0680 (9)	-0.0063 (6)	-0.0032 (6)	-0.0060 (6)
N11	0.0486 (10)	0.0495 (9)	0.0915 (13)	0.0005 (7)	-0.0132 (9)	-0.0110 (8)
N12	0.0465 (10)	0.0483 (9)	0.0721 (11)	0.0010 (6)	-0.0058 (8)	-0.0077 (7)
N13	0.0498 (10)	0.0488 (8)	0.0559 (10)	-0.0047 (6)	-0.0052 (7)	0.0005 (6)
N14	0.0537 (11)	0.0583 (10)	0.0818 (13)	0.0034 (8)	0.0039 (9)	0.0122 (8)
C11	0.0461 (11)	0.0498 (10)	0.0451 (10)	-0.0030 (8)	-0.0023 (8)	-0.0002 (8)
C12	0.0466 (11)	0.0546 (11)	0.0489 (11)	-0.0046 (8)	-0.0059 (8)	0.0086 (8)
C13	0.0464 (11)	0.0526 (10)	0.0524 (11)	-0.0071 (8)	-0.0034 (8)	0.0037 (8)

supporting information

C14	0.0532 (12)	0.0604 (12)	0.0695 (14)	-0.0044 (9)	-0.0093 (10)	-0.0010 (9)
C15	0.0604 (14)	0.0597 (12)	0.0945 (18)	0.0003 (9)	0.0013 (12)	-0.0048 (11)
C16	0.0682 (16)	0.0723 (14)	0.0859 (17)	-0.0156 (11)	0.0104 (12)	-0.0246 (12)
C17	0.0649 (15)	0.0865 (15)	0.0660 (14)	-0.0142 (12)	-0.0055 (11)	-0.0133 (11)
C18	0.0572 (13)	0.0693 (13)	0.0558 (12)	-0.0072 (9)	-0.0076 (10)	-0.0003 (9)
C19	0.0492 (12)	0.0595 (11)	0.0486 (11)	-0.0013 (8)	-0.0026 (8)	0.0096 (8)
C110	0.0531 (13)	0.0725 (12)	0.0616 (13)	-0.0041 (10)	0.0008 (9)	0.0043 (10)
C111	0.0470 (13)	0.0974 (17)	0.0794 (16)	0.0036 (11)	0.0073 (11)	0.0075 (12)
C112	0.0556 (14)	0.0909 (17)	0.0780 (16)	0.0163 (11)	0.0093 (11)	0.0196 (12)
C113	0.0645 (15)	0.0662 (13)	0.0893 (17)	0.0127 (10)	0.0092 (12)	0.0157 (11)
O2	0.0712 (10)	0.0462 (7)	0.0562 (8)	0.0068 (6)	-0.0069 (7)	0.0044 (6)
N21	0.0811 (12)	0.0497 (9)	0.0476 (9)	0.0128 (7)	-0.0106 (8)	0.0001 (7)
N22	0.0737 (11)	0.0499 (9)	0.0458 (9)	0.0109 (7)	-0.0049 (8)	0.0016 (6)
N23	0.0589 (10)	0.0485 (9)	0.0504 (9)	0.0032 (7)	-0.0049 (7)	0.0065 (7)
N24	0.0722 (12)	0.0599 (10)	0.0539 (10)	-0.0070 (8)	0.0013 (8)	-0.0043 (7)
C21	0.0481 (11)	0.0459 (10)	0.0456 (11)	-0.0006 (8)	-0.0034 (8)	0.0045 (8)
C22	0.0531 (11)	0.0530 (10)	0.0454 (11)	-0.0011 (8)	-0.0022 (8)	0.0062 (8)
C23	0.0523 (12)	0.0555 (11)	0.0469 (11)	0.0013 (8)	-0.0012 (9)	0.0085 (8)
C24	0.0688 (14)	0.0627 (12)	0.0528 (12)	0.0030 (10)	-0.0063 (10)	0.0011 (9)
C25	0.0964 (18)	0.0580 (13)	0.0632 (14)	0.0093 (11)	0.0034 (12)	-0.0002 (9)
C26	0.0908 (18)	0.0693 (14)	0.0678 (15)	0.0263 (12)	0.0102 (12)	0.0162 (11)
C27	0.0681 (15)	0.0846 (15)	0.0623 (14)	0.0175 (11)	-0.0046 (11)	0.0153 (11)
C28	0.0623 (13)	0.0638 (12)	0.0587 (13)	0.0021 (9)	-0.0074 (10)	0.0078 (9)
C29	0.0502 (12)	0.0589 (12)	0.0500 (11)	-0.0016 (8)	-0.0030 (8)	0.0028 (8)
C210	0.0732 (15)	0.0745 (13)	0.0524 (13)	0.0056 (10)	0.0058 (10)	0.0077 (10)
C211	0.0852 (18)	0.0993 (18)	0.0504 (13)	0.0141 (13)	0.0088 (11)	0.0019 (11)
C212	0.0694 (15)	0.0977 (18)	0.0557 (14)	0.0032 (12)	0.0037 (11)	-0.0171 (11)
C213	0.0772 (16)	0.0686 (13)	0.0690 (15)	-0.0080 (10)	0.0019 (12)	-0.0112 (11)

Geometric parameters (Å, °)

01—C11	1.2360 (19)	O2—C21	1.2390 (19)	
N11—C11	1.321 (2)	N21—C21	1.321 (2)	
N11—H11A	0.8600	N21—H21A	0.8600	
N11—H11B	0.8600	N21—H21B	0.8600	
N12—C11	1.364 (2)	N22—C21	1.364 (2)	
N12—N13	1.3705 (19)	N22—N23	1.3665 (18)	
N12—H12	0.8600	N22—H22	0.8600	
N13—C12	1.294 (2)	N23—C22	1.295 (2)	
N14—C19	1.342 (2)	N24—C29	1.339 (2)	
N14—C113	1.349 (3)	N24—C213	1.343 (3)	
C12—C19	1.484 (2)	C22—C23	1.487 (2)	
C12—C13	1.493 (2)	C22—C29	1.490 (2)	
C13—C18	1.392 (2)	C23—C28	1.390 (2)	
C13—C14	1.393 (3)	C23—C24	1.392 (3)	
C14—C15	1.376 (3)	C24—C25	1.378 (3)	
C14—H14	0.9300	C24—H24	0.9300	
C15—C16	1.378 (3)	C25—C26	1.371 (3)	

С15—Н15	0.9300	С25—Н25	0.9300
C16—C17	1.371 (3)	C26—C27	1.374 (3)
C16—H16	0.9300	С26—Н26	0.9300
C17-C18	1.371(3)	C_{27} C_{28}	1,370(3)
C17 H17	0.0200	C27 H27	0.0200
C1/—H1/	0.9300	$C_2/-H_2/$	0.9300
	0.9300	C28—H28	0.9300
C19—C110	1.386 (3)	C29—C210	1.388 (3)
C110—C111	1.375 (3)	C210—C211	1.372 (3)
C110—H110	0.9300	C210—H210	0.9300
C111—C112	1.366 (3)	C211—C212	1.363 (3)
C111—H111	0.9300	C211—H211	0.9300
C112—C113	1.362 (3)	C212—C213	1.380 (3)
С112—Н112	0.9300	С212—Н212	0.9300
С113—Н113	0.9300	С213—Н213	0.9300
	0.9500		0.9500
C11 N11 H11A	120.0	C21 N21 H21A	120.0
CII—NII—IIIIA	120.0	C_{21} N21 H21D	120.0
CII—NII—HIIB	120.0	C2I—N2I—H2IB	120.0
HIIA—NII—HIIB	120.0	H21A—N21—H21B	120.0
C11—N12—N13	118.90 (14)	C21—N22—N23	118.96 (14)
C11—N12—H12	120.6	C21—N22—H22	120.5
N13—N12—H12	120.6	N23—N22—H22	120.5
C12—N13—N12	120.51 (15)	C22—N23—N22	120.40 (14)
C19—N14—C113	117.91 (17)	C29—N24—C213	118.09 (17)
O1—C11—N11	123.66 (17)	O2—C21—N21	123.56 (16)
01-C11-N12	119.14 (15)	02—C21—N22	119.28 (15)
N11—C11—N12	117 18 (15)	N21-C21-N22	117 14 (14)
N13 C12 C19	126 72 (16)	N23 C22 C23	117.11(11) 114.15(15)
N13 - C12 - C13	120.72(10) 112.21(15)	N23 C22 C20	114.15(15)
N13 - C12 - C13	113.21(13)	$N_{23} = C_{22} = C_{29}$	120.10(13)
C19 - C12 - C13	120.07 (15)	$C_{23} - C_{22} - C_{29}$	119.68 (15)
C18—C13—C14	117.82 (16)	C28—C23—C24	117.99 (16)
C18—C13—C12	121.83 (16)	C28—C23—C22	121.42 (16)
C14—C13—C12	120.23 (16)	C24—C23—C22	120.56 (16)
C15—C14—C13	120.76 (19)	C25—C24—C23	120.56 (19)
C15—C14—H14	119.6	C25—C24—H24	119.7
C13—C14—H14	119.6	C23—C24—H24	119.7
C14—C15—C16	120.3 (2)	C26—C25—C24	120.4 (2)
C14—C15—H15	119.8	С26—С25—Н25	119.8
С16—С15—Н15	119.8	C24—C25—H25	119.8
C17 - C16 - C15	119.63 (19)	C_{25} C_{26} C_{27}	119.81 (19)
C17 - C16 - H16	120.2	C_{25} C_{26} H_{26}	120.1
C_{15} C_{16} H_{16}	120.2	C27 C26 H26	120.1
$C_{15} = C_{10} = 110$	120.2	$C_{2}^{2} = C_{2}^{2} = C_{2}^{2} = C_{2}^{2}$	120.1
C10-C17-C18	120.4 (2)	$C_{28} = C_{27} = C_{20}$	120.2 (2)
	119.8	$C_{28} - C_{27} - H_{27}$	119.9
C18—C17—H17	119.8	С26—С27—Н27	119.9
C17—C18—C13	121.05 (19)	C27—C28—C23	121.07 (19)
C17—C18—H18	119.5	C27—C28—H28	119.5
C13—C18—H18	119.5	C23—C28—H28	119.5
N14—C19—C110	121.19 (17)	N24—C29—C210	121.71 (17)

N14-C19-C12	117 39 (16)	N24-C29-C22	117 71 (16)
$C_{110} - C_{19} - C_{12}$	121 42 (16)	$C_{210} - C_{29} - C_{22}$	120.57(17)
$C_{111} - C_{110} - C_{19}$	119 2 (2)	$C_{211} - C_{210} - C_{29}$	1191(2)
C111—C110—H110	120.4	$C_{211} - C_{210} - H_{210}$	120.5
C19—C110—H110	120.1	C_{29} C_{210} H_{210}	120.5
$C_{112} - C_{111} - C_{110}$	120.4 110.9(2)	C_{212} C_{211} C_{210} C_{210}	120.3 119.7(2)
C112-C111-H111	120.0	$C_{212} = C_{211} = C_{210}$	120.1
	120.0	$C_{212} = C_{211} = H_{211}$	120.1
$C_{113} = C_{112} = C_{111}$	120.0 118.0(2)	$C_{210} - C_{211} - H_{211}$	120.1
$C_{113} = C_{112} = C_{111}$	118.0 (2)	$C_{211} = C_{212} = C_{213}$	110.40 (19)
	121.0	$C_{211} = C_{212} = H_{212}$	120.8
CIII—CII2—HII2	121.0 122.7(2)	C_{213} $-C_{212}$ $-H_{212}$	120.8
N14—C113—C112	123.7 (2)	$N_{24} = C_{213} = C_{212}$	122.8 (2)
NI4—CII3—HII3	118.1	N24—C213—H213	118.6
СП2—СП3—НП3	118.1	C212—C213—H213	118.6
C11—N12—N13—C12	178.38 (16)	C21—N22—N23—C22	-178.29 (16)
N13—N12—C11—O1	-174.77 (15)	N23—N22—C21—O2	176.43 (15)
N13—N12—C11—N11	7.2 (2)	N23—N22—C21—N21	-5.0 (2)
N12—N13—C12—C19	1.8 (3)	N22—N23—C22—C23	178.90 (15)
N12—N13—C12—C13	-178.45 (15)	N22—N23—C22—C29	-1.2(3)
N13—C12—C13—C18	142.89 (18)	N23—C22—C23—C28	-145.14(19)
C19—C12—C13—C18	-37.3(3)	C_{29} C_{22} C_{23} C_{28}	34.9 (3)
N13-C12-C13-C14	-33.1(2)	N23-C22-C23-C24	32.8 (3)
C19 - C12 - C13 - C14	146.70 (18)	C_{29} C_{22} C_{23} C_{24}	-147.07(18)
C18 - C13 - C14 - C15	0.6(3)	C_{28} C_{23} C_{24} C_{25}	04(3)
C12-C13-C14-C15	176 71 (19)	C_{22} C_{23} C_{24} C_{25}	-177.65(18)
C13 - C14 - C15 - C16	-11(3)	C_{23} C_{24} C_{25} C_{26}	0.0(3)
C_{14} C_{15} C_{16} C_{17}	14(3)	C_{24} C_{25} C_{26} C_{27}	-0.3(3)
C_{15} C_{16} C_{17} C_{18}	-1.2(3)	C_{25} C_{25} C_{25} C_{27} C_{28}	0.2(3)
C_{16} C_{17} C_{18} C_{13}	0.8(3)	$C_{25} = C_{20} = C_{27} = C_{20} = C_{20}$	0.2(3)
$C_{10} = C_{17} = C_{18} = C_{15}$	-0.4(3)	$C_{20} = C_{21} = C_{20} = C_{23}$	-0.5(3)
$C_{12} = C_{13} = C_{16} = C_{17}$	-17651(18)	$C_{24} = C_{23} = C_{26} = C_{27}$	17756(10)
$C_{12} = C_{13} = C_{16} = C_{17}$	1/0.31(10)	$C_{22} = C_{23} = C_{26} = C_{27}$	-25(3)
$C_{113} = N_{14} = C_{19} = C_{110}$	1.3(3) -170.70(17)	$C_{213} = N_{24} = C_{29} = C_{210}$	2.3(3)
N13 - N14 - C19 - C12	-1/9.70(17) -24.8(2)	N23 C22 C20 N24	1/0.00(10)
N13 - C12 - C19 - N14	-24.0(3)	N23 - C22 - C29 - N24	29.5(3)
C13 - C12 - C19 - N14	153.40(10) 154.12(10)	$V_{23} = V_{22} = V_{23} = V_{24}$	-130.77(17)
N13 - C12 - C19 - C110	154.15(19)	$N_{23} = C_{22} = C_{29} = C_{210}$	-150.11(19)
C13 - C12 - C19 - C110	-25.6(3)	$C_{23} = C_{22} = C_{29} = C_{210}$	29.8 (3)
	-1.9(3)	$N_{24} = C_{29} = C_{210} = C_{211}$	3.5 (3)
C12—C19—C110—C111	1/9.14 (18)	C22—C29—C210—C211	-177.08 (19)
C19—C110—C111—C112	0.8 (3)	C29—C210—C211—C212	-1.6 (3)
C110—C111—C112—C113	0.9 (3)	C210—C211—C212—C213	-1.2 (3)
C19—N14—C113—C112	0.4 (3)	C29—N24—C213—C212	-0.4 (3)
C111—C112—C113—N14	-1.6(3)	C211—C212—C213—N24	2.2 (3)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A	
N11—H11A····O1 ⁱ	0.86	2.17	3.029 (2)	178	
N11—H11 <i>B</i> ····O2 ⁱⁱ	0.86	2.33	2.917 (2)	126	
N21—H21 <i>B</i> …O1 ⁱⁱ	0.86	2.27	2.883 (2)	128	
N21—H21A····O2 ⁱⁱⁱ	0.86	2.15	3.005 (2)	173	
N12—H12…N14	0.86	2.06	2.683 (2)	129	
N22—H22…N24	0.86	2.10	2.712 (2)	128	

Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) -x+1/2, -y+1/2, -z; (ii) -x+1/2, y+1/2, -z+1/2; (iii) -x+1/2, -y+1/2, -z+1.