metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis[1,3-bis(diphenylphosphinoylimino)isoindolinato- $\kappa^3 O, N, O'$]calcium(II)

Zhiying Li,^a Donglin Shang^b and Jianping Guo^{b*}

^aDepartment of Chemistry, Xinzhou Teachers' University, Xinzhou 034000, People's Republic of China, and ^bThe Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, People's Republic of China Correspondence e-mail: guojp@sxu.edu.cn

Received 26 October 2007; accepted 4 December 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.007 Å; R factor = 0.050; wR factor = 0.135; data-to-parameter ratio = 13.9.

In the title compound, $[Ca(C_{32}H_{24}N_3O_2P_2)_2]$, the 1,3-bis-(diphenylphosphinoylimino)isoindoline ligand adopts a tridentate coordination mode. The compound exhibits a distorted octahedral geometry. The Ca atom lies on a twofold rotation axis.

Related literature

For a related compound with similar octahedral geometry, see: Cole *et al.* (2006). For related literature, see: Shang (2007).

Experimental

 $\begin{array}{l} Crystal \ data \\ [Ca(C_{32}H_{24}N_{3}O_{2}P_{2})_{2}] \\ M_{r} = 1129.04 \\ Monoclinic, \ C2/c \\ a = 26.351 \ (2) \ \text{\AA} \\ b = 12.4790 \ (11) \ \text{\AA} \end{array}$

c = 21.1997 (19) Å $\beta = 126.1720 (10)^{\circ}$ $V = 5627.4 (9) \text{ Å}^3$ Z = 4Mo $K\alpha$ radiation $\mu = 0.28 \text{ mm}^{-1}$ T = 293 (2) K

Data collection

Bruker SMART CCD	11452 measured reflections
diffractometer	4959 independent reflections
Absorption correction: multi-scan	4175 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.019$
$T_{\rm min} = 0.837, \ T_{\rm max} = 0.973$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.050$ 357 parameters $wR(F^2) = 0.135$ H-atom parameters constrainedS = 1.04 $\Delta \rho_{max} = 0.40$ e Å⁻³4959 reflections $\Delta \rho_{min} = -0.25$ e Å⁻³

 $0.20 \times 0.15 \times 0.10 \text{ mm}$

Table 1

Selected geometric parameters (Å, °).

Ca1—O1 Ca1—O2	2.2581 (18) 2.2646 (18)	Ca1-N2	2.5513 (18)
$D1 - Ca1 - O1^{i}$ $D1 - Ca1 - O2$ $D1 - Ca1 - O2^{i}$ $D2 - Ca1 - O2^{i}$ $D1 - Ca1 - N2^{i}$	81.34 (11) 93.49 (8) 157.41 (7) 99.09 (11) 110.51 (6)	$O2-Ca1-N2^{i}$ O1-Ca1-N2 O2-Ca1-N2 $N2^{i}-Ca1-N2$	80.48 (6) 80.81 (6) 90.12 (6) 165.55 (9)

Symmetry code: (i) -x, y, $-z + \frac{1}{2}$.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL/PC* (Sheldrick, 1999); software used to prepare material for publication: *SHELXTL/PC*.

This work was carried out under the sponsorship of the Overseas Foundation of Shanxi Province, People's Republic of China.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WW2103).

References

- Bruker (2000). SMART (Version 5.0) and SAINT (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.
- Cole, M. L., Deacon, G. B., Forsyth, C. M., Konstas, K. & Junk, P. C. (2006). Dalton Trans. pp. 3360–3367.
- Shang, D.-L. (2007). MSc thesis, Shanxi University, People's Republic of China.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of
- Göttingen, Germany. Sheldrick, G. M. (1999). *SHELXTL/PC*. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.

supporting information

Acta Cryst. (2008). E64, m160 [https://doi.org/10.1107/S1600536807065440] Bis[1,3-bis(diphenylphosphinoylimino)isoindolinato-κ³O,N,O']calcium(II)

Zhiying Li, Donglin Shang and Jianping Guo

S1. Comment

The bis(*N*-diphenylphosphinato)-isoindoline-1,3-diimine ligand is a new type of tridentate ligand (Shang, 2007). There are six atoms coordinated to calcium ion, the four oxygen atoms are approximately in an equatorial plane with calcium(II), the mean deviation from the plane is 0.3218Å and the two nitrogen atoms are in axial positions [N2—Ca—N2ⁱ 165.55 (9)° (symmetry code ⁱ: -*x*, *y*, 1/2 - *z*)]. Because the calcium ion is coordinated *via* two oxygen of the tridentate ligand, two six-membered rings of O1—P1—N1—C13—N2—Ca1 and O2ⁱ—P2ⁱ—N3ⁱ—C20—N2—Ca1 are formed. The dihedral angles between the two six-membered rings and the isoindoline ring are 12.5° and 14.0° respectively. The Ca—O and Ca—N bond lengths of the compound are 2.2581 (18) [Ca1—O1], 2.2646 (18) [Ca1—O2] and 2.5513 (18) [Ca1—N2] Å, respectively. The values are comparable to the octahedral compound [Ca(*o*-ToIForm)₂(thf)₂], which can provide four nitrogen and two oxygen atoms to coordinate calcium(II), the average bond length of Ca—O is 2.368 (2) and Ca—N is 2.43 (2)Å (Cole *et al.*, 2006).

S2. Experimental

The red crystal of bis(*N*-diphenylphosphinato)-isoindoline-1,3-diimine (Shang, 2007) (0.287 g, 0.53 mmol) was dissolved in absolute ethanol (20 ml), the calcium chloride (0.060 g, 0.53 mmol) was added to the solution in room temperature and the mixture was reacted for 24 h before getting the clear yellow solution, the solvent was evaporated slowly to give pink crystals of title compund. Yield: 0.14 g, 47%. Spectroscopic analysis, ¹H NMR (300 MHz, CDCl₃, δ): 7.73–7.88(m, 16H, phenyl; 4H, isoindoline); 7.51–7.54 (t, 4H, J=8.1, isoindoline); 7.10–7.27 (m, 24H, phenyl). ³¹P-{¹H} NMR (300 MHz, CDCl₃, δ): 20.2(*s*).

S3. Refinement

H atoms were placed in their idealized positions and allowed to ride on the respective parent atoms with C—H 0.93 Å, and with $U_{iso}(H) = 1.2U_{eq}$ (parent atom).

Figure 1

Molecular structure of I, showing the atom-labeling scheme and 20% probability displacement ellipsoids. Symmetry codes: (i) -*x*, *y*, -z + 1/2.

 $Bis [1, 3-bis (diphenylphosphinoylimino) isoindolinato-\kappa^3 O, N, O'] calcium (II)$

Crystal data

$[Ca(C_{32}H_{24}N_{3}O_{2}P_{2})_{2}]$ $M_{r} = 1129.04$ Monoclinic, $C2/c$ Hall symbol: -C 2yc a = 26.351 (2) Å b = 12.4790 (11) Å c = 21.1997 (19) Å $\beta = 126.172$ (1)° V = 5627.4 (9) Å ³ Z = 4	F(000) = 2344 $D_x = 1.333 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4426 reflections $\theta = 2.4-25.9^{\circ}$ $\mu = 0.28 \text{ mm}^{-1}$ T = 293 K Block, pink $0.20 \times 0.15 \times 0.10 \text{ mm}$
Data collection	
Bruker SMART CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scan	Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{min} = 0.837$, $T_{max} = 0.973$ 11452 measured reflections 4959 independent reflections 4175 reflections with $I > 2\sigma(I)$

$R_{\rm int} = 0.019$	$k = -14 \rightarrow 14$
$\theta_{\rm max} = 25.0^\circ, \theta_{\rm min} = 1.9^\circ$	$l = -22 \rightarrow 25$
$h = -31 \rightarrow 17$	

Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.050$	Hydrogen site location: inferred from
$wR(F^2) = 0.135$	neighbouring sites
<i>S</i> = 1.04	H-atom parameters constrained
4959 reflections	$w = 1/[\sigma^2(F_o^2) + (0.075P)^2 + 4.1489P]$
357 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.40 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.25 \ { m e} \ { m \AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Cal	0.0000	0.39576 (5)	0.2500	0.03918 (18)
P1	0.12637 (3)	0.56655 (5)	0.33048 (4)	0.04665 (19)
P2	0.02345 (3)	0.23193 (6)	0.13903 (4)	0.0498 (2)
01	0.06204 (8)	0.53300 (15)	0.26479 (10)	0.0621 (5)
O2	0.04545 (8)	0.27801 (16)	0.21607 (10)	0.0620 (5)
N1	0.16798 (9)	0.49240 (15)	0.40938 (11)	0.0447 (5)
N2	0.09048 (8)	0.37004 (14)	0.39391 (10)	0.0401 (4)
N3	-0.05179 (10)	0.22572 (18)	0.06938 (12)	0.0553 (6)
C1	0.17484 (14)	0.57710 (19)	0.29706 (17)	0.0566 (7)
C2	0.23898 (16)	0.5685 (3)	0.3464 (2)	0.0778 (9)
H2B	0.2592	0.5583	0.3996	0.093*
C3	0.2736 (2)	0.5750 (4)	0.3164 (4)	0.1129 (15)
H3B	0.3171	0.5684	0.3502	0.135*
C4	0.2464 (4)	0.5902 (4)	0.2414 (5)	0.137 (2)
H4A	0.2707	0.5947	0.2228	0.164*
C5	0.1831 (4)	0.5992 (4)	0.1915 (3)	0.1284 (19)
H5A	0.1641	0.6105	0.1386	0.154*
C6	0.1460 (2)	0.5919 (3)	0.2183 (2)	0.0868 (10)
H6A	0.1025	0.5970	0.1836	0.104*
C7	0.12490 (12)	0.6964 (2)	0.36669 (15)	0.0547 (6)
C8	0.07017 (16)	0.7308 (3)	0.3552 (2)	0.0752 (9)
H8A	0.0340	0.6891	0.3269	0.090*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C9	0.0699 (2)	0.8278 (4)	0.3864 (3)	0.1074 (14)
H9A	0.0330	0.8513	0.3784	0.129*
C10	0.1221 (2)	0.8895 (3)	0.4283 (3)	0.1118 (15)
H10A	0.1211	0.9539	0.4496	0.134*
Cl1	0.1762 (2)	0.8569 (3)	0.4391 (2)	0.0951 (12)
H11A	0.2120	0.8996	0.4672	0.114*
C12	0.17765 (14)	0.7608 (2)	0.40839 (18)	0.0681 (8)
H12A	0.2146	0.7390	0.4158	0.082*
C13	0.14975 (10)	0.41314 (16)	0.43053 (13)	0.0380 (5)
C14	0.19536 (10)	0.35340 (17)	0.50380 (12)	0.0391 (5)
C15	0.25946 (11)	0.36174 (19)	0.55869 (14)	0.0460 (5)
H15A	0.2823	0.4153	0.5553	0.055*
C16	0.28879 (12)	0.2881 (2)	0.61895 (14)	0.0513 (6)
H16A	0.3321	0.2919	0.6566	0.062*
C17	0.25463 (13)	0.2089 (2)	0.62393 (14)	0.0547 (6)
H17A	0.2752	0.1603	0.6651	0.066*
C18	0.19053 (12)	0.2007 (2)	0.56887 (14)	0.0508 (6)
H18A	0.1675	0.1473	0.5721	0.061*
C19	0.16168 (11)	0.27412 (18)	0.50904 (13)	0.0415 (5)
C20	0.09548 (11)	0.28795 (18)	0.44013 (13)	0.0426 (5)
C21	0.05040 (12)	0.0949 (2)	0.15292 (17)	0.0561 (7)
C22	0.05167 (16)	0.0416 (2)	0.0977 (2)	0.0803 (9)
H22A	0.0369	0.0756	0.0508	0.096*
C23	0.0743 (2)	-0.0612 (3)	0.1100 (3)	0.1070 (15)
H23A	0.0739	-0.0961	0.0710	0.128*
C24	0.0965 (2)	-0.1109 (4)	0.1762 (4)	0.136 (2)
H24A	0.1124	-0.1800	0.1842	0.163*
C25	0.0960 (2)	-0.0614 (4)	0.2325 (3)	0.127 (2)
H25A	0.1112	-0.0970	0.2790	0.152*
C26	0.07300 (17)	0.0426 (3)	0.2215 (2)	0.0937 (12)
H26A	0.0730	0.0764	0.2606	0.112*
C27	0.05800 (14)	0.2982 (2)	0.09748 (17)	0.0580 (7)
C28	0.12267 (17)	0.2995 (3)	0.1398 (2)	0.0836 (10)
H28A	0.1472	0.2687	0.1893	0.100*
C29	0.1514 (2)	0.3465 (4)	0.1089 (3)	0.1113 (14)
H29A	0.1949	0.3460	0.1374	0.134*
C30	0.1164 (3)	0.3927 (4)	0.0380 (3)	0.1186 (17)
H30A	0.1358	0.4242	0.0175	0.142*
C31	0.0531 (3)	0.3935 (4)	-0.0037 (3)	0.1218 (16)
H31A	0.0292	0.4266	-0.0523	0.146*
C32	0.0238 (2)	0.3460 (3)	0.0250 (2)	0.0955 (11)
H32A	-0.0199	0.3459	-0.0050	0.115*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cal	0.0386 (4)	0.0401 (3)	0.0360 (3)	0.000	0.0204 (3)	0.000
P1	0.0463 (4)	0.0371 (3)	0.0518 (4)	-0.0034 (3)	0.0263 (3)	0.0065 (3)

supporting information

			/			
P2	0.0419 (4)	0.0577 (4)	0.0489 (4)	0.0108 (3)	0.0264 (3)	-0.0027 (3)
01	0.0561 (11)	0.0557 (11)	0.0553 (10)	-0.0095 (9)	0.0223 (9)	0.0121 (8)
02	0.0436 (10)	0.0838 (13)	0.0508 (10)	0.0106 (9)	0.0235 (8)	-0.0090 (9)
N1	0.0411 (10)	0.0383 (10)	0.0520 (11)	-0.0033 (8)	0.0259 (9)	0.0042 (8)
N2	0.0379 (10)	0.0403 (10)	0.0422 (10)	-0.0024 (8)	0.0236 (9)	0.0005 (8)
N3	0.0466 (12)	0.0641 (13)	0.0494 (12)	0.0124 (10)	0.0252 (10)	-0.0099 (10)
C1	0.0760 (19)	0.0373 (12)	0.0700 (17)	-0.0044 (12)	0.0506 (15)	0.0060 (12)
C2	0.078 (2)	0.073 (2)	0.107 (3)	0.0026 (16)	0.068 (2)	0.0189 (18)
C3	0.115 (3)	0.099 (3)	0.179 (5)	0.010 (2)	0.117 (4)	0.033 (3)
C4	0.209 (6)	0.100 (3)	0.214 (7)	0.000 (4)	0.188 (6)	0.021 (4)
C5	0.230 (7)	0.102 (3)	0.125 (4)	-0.022 (4)	0.145 (5)	0.002 (3)
C6	0.123 (3)	0.073 (2)	0.079 (2)	-0.011 (2)	0.068 (2)	0.0041 (17)
C7	0.0567 (15)	0.0437 (13)	0.0543 (14)	0.0071 (12)	0.0276 (13)	0.0102 (11)
C8	0.0617 (19)	0.074 (2)	0.083 (2)	0.0110 (15)	0.0385 (17)	0.0006 (17)
C9	0.092 (3)	0.108 (3)	0.121 (3)	0.033 (3)	0.062 (3)	-0.007 (3)
C10	0.123 (4)	0.075 (2)	0.100 (3)	0.025 (3)	0.045 (3)	-0.020 (2)
C11	0.097 (3)	0.0507 (18)	0.093 (2)	0.0058 (18)	0.032 (2)	-0.0062 (17)
C12	0.0599 (17)	0.0423 (14)	0.0785 (19)	0.0003 (12)	0.0277 (15)	0.0001 (13)
C13	0.0405 (12)	0.0342 (11)	0.0434 (12)	-0.0013 (9)	0.0271 (10)	-0.0025 (9)
C14	0.0411 (12)	0.0358 (11)	0.0413 (12)	-0.0008 (9)	0.0247 (10)	-0.0031 (9)
C15	0.0409 (13)	0.0422 (12)	0.0499 (13)	-0.0036 (10)	0.0240 (11)	-0.0022 (10)
C16	0.0417 (13)	0.0513 (14)	0.0450 (13)	0.0003 (11)	0.0168 (11)	-0.0042 (11)
C17	0.0599 (16)	0.0496 (14)	0.0438 (13)	0.0060 (12)	0.0246 (13)	0.0061 (11)
C18	0.0520 (15)	0.0495 (13)	0.0479 (13)	-0.0043 (11)	0.0277 (12)	0.0077 (11)
C19	0.0439 (13)	0.0428 (12)	0.0404 (11)	-0.0031 (10)	0.0262 (10)	-0.0004 (10)
C20	0.0435 (13)	0.0458 (12)	0.0399 (12)	-0.0051 (10)	0.0254 (10)	0.0002 (10)
C21	0.0401 (14)	0.0548 (15)	0.0686 (17)	0.0039 (11)	0.0294 (13)	0.0092 (13)
C22	0.094 (2)	0.0589 (18)	0.116 (3)	0.0194 (17)	0.078 (2)	0.0013 (18)
C23	0.097 (3)	0.062 (2)	0.186 (5)	0.015 (2)	0.097 (3)	-0.006 (3)
C24	0.082 (3)	0.058 (2)	0.201 (6)	0.013 (2)	0.046 (4)	0.018 (3)
C25	0.122 (4)	0.066 (3)	0.110 (3)	-0.002 (2)	0.023 (3)	0.035 (2)
C26	0.093 (3)	0.075 (2)	0.077 (2)	-0.0154 (19)	0.030 (2)	0.0097 (18)
C27	0.0699 (18)	0.0457 (14)	0.0656 (16)	0.0075 (12)	0.0440 (15)	-0.0001 (12)
C28	0.075 (2)	0.091 (2)	0.089 (2)	-0.0115 (18)	0.0504 (19)	0.0041 (19)
C29	0.111 (3)	0.110 (3)	0.145 (4)	-0.030 (3)	0.093 (3)	-0.004 (3)
C30	0.185 (5)	0.087 (3)	0.144 (4)	-0.023 (3)	0.130 (4)	0.002 (3)
C31	0.161 (5)	0.121 (4)	0.110 (3)	0.015 (3)	0.095 (4)	0.040 (3)
C32	0.103 (3)	0.103 (3)	0.083 (2)	0.023 (2)	0.056 (2)	0.029 (2)

Geometric parameters (Å, °)

Ca1—O1	2.2581 (18)	C10—H10A	0.9300	
Cal—Ol ⁱ	2.2581 (18)	C11—C12	1.376 (4)	
Ca1—O2	2.2646 (18)	C11—H11A	0.9300	
Ca1—O2 ⁱ	2.2646 (18)	C12—H12A	0.9300	
Ca1—N2 ⁱ	2.5513 (18)	C13—C14	1.486 (3)	
Ca1—N2	2.5513 (18)	C14—C19	1.377 (3)	
Ca1—P2	3.4369 (8)	C14—C15	1.377 (3)	

Ca1—P2 ⁱ	3.4369 (8)	C15—C16	1.381 (3)
Ca1—P1	3.4403 (7)	C15—H15A	0.9300
Ca1—P1 ⁱ	3.4403 (7)	C16—C17	1.382 (4)
P1—O1	1.4837 (18)	C16—H16A	0.9300
P1—N1	1.6406 (19)	C17—C18	1.378 (4)
P1—C1	1.794 (3)	C17—H17A	0.9300
P1—C7	1.803 (3)	C18—C19	1.374 (3)
P2—O2	1.4888 (19)	C18—H18A	0.9300
P2—N3	1.631 (2)	C19—C20	1.483 (3)
P2—C27	1.799 (3)	C20—N3 ⁱ	1.302 (3)
P2—C21	1.808 (3)	C21—C22	1.363 (4)
N1—C13	1.290 (3)	C21—C26	1.367 (4)
N2—C20	1.369 (3)	C22—C23	1.373 (5)
N2—C13	1.378 (3)	C22—H22A	0.9300
N3—C20 ⁱ	1.302 (3)	C23—C24	1.313 (7)
C1—C2	1.369 (4)	C23—H23A	0.9300
C1—C6	1.379 (4)	C24—C25	1.351 (8)
$C^2 - C^3$	1 388 (5)	C24—H24A	0.9300
C2—H2B	0.9300	$C_{25} - C_{26}$	1 393 (6)
C3—C4	1 316 (8)	C25—H25A	0.9300
C3—H3B	0.9300	C26—H26A	0.9300
C4-C5	1 354 (7)	C_{27} C_{32}	1 377 (4)
C4—H4A	0.9300	C27—C28	1.377(1)
C5—C6	1 393 (6)	C28—C29	1 390 (5)
C5—H5A	0.9300	C28—H28A	0.9300
C6—H6A	0.9300	C29 - C30	1.344(7)
C7—C8	1 382 (4)	C29—H29A	0.9300
C7-C12	1.382 (4)	C30-C31	1.350(7)
C8 - C9	1.302(1) 1 381(5)	C30—H30A	0.9300
C8—H8A	0.9300	C31-C32	1 366 (6)
C9-C10	1 353 (6)	C31—H31A	0.9300
C9—H9A	0.9300	C32—H32A	0.9300
C10-C11	1 365 (6)	032 113211	0.9500
	1.505 (0)		
O1—Ca1—O1 ⁱ	81.34 (11)	C4—C5—H5A	119.5
01—Ca1—O2	93 49 (8)	C6-C5-H5A	119.5
$O1^{i}$ —Ca1—O2	157.41 (7)	C1 - C6 - C5	119.0 (4)
01 —Ca1— 02^{i}	157.11(7)	C1 - C6 - H6A	120.5
01^{i} Cal 02^{i}	93 49 (8)	C5 - C6 - H6A	120.5
Ω^2 —Ca1— Ω^{2i}	99.09 (11)	C8 - C7 - C12	120.9 118.9(3)
$O1$ — $Ca1$ — $N2^{i}$	110 51 (6)	C8 - C7 - P1	110.9(3)
$O1^{i}$ Cal $N2^{i}$	80.81 (6)	C12 - C7 - P1	119.1(2) 121.9(2)
Ω^2 —Ca1—N2 ⁱ	80.48 (6)	C9-C8-C7	121.9(2) 119.2(3)
$O2^{i}$ Cal $N2^{i}$	90 12 (6)	C9—C8—H8A	120.4
01-Ca1-N2	80.81 (6)	$C7 - C8 - H8\Delta$	120.4
$O1^{i}$ Ca1 N2	110 51 (6)	C10-C9-C8	120.4
02-Ca1-N2	90 12 (6)	C10-C9-H9A	119.2
$O2^{i}$ —Ca1—N2	80.48 (6)	C8—C9—H9A	119.2
	~~~~~~		

N2 ⁱ —Ca1—N2	165.55 (9)	C9—C10—C11	119.8 (4)
O1—Ca1—P2	97.95 (6)	C9—C10—H10A	120.1
O1 ⁱ —Ca1—P2	139.82 (5)	C11—C10—H10A	120.1
O2—Ca1—P2	18.93 (4)	C10-C11-C12	119.9 (4)
O2 ⁱ —Ca1—P2	100.02 (6)	C10-C11-H11A	120.0
N2 ⁱ —Ca1—P2	61.66 (4)	C12—C11—H11A	120.0
N2—Ca1—P2	108.97 (4)	C11—C12—C7	120.7 (3)
O1—Ca1—P2 ⁱ	139.82 (5)	C11—C12—H12A	119.6
O1 ⁱ —Ca1—P2 ⁱ	97.95 (6)	C7—C12—H12A	119.6
O2—Ca1—P2 ⁱ	100.02 (6)	N1—C13—N2	129.4 (2)
$O2^{i}$ —Ca1—P2 ⁱ	18.93 (4)	N1—C13—C14	120.7(2)
$N2^{i}$ Cal $P2^{i}$	108 97 (5)	N2-C13-C14	109.96(18)
$N_2$ Cal $P_2^i$	61 66 (4)	C19-C14-C15	120.9(2)
$P2_Ca1_P2^{i}$	107.00(3)	C19 - C14 - C13	126.9(2) 106.42(19)
$\Omega_1 = \Omega_1 = \Omega_1$	18 51 (4)	$C_{15} = C_{14} = C_{13}$	100.42(1)
$O_1 = C_{a1} = P_1$	10.31(4)	$C_{13} = C_{14} = C_{15}$	132.0(2)
$O_1 = Ca_1 = P_1$	90.49(3)	$C_{14} = C_{15} = C_{10}$	110.0(2)
$O_2$ —Cal—Fl	91.20 (3)	С14—С15—НІЗА	121.0
02-Cal-Pl	141.54 (5)	C16—C15—H15A	121.0
N2-Cal-Pl	128.23 (4)		120.8 (2)
N2—Ca1—P1	62.42 (4)	C15—C16—H16A	119.6
P2—Ca1—P1	101.274 (17)	C17—C16—H16A	119.6
$P2^{i}$ —Ca1—P1	122.787 (15)	C18—C17—C16	121.1 (2)
O1—Ca1—P1 ⁱ	90.49 (5)	C18—C17—H17A	119.5
$O1^{i}$ —Ca1—P1 ⁱ	18.51 (4)	C16—C17—H17A	119.5
O2—Ca1—P1 ⁱ	141.54 (5)	C19—C18—C17	117.8 (2)
$O2^{i}$ —Ca1—P1 ⁱ	91.20 (5)	C19—C18—H18A	121.1
N2 ⁱ —Ca1—P1 ⁱ	62.42 (4)	C17—C18—H18A	121.1
N2—Ca1—P1 ⁱ	128.23 (4)	C18—C19—C14	121.4 (2)
P2—Ca1—P1 ⁱ	122.787 (15)	C18—C19—C20	132.5 (2)
$P2^{i}$ —Ca1—P1 ⁱ	101.274 (17)	C14—C19—C20	106.04 (19)
P1—Ca1—P1 ⁱ	103.44 (3)	N3 ⁱ —C20—N2	129.2 (2)
O1—P1—N1	120.24 (10)	N3 ⁱ —C20—C19	120.1 (2)
O1—P1—C1	109.60 (13)	N2—C20—C19	110.65 (18)
N1—P1—C1	103.94 (12)	C22—C21—C26	117.6 (3)
01—P1—C7	110.69 (12)	C22—C21—P2	121.9 (2)
N1—P1—C7	104 01 (11)	$C_{26} = C_{21} = P_{2}$	1204(3)
C1 - P1 - C7	107.54(12)	$C_{21}$ $C_{22}$ $C_{23}$	120.1(3) 121.3(4)
$N1_P1_2$	91 43 (7)	$C_{21} = C_{22} = C_{23}$	110.3
C1 - P1 - Cal	123 78 (9)	$C_{23}$ $C_{22}$ $H_{22A}$	119.3
C7  P1  Cal	125.76(0)	$C_{23} = C_{22} = H_{22} R$	119.5 120.0(5)
$C^2 = 11 - Cal$	120.07(9) 110.22(10)	$C_{24} = C_{23} = C_{22}$	120.9 (3)
$O_2 = P_2 = O_2 T_2$	119.32(10) 112.18(12)	$C_{24}$ $C_{23}$ $H_{23A}$	119.5
02 - P2 - C27	112.18 (13)	C22—C23—H23A	119.5
$1N_{3}$ $-1/2$ $-1/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2$	103.94 (13)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	119.8 (4)
$V_2 - P_2 - C_2 I$	108.99 (13)	$C_{23}$ — $C_{24}$ —H24A	120.1
N3—P2—C21	104.66 (12)	C25—C24—H24A	120.1
C2/P2-C21	104.56 (12)	C24—C25—C26	120.5 (4)
N3—P2—Ca1	91.97 (7)	C24—C25—H25A	119.7
C27—P2—Ca1	114.13 (9)	C26—C25—H25A	119.7

C21—P2—Ca1	131.54 (10)	C21—C26—C25	119.7 (4)
P1—O1—Ca1	132.60 (10)	C21—C26—H26A	120.1
P2	131.50 (10)	C25—C26—H26A	120.1
C13—N1—P1	128.67 (17)	C32—C27—C28	117.7 (3)
C20—N2—C13	106.88 (18)	C32—C27—P2	124.0 (3)
C20—N2—Ca1	125.26 (14)	C28—C27—P2	118.3 (2)
C13—N2—Ca1	124.95 (14)	C27—C28—C29	120.3 (4)
C20 ⁱ —N3—P2	127.09 (18)	C27—C28—H28A	119.9
C2—C1—C6	119.0 (3)	C29—C28—H28A	119.9
C2-C1-P1	122.6 (2)	C30—C29—C28	120.3 (4)
C6—C1—P1	118.4 (3)	С30—С29—Н29А	119.9
C1—C2—C3	119.6 (4)	С28—С29—Н29А	119.9
C1—C2—H2B	120.2	C29—C30—C31	120.1 (4)
С3—С2—Н2В	120.2	С29—С30—Н30А	120.0
C4—C3—C2	121.7 (5)	C31—C30—H30A	120.0
С4—С3—Н3В	119.1	C30—C31—C32	120.7 (4)
С2—С3—Н3В	119.1	C30—C31—H31A	119.7
C3—C4—C5	119.8 (4)	C32—C31—H31A	119.7
C3—C4—H4A	120.1	C31—C32—C27	121.0 (4)
C5—C4—H4A	120.1	C31—C32—H32A	119.5
C4—C5—C6	120.9 (5)	С27—С32—Н32А	119.5

Symmetry code: (i) -x, y, -z+1/2.