

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N-Cinnamoyl-L-phenylalanine methyl ester

Laurent F. Bornaghi, Sally-Ann Poulsen, Peter C. Healy and Alan R. White*

Eskitis Institute for Cell and Molecular Therapies, Griffith University, Nathan, Brisbane 4111 Australia Correspondence e-mail: Alan.White@griffith.edu.au

Received 29 October 2007; accepted 5 November 2007

Key indicators: single-crystal X-ray study: T = 295 K: mean $\sigma(C-C) = 0.007$ Å: R factor = 0.041; wR factor = 0.125; data-to-parameter ratio = 8.4.

As part of an ongoing investigation into the development of N-substituted amino acids as building blocks for dynamic combinatorial chemistry, we report the structure of the title compound, C₁₉H₁₉NO₃. This compound crystallizes as discrete molecules. The cinnamoyl group is non-planar, with the phenyl ring and the amide twisted out of the ethylene plane. The benzyl and ester groups lie above and below the amide plane. The molecules stack along the crystallographic c axis, connecting through C(4) chains of N-H···O hydrogen bonds, with the extended structure stabilized by C-H···O interactions and $\pi - \pi$ interactions [centroid-to-centroid distances 3.547 (8) and 3.536 (8) Å].

Related literature

For related literature, see: Bernstein et al. (1995); Bornaghi et al. (2004, 2005, 2007); Poulsen et al. (2003).

Experimental

Crystal data

C19H19NO3 $M_r = 309.35$ Orthorhombic, P2₁2₁2₁ a = 15.041 (3) Å b = 22.550 (4) Åc = 4.9896 (15) Å

V = 1692.4 (7) Å³ Z = 4Mo Ka radiation $\mu = 0.08 \text{ mm}^{-1}$ T = 295.1 K $0.50 \times 0.30 \times 0.30$ mm $R_{\rm int} = 0.018$

3 standard reflections

every 150 reflections

intensity decay: 0.6%

Data collection

Rigaku AFC-7R diffractometer Absorption correction: none 2291 measured reflections 1757 independent reflections 972 reflections with $F^2 > 2\sigma(F^2)$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.041$	209 parameters
$wR(F^2) = 0.125$	H-atom parameters constrained
S = 0.94	$\Delta \rho_{\rm max} = 0.13 \ {\rm e} \ {\rm \AA}^{-3}$
1757 reflections	$\Delta \rho_{\rm min} = -0.15 \text{ e} \text{ Å}^{-3}$

Table 1

Selected torsion angles (°).

C9-N1-C10-C18	-82.0(5)	C7-C8-C9-N1	-165.1(4)
C2-C1-C7-C8	22.1 (7)	C10-C11-C12-C13	89.9 (5)
C7-C8-C9-O1	16.7 (7)		

Table 2 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D{\cdots}A$	$D - \mathbf{H} \cdots A$
$N1 - H1 \cdots O1^{i}$	0.84	2.21	3.042 (4)	169
$C7 - H7 \cdot \cdot \cdot O1$	0.93	2.57	2.876 (5)	100

Symmetry code: (i) x, y, z + 1.

Data collection: MSC/AFC7 Diffractometer Control Software (Molecular Structure Corporation, 1999); cell refinement: MSC/ AFC7 Diffractometer Control Software; data reduction: Crystal-Structure (Rigaku/MSC, 2004); program(s) used to solve structure: CrystalStructure; program(s) used to refine structure: CrystalStructure and SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: CrystalStructure and PLATON (Spek, 2003).

The authors acknowledge financial support of this work by Griffith University and the Eskitis Institute for Cell and Molecular Therapies.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2217).

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Bornaghi, L. F., Poulsen, S.-A. & Healy, P. C. (2004). Acta Cryst. E60, 0383-0385
- Bornaghi, L. F., Poulsen, S.-A., Healy, P. C. & White, A. R. (2005). Acta Cryst. E61. 01665-01667.
- Bornaghi, L. F., Poulsen, S.-A., Healy, P. C. & White, A. R. (2007). Acta Cryst. E63, 044-046.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Molecular Structure Corporation (1999). MSC/AFC7 Diffractometer Control Software for Windows. Version 1.02. MSC, The Woodlands, Texas, USA.
- Poulsen, S.-A., Noack, C. L. & Healy, P. C. (2003). Acta Cryst. E59, 0967-0968. Rigaku/MSC (2004). CrystalStructure. Version 3.7.0. Rigaku/MSC, The Woodlands, Texas, USA.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

supporting information

Acta Cryst. (2008). E64, o139 [https://doi.org/10.1107/S1600536807055973]

N-Cinnamoyl-L-phenylalanine methyl ester

Laurent F. Bornaghi, Sally-Ann Poulsen, Peter C. Healy and Alan R. White

S1. Comment

In a previous paper we reported the structure of N-cinnamoyl-*L*-valine methyl ester (Bornaghi *et al.*, 2007). This work is part of an ongoing investigation in the development of N-substituted amino acids as building blocks for dynamic combinatorial chemistry (Poulsen *et al.*, 2003; Bornaghi *et al.*, 2004; Bornaghi *et al.*, 2005). In the present communication, we report the structure of *N*-cinnamoyl-*L*-phenylalanine methyl ester.

The molecular structure of the title compound is shown in Fig. 1. Unlike the *L*-valine analogue (Bornaghi *et al.*, 2007), the cinnamoyl portion of the molecule is not planar, with the torsion angles C2—C1—C7—C8 = 22.1 (7) and C7—C8— C9—O1 = 16.7 (7)°. The benzyl and ester groups lie above and below the amide plane. The molecules stack along the short crystallographic *c* axis, connecting through C(4) chains of N—H…O hydrogen bonds (Bernstein *et al.*, 1995) (Fig. 2, Table 2). The macro structure is stabilized by short C—H…O contact interactions between the molecules in stacks and with adjacent neighbours. Fig. 3 displays how the molecular stacks interlock about the benzyl group. The stacks are held in close proximity through the short contact O1…H15ⁱⁱ = 2.7 Å [symmetry code ii: -x + 1/2, -y + 1, z - 1/2]. Adjacent macro structures are oriented about the ester group through π interactions with benzyl rings (C13…C17^v = 3.547 (8) and C14…C16^v = 3.536 (8) Å) [symmetry code v: *x*, *y*, *z* + 1] and C—H…O interactions with the cinnamoyl rings.

S2. Experimental

Triethylamine (0.93 g, 9.2 mmol) was added dropwise to a solution of *L*-phenylalanine methyl ester hydrochloride (0.5 g, 2.3 mmol) and cinnamoyl chloride (367 mg, 2.2 mmol) in anhydrous dichloromethane (10 ml). The reaction mixture was stirred at room temperature (298 K) for 3 days before being washed with 2 *M* HCl (2 *x* 100 ml), and saturated brine solution (100 ml), then dried over MgSO₄. Solvent was removed under reduced pressure to give a clear solid residue. The title compound was obtained in 83% yield after crystallization from an ethyl acetate/hexane solution. ¹H NMR (CDCl₃, 300 MHz, p.p.m.): δ = 3.07–3.21 (m, 2H, β CH), 3.67 (s, 3H, OCH₃), 4.95–5.01 (m, 1H, α CH), 6.10 (br d, 1H, NH), 6.33 (d, 1H, J = 15.6 Hz, ?CHCO), 7.03–7.50 (m, 10H, ArH), 7.57 (d, 1H, J = 15.6 Hz, ?CHPh); ¹³C NMR (CDCl₃, 75 MHz, p.p.m.): δ = 37.9 (β CH), 52.5 (OCH₃), 53.3 (α CH), 119.9 (?CHCO), 127.2, 127.9, 128.4, 128.9, 129.4, 129.9, 130.7 (CH from Ar), 134.6, 135.8 (C from Ar), 142.0 (?CHPh), 165.4 (CONH), 172.1 (COOCH₃); MS (LRMSES): m/z 310.0 [*M*+H]⁺, 332.1 [*M*+Na]⁺; mp 361.8 K.

S3. Refinement

H1 attached to N1 and H10 attached to C10 were located in Fourier maps and constrained with N—H = 0.84 and C—H = 0.98 Å respectively. All other H atoms were placed in calculated positions and constrained as riding with C—H = 0.93– 0.97 Å. In the absence of significant anomalous scattering effects, Friedel pairs were merged. The absolute configuration of the title compound was assigned on the basis of the known configuration of the starting material.

Figure 1

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level. H atoms are included as spheres of arbitrary radius.

Figure 3

View of the crystal packing projected on to the *ab* plane. Hydrogen bonding is shown with dashed lines.

N-Cinnamoyl-L-phenylalanine methyl ester

Crystal data

C₁₉H₁₉NO₃ $M_r = 309.35$ Orthorhombic, $P2_12_12_1$ Hall symbol: P 2ac 2ab a = 15.041 (3) Å b = 22.550 (4) Å c = 4.9896 (15) Å V = 1692.4 (7) Å³ Z = 4F(000) = 656.00 $D_x = 1.214 \text{ Mg m}^{-3}$ Melting point: 361.8 K Mo K α radiation, $\lambda = 0.7107 \text{ Å}$ Cell parameters from 20 reflections $\theta = 9.8-10.0^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 295 KPrismatic, colourless $0.50 \times 0.30 \times 0.30 \text{ mm}$ Data collection

Rigaku AFC7R diffractometer Radiation source: Rigaku rotating anode Graphite monochromator ω scans 2291 measured reflections 1757 independent reflections 972 reflections with $F^2 > 2\sigma(F^2)$	$R_{int} = 0.018$ $\theta_{max} = 25.0^{\circ}, \ \theta_{min} = 2.7^{\circ}$ $h = -8 \rightarrow 17$ $k = 0 \rightarrow 26$ $l = -5 \rightarrow 2$ 3 standard reflections every 150 reflections intensity decay: 0.6%
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.125$ S = 0.94 1757 reflections 209 parameters 0 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0501P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.13$ e Å ⁻³ $\Delta\rho_{min} = -0.15$ e Å ⁻³

Special details

Experimental. The scan width was $(0.89 + 0.30\tan\theta)^\circ$ with an ω scan speed of 16° per minute (up to 4 scans to achieve $I/\sigma(I) > 10$). Stationary background counts were recorded at each end of the scan, and the scan time:background time ratio was 2:1.

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F^2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted *R*-factors *wR* and all goodnesses of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The observed criterion of $F^2 > \sigma(F^2)$ is used only for calculating *-R*-factor-obs *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.5025 (2)	0.57628 (13)	0.1198 (6)	0.0679 (11)	
02	0.5528 (2)	0.71550 (16)	0.5337 (8)	0.0997 (14)	
03	0.4596 (2)	0.74577 (14)	0.2226 (8)	0.1010 (14)	
N1	0.4640 (2)	0.60588 (14)	0.5364 (6)	0.0571 (11)	
C1	0.6624 (3)	0.43634 (19)	0.4699 (10)	0.0617 (17)	
C2	0.6329 (3)	0.4040 (2)	0.6869 (12)	0.0847 (19)	
C3	0.6806 (4)	0.3555 (2)	0.7816 (15)	0.108 (3)	
C4	0.7582 (4)	0.3394 (2)	0.6570 (17)	0.107 (3)	
C5	0.7888 (4)	0.3713 (3)	0.4499 (16)	0.103 (3)	
C6	0.7406 (3)	0.4194 (2)	0.3554 (12)	0.088 (2)	
C7	0.6124 (3)	0.48703 (18)	0.3641 (9)	0.0623 (17)	
C8	0.5533 (3)	0.51934 (17)	0.4910 (9)	0.0543 (14)	
С9	0.5062 (3)	0.56890 (18)	0.3631 (9)	0.0520 (14)	
C10	0.4203 (3)	0.65879 (17)	0.4456 (9)	0.0543 (16)	

supporting information

C11	0.3434 (3)	0.67665 (17)	0.6256 (10)	0.0657 (17)
C12	0.2658 (3)	0.63417 (19)	0.6032 (10)	0.0583 (17)
C13	0.2587 (3)	0.5853 (2)	0.7655 (10)	0.0763 (17)
C14	0.1888 (4)	0.5462 (2)	0.7362 (12)	0.093 (2)
C15	0.1263 (3)	0.5546 (2)	0.5393 (12)	0.084 (2)
C16	0.1342 (3)	0.6024 (3)	0.3770 (12)	0.094 (2)
C17	0.2032 (3)	0.6424 (2)	0.4064 (12)	0.0817 (19)
C18	0.4866 (3)	0.70907 (19)	0.4097 (10)	0.0627 (17)
C19	0.5177 (4)	0.7956 (2)	0.1654 (14)	0.138 (3)
H1	0.47910	0.60170	0.69710	0.0640*
H2	0.58020	0.41490	0.77140	0.1020*
Н3	0.65990	0.33410	0.92820	0.1300*
H4	0.78960	0.30640	0.71620	0.1290*
Н5	0.84250	0.36120	0.36950	0.1240*
H6	0.76220	0.44070	0.20960	0.1050*
H7	0.62380	0.49740	0.18710	0.0750*
H8	0.54080	0.51050	0.66920	0.0650*
H10	0.39530	0.65010	0.26850	0.0650*
H13	0.30150	0.57840	0.89650	0.0920*
H14	0.18390	0.51390	0.85110	0.1110*
H15	0.07960	0.52790	0.51790	0.1010*
H16	0.09220	0.60850	0.24280	0.1130*
H17	0.20720	0.67490	0.29260	0.0980*
H111	0.36370	0.67780	0.81010	0.0780*
H112	0.32380	0.71620	0.57730	0.0780*
H191	0.57770	0.78170	0.14720	0.1660*
H192	0.51440	0.82370	0.30950	0.1660*
H193	0.49930	0.81420	0.00160	0.1660*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.088 (2)	0.079 (2)	0.0367 (17)	0.0117 (18)	0.0021 (17)	0.0012 (17)
O2	0.085 (2)	0.095 (2)	0.119 (3)	-0.021 (2)	-0.039 (3)	0.023 (3)
O3	0.107 (2)	0.082 (2)	0.114 (3)	-0.021 (2)	-0.033 (3)	0.045 (2)
N1	0.071 (2)	0.060 (2)	0.0402 (18)	0.015 (2)	-0.0017 (18)	0.0019 (18)
C1	0.055 (3)	0.056 (3)	0.074 (3)	-0.002 (2)	0.007 (3)	-0.006 (3)
C2	0.078 (3)	0.063 (3)	0.113 (4)	0.010 (3)	0.016 (3)	0.003 (3)
C3	0.118 (5)	0.071 (4)	0.136 (6)	0.017 (4)	0.007 (5)	0.021 (4)
C4	0.084 (4)	0.069 (4)	0.169 (7)	0.018 (3)	-0.021 (5)	-0.008 (5)
C5	0.066 (3)	0.086 (4)	0.158 (7)	0.012 (3)	0.012 (4)	-0.004 (5)
C6	0.082 (4)	0.074 (3)	0.107 (4)	0.005 (3)	0.025 (4)	0.002 (4)
C7	0.066 (3)	0.065 (3)	0.056 (3)	0.004 (3)	0.000 (3)	-0.004 (3)
C8	0.060(3)	0.056 (2)	0.047 (2)	-0.001 (2)	0.001 (2)	0.003 (2)
C9	0.056 (3)	0.049 (2)	0.051 (2)	-0.005 (2)	0.001 (2)	-0.003 (2)
C10	0.058 (3)	0.052 (2)	0.053 (3)	0.000(2)	-0.006 (2)	0.005 (2)
C11	0.078 (3)	0.058 (3)	0.061 (3)	0.012 (2)	-0.003 (3)	-0.013 (3)
C12	0.059 (3)	0.061 (3)	0.055 (3)	0.005 (2)	0.007 (3)	-0.007 (3)

supporting information

C13	0.088 (3)	0.075 (3)	0.066 (3)	-0.004 (3)	-0.002(3)	0.003 (3)
C14	0.106 (4)	0.083 (3)	0.089 (4)	-0.017 (3)	0.004 (4)	0.014 (4)
C15	0.072 (3)	0.093 (4)	0.088 (4)	-0.022 (3)	0.006 (4)	-0.010 (4)
C16	0.060 (3)	0.119 (4)	0.102 (4)	-0.006 (3)	-0.012 (3)	0.014 (4)
C17	0.069 (3)	0.085 (3)	0.091 (4)	0.002 (3)	-0.011 (3)	0.024 (4)
C18	0.063 (3)	0.060 (3)	0.065 (3)	0.007 (3)	-0.006 (3)	0.007 (3)
C19	0.151 (6)	0.089 (4)	0.175 (7)	-0.044 (4)	-0.027 (6)	0.052 (5)

Geometric parameters (Å, °)

01	1.227 (5)	C14—C15	1.373 (8)
O2—C18	1.181 (6)	C15—C16	1.353 (8)
O3—C18	1.312 (6)	C16—C17	1.383 (7)
O3—C19	1.452 (6)	C2—H2	0.9300
N1-C9	1.359 (5)	С3—Н3	0.9300
N1-C10	1.436 (5)	C4—H4	0.9300
N1—H1	0.8400	С5—Н5	0.9300
C1—C6	1.362 (7)	С6—Н6	0.9300
C1—C7	1.467 (6)	С7—Н7	0.9300
C1—C2	1.379 (7)	C8—H8	0.9300
C2—C3	1.391 (7)	C10—H10	0.9800
C3—C4	1.371 (9)	C11—H111	0.9700
C4—C5	1.341 (10)	C11—H112	0.9700
C5—C6	1.387 (8)	C13—H13	0.9300
C7—C8	1.312 (6)	C14—H14	0.9300
C8—C9	1.469 (6)	C15—H15	0.9300
C10—C11	1.519 (6)	C16—H16	0.9300
C10—C18	1.521 (6)	C17—H17	0.9300
C11—C12	1.514 (6)	C19—H191	0.9600
C12—C17	1.373 (7)	C19—H192	0.9600
C12—C13	1.372 (7)	C19—H193	0.9600
C13—C14	1.380 (7)		
01N1 ⁱ	3 042 (4)	H1O2	2 0100
01C18	3.042(4)	H1U8	2.9100
02N1	2,810(5)	H1H111	2.5100
02 N1 01H1 ⁱ	2.810 (3)	H2C8	2.7700
01 III 01…H7	2.2100	H2 C8	2 2900
01 II7 01H10	2.5700	$H4\cdots O2^{iv}$	2 8900
01 ···H15 ⁱⁱ	2.4500	H5O2 ⁱⁱⁱ	2 8800
01H8 ⁱ	2.7500	H6···H7	2 4500
02…H1	2.7500	H6···C7 ⁱⁱⁱ	3 0300
02 H1 02H191	2.9100	H7···O1	2 5700
O2…H197	2 7500	H7···H6	2.4500
02···H4 ⁱⁱⁱ	2.8900		2.7500
02H5 ^{iv}	2.8800	H8…C2	2.7700
03···H112	2.7800	H8…H1	2.2600
N1…O1 ^v	3.042 (4)	H8…H2	2.2900
	2.012(1)		

N1…O2	2.810 (5)	H10…O1	2.4300
N1…C13	3.325 (6)	H10…C17	2.9800
C3…C6 ^v	3.330 (9)	H10…H111 ⁱ	2.4200
C6···C3 ⁱ	3.330 (9)	H13…H111	2.4700
C13…C17 ^v	3.547 (8)	H14…C14 ^{viiii}	3.0300
C13…N1	3.325 (6)	H15…O1 ^{viii}	2.7000
C14…C16 ^v	3.536 (8)	H15····C9 ^{viii}	3.0700
C16…C14 ⁱ	3.536 (8)	H16…H193 ^{ix}	2.5500
C17…C13 ⁱ	3.547 (8)	H17…H112	2.4400
C18…O1	3.334 (5)	H111···H1	2.5100
C2H193 ^{vi}	2,9900	H111H10 ^v	2 4200
C2H8	2,7700	H111····H13	2.4700
C7···H6 ^{iv}	3 0300	H112O3	2 7800
C8H2	2 7700	H112···H17	2 4400
C9H15 ⁱⁱ	3 0700	$H191\cdots O2$	2 4700
C14···H14 ⁱⁱ	3 0300	H192O2	2.4700
C16H192 ^{vii}	2 9100	H192C16 ^x	2.7500
C17H10	2.9100	H192 C10	2.5100
$H1O1^{v}$	2.9800	$H193 \cdots C2^{xii}$	2.5500
	2.2100	11193	2.9900
$C_{18} O_{3} C_{10}$	116.2(4)	C4 C2 H3	120.00
$C_{10} = 0.05 = 0.05$	110.2 (4) 121 5 (2)	$C_4 = C_5 = H_4$	120.00
C_{10} N1 H1	121.5 (5)	C_{3} C_{4} H_{4}	120.00
C_{10} N1 H1	121.00	C_{4} C_{5} U_{5}	120.00
C_{2} C_{1} C_{7}	114.00	C4C5H5	120.00
$C_2 = C_1 = C_7$	122.0(4)	$C_0 - C_3 - H_3$	120.00
$C_0 = C_1 = C_1$	120.7(4)	$C_1 = C_0 = H_0$	119.00
$C_2 = C_1 = C_0$	117.5 (4)	C_{3} — C_{0} — H_{0}	119.00
C1 = C2 = C3	121.1(5)	CI = C / = H /	116.00
$C_2 = C_3 = C_4$	119.6 (6)	$C_{A} = C_{A} = H_{A}$	110.00
$C_3 - C_4 - C_5$	120.0 (5)	C = C = H	119.00
C4 - C5 - C6	120.1 (6)	C9—C8—H8	119.00
C1 - C6 - C5	121.9 (5)	NI-CI0-HI0	107.00
C1 = C7 = C8	127.3 (4)	C11—C10—H10	107.00
C/=C8=C9	122.7(4)	C18—C10—H10	107.00
NI-C9-C8	114.6 (4)	CIO-CII-HIII	109.00
0101010100	121.7 (4)	C10—C11—H112	109.00
01-09-08	123.7 (4)	C12—C11—H111	109.00
	111.8 (3)	С12—С11—Н112	109.00
NI-C10-C18	110.9 (4)	H111—C11—H112	108.00
N1—C10—C11	112.5 (3)	С12—С13—Н13	120.00
C10—C11—C12	112.1 (4)	С14—С13—Н13	120.00
C11—C12—C13	121.7 (4)	C13—C14—H14	120.00
C11—C12—C17	119.7 (4)	C15—C14—H14	120.00
C13—C12—C17	118.5 (4)	C14—C15—H15	121.00
C12—C13—C14	120.7 (5)	C16—C15—H15	121.00
C13—C14—C15	120.6 (5)	C15—C16—H16	119.00
C14—C15—C16	118.6 (4)	C17—C16—H16	119.00
C15—C16—C17	121.5 (5)	C12—C17—H17	120.00

C12—C17—C16	120.2 (5)	C16—C17—H17	120.00
O3—C18—C10	110.6 (4)	O3—C19—H191	109.00
O2—C18—O3	123.8 (4)	O3—C19—H192	109.00
O2—C18—C10	125.6 (4)	O3—C19—H193	109.00
C1—C2—H2	119.00	H191—C19—H192	110.00
C3-C2-H2	120.00	H191—C19—H193	109.00
C2-C3-H3	120.00	H192—C19—H193	110.00
C19-O3-C18-O2	1.9 (7)	C7C8C9N1	-165.1 (4)
C19-O3-C18-C10	-179.2 (4)	N1C10C11C12	-70.0 (5)
C10-N1-C9-O1	-6.3 (6)	C18C10C11C12	164.5 (4)
C10-N1-C9-C8	175.5 (4)	N1C10C18O2	-30.1 (6)
C9-N1-C10-C11	151.9 (4)	N1C10C18O3	151.0 (4)
C9—N1—C10—C18	-82.0 (5)	C11—C10—C18—O2	96.3 (6)
C6—C1—C2—C3	-1.0 (8)	C11—C10—C18—O3	-82.6 (5)
C7—C1—C2—C3	179.0 (5)	C10—C11—C12—C13	89.9 (5)
C2—C1—C6—C5	0.6 (8)	C10—C11—C12—C17	-86.4 (5)
C7-C1-C6-C5	-179.4 (5)	C11—C12—C13—C14	-178.0 (5)
C2-C1-C7-C8	22.1 (7)	C17—C12—C13—C14	-1.8 (7)
C6-C1-C7-C8	-157.9 (5)	C11—C12—C17—C16	177.2 (5)
C1-C2-C3-C4	-0.2 (9)	C13—C12—C17—C16	0.9 (7)
C2-C3-C4-C5 C3-C4-C5-C6 C4-C5-C6-C1 C1-C7-C8-C9 C7-C8-C9-O1	-2.2 (10) -2.2 (10) 1.0 (10) -179.2 (4) 16.7 (7)	C12C13C14C15 C13C14C15C16 C14C15C16C17 C15C16C17C12	-0.8 (8) -0.1 (8) 0.1 (8)

Symmetry codes: (i) x, y, z-1; (ii) -x+1/2, -y+1, z-1/2; (iii) -x+3/2, -y+1, z-1/2; (iv) -x+3/2, -y+1, z+1/2; (v) x, y, z+1; (vi) -x+1, y-1/2, -z+1/2; (vii) x-1/2, -y+3/2, -z+1; (viii) -x+1/2, -y+1/2; (ix) x-1/2, -y+3/2, -z; (x) x+1/2, -y+3/2, -z+1; (xi) x+1/2, -y+3/2, -z; (xii) -x+1/2, -y+1/2; (viii) -x+1/2, -y+1/2; (viii) -x+1/2, -y+1/2; (viii) -x+1/2, -y+3/2, -z; (x) x+1/2, -y+3/2, -z+1; (x) x+1/2, -y+3/2, -z+1; (x) x+1/2, -y+3/2, -z+1/2; (x) x+1/2, -y+3/2, -z+1; (x) x+1/2, -y+3/2, -z+

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H··· A
N1—H1…O1 ^v	0.84	2.21	3.042 (4)	169
С7—Н7…О1	0.93	2.57	2.876 (5)	100

Symmetry code: (v) x, y, z+1.