metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis(tetraphenylphosphonium) bis[N-(octylsulfonyl)dithiocarbimato(2-)- κ^2 S,S']nickelate(II)

Leandro M. G. Cunha,^a Mayura M. M. Rubinger,^a Marcelo R. L. Oliveira^a and Jose R. Sabino^{b*}

^aDepartamento de Química, UFV, 36570-000 Viçosa, MG, Brazil, and ^bInstituto de Física, UFG, Caixa Postal 131, 74001-970 Goiânia, Brazil Correspondence e-mail: jrsabino@if.ufg.br

Received 28 November 2007; accepted 2 December 2007

Key indicators: single-crystal X-ray study; T = 297 K; mean σ (C–C) = 0.008 Å; R factor = 0.061; wR factor = 0.208; data-to-parameter ratio = 15.5.

The Ni atom in the title complex, (C₂₄H₂₀P)₂[Ni(C₉H₁₇N- O_2S_3 , lies on a twofold axis within a square-planar geometry defined by four S atoms derived from two dithiocarbimate dianions, each forming a four-membered chelate ring. A small distortion, described by a deviation of the Ni^{II} atom by 0.083 (1) Å from the plane through the four S atoms, and also by the torsion angles about the Ni-S bonds, implies a folded conformation for the chelate ring.

Related literature

The title complex is a new member of the class of Ni complexes with general formula $[Ni(R-SO_2N=CS_2)_2]^{2-1}$ (Hummel et al., 1989; Franca et al., 2006; Oliveira et al., 1997, 1999, 2003). The literature describes only two other complexes of this class having tetraphenylphosphonium as counter-ion (Hummel & Korn, 1989; Allen, 2002). For other related literature, see: Hogarth (2005); Vogel (1966); Cremer & Pople (1975).

Experimental

Crystal data (C24H20P)2[Ni(C9H17NO2S3)2] $M_r = 1272.32$ Monoclinic, C2/c a = 29.113 (4) Å b = 10.425 (2) Å c = 22.966 (3) Å $\beta = 115.50 \ (1)^{\circ}$

 $V = 6291.3 (18) \text{ Å}^3$ Z = 4Cu K α radiation $\mu = 3.17 \text{ mm}^{-1}$ T = 297 (2) K0.16 \times 0.16 \times 0.08 mm

Data collection

Enraf–Nonius CAD-4
diffractometer
Absorption correction: Gaussian
(Spek, 2003)
$T_{\min} = 0.629, T_{\max} = 0.787$
11798 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.061$ 5 restraints $wR(F^2) = 0.208$ H-atom parameters constrained $\Delta \rho_{\text{max}} = 0.59 \text{ e} \text{ Å}^{-3}$ S = 1.05 $\Delta \rho_{\rm min} = -0.61 \text{ e } \text{\AA}^{-3}$ 5696 reflections 367 parameters

5696 independent reflections

2 standard reflections frequency: 120 min intensity decay: 1%

 $R_{\rm int} = 0.079$

3927 reflections with $I > 2\sigma(I)$

Table 1

Selected geometric parameters (Å, °).

Ni-S1	2.2048 (12)	Ni-S2	2.2075 (11)
S1-Ni-S2	78.52 (4)		
S2 ⁱ -Ni-S1-C1	169.45 (15)	C2-S3-N1-C1	-63.9 (4)
S1 ⁱ -Ni-S2-C1	-169.41 (15)		
Symmetry code: (i) -2	$x, y, -z + \frac{1}{2}$		

Table 2 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C2-H2B\cdots S2$ $C13-H13\cdots O2^{ii}$	0.97 0.93	2.83 2.58	3.490 (5) 3.276 (6)	126 132

Symmetry code: (ii) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: CAD-4-PC (Enraf-Nonius, 1993); cell refinement: CAD-4-PC; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors are grateful to PRPPG-UFG and CNPq for financial support and LMGC acknowledges a fellowship from CNPq.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2230).

References

- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Enraf-Nonius (1993). CAD-4-PC. Enraf-Nonius, Delft, The Netherlands.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Franca, E. F., Oliveira, M. R. L., Guilardi, S., Andrade, R. P., Lindemann, R. H., Amim, A. Jr, Ellena, J., De Bellis, V. M. & Rubinger, M. M. M. (2006). Polyhedron, 25, 2119-2126.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Hogarth, G. A. (2005). Prog. Inorg. Chem. 53, 71-561.
- Hummel, H. U. & Korn, U. Z. (1989). Z. Naturforsch. B Chem. Sci. 44, 29-34. Oliveira, M. R. L., De Bellis, V. M. & Fernandes, N. G. (1997). Struct. Chem. 8, 205-209.

- Oliveira, M. R. L., Diniz, R., De Bellis, V. M. & Fernandes, N. G. (2003). Polyhedron, **22**, 1561–1566.
- Oliveira, M. R. L., Graúdo, J. E. J. C., Speziali, N. L. & De Bellis, V. M. (1999). Struct. Chem. 10, 41–45.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Vogel, A. I. (1966). A Textbook of Practical Organic Chemistry Including Qualitative Organic Analysis, p. 543. London: Logmans, Green and Co. Ltd.

supporting information

Acta Cryst. (2008). E64, m148–m149 [https://doi.org/10.1107/S1600536807065014] Bis(tetraphenylphosphonium) bis[N-(octylsulfonyl)dithiocarbimato(2–)- $\kappa^2 S, S'$]nickelate(II)

Leandro M. G. Cunha, Mayura M. M. Rubinger, Marcelo R. L. Oliveira and Jose R. Sabino

S1. Comment

We became interested in the syntheses and characterization of nickel(II) dithiocarbimates complexes due to their similarity with the dithiocarbamates, which have been used as molecular precursors for various nickel sulfides by MOCVD techniques (Hogarth, 2005). Some anionic nickel-dithiocarbimato complexes with general formula $[Ni(RSO_2N=CS_2)_2]^{2-}$ (R = aryl or alkyl groups) have had their structures determined by X-ray diffraction techniques (Oliveira *et al.*, 1997; Oliveira *et al.*, 1999; Oliveira *et al.*, 2003). However, only two of these complexes have the tetra-phenylphosphonium as the counterion (Hummel & Korn, 1989) and only two were aliphatic (Oliveira *et al.*, 1997; Franca *et al.*, 2006). Variations in the counter-ions and in the *R* group can be important to modulate the volatility of these compounds favouring their application in MOCVD techniques. The title complex, (I), which is quite stable under ambient conditions, comprises a complex dianion and two tetraphenylphosphonium cations, with the formula $(Ph_4P)_2(Ni(C_8H_{17}SO_2N=CS_2)_2)^{2-}$, Figs 1 & 2.

The Ni^{II} ion is located in a twofold axis of symmetry being coordinated by four sulfur atoms from the dithiocarbimate dianion in a square planar coordination environment, Fig. 1 & Table 1. The Ni centre is located at 0.083 (1) Å out of the plane through the 4 S atoms. The resultant 4-membered Ni/S1/C1/S2 chelate ring shows a folded conformation [C&P Q(2) of 0.113 (3) Å; (Cremer & Pople, 1975)], giving the torsion angles S1ⁱ—Ni—S2—C1 and S2ⁱ—Ni—S1—C1 of 169.5 (2)° and -169.4 (2)°, respectively [symmetry code: (i) -*x*, *y*, -*z* + 1/2]. These values are outside the range from 174° to 180° observed in the related structures, with the smaller value found in $(C_{14}H_{10}N_2NiO_4S_6)^2$. $2(C_{24}H_{20}P)^+$ (Hummel & Korn, 1989), showing an higher distortion of the chelate ring in (I). This might be caused by the requirements of the packing of the counterion.

The conformation of (I) is stabilized by a weak intra-molecular H-bond of type C2–H2B···S2 (Table 2), which defines the torsion angle C1–N1–S3–C2 of -63.9 (4)°. Due to the flexibility of the long C chain, disorder was evident [see Experimental] so that the only bond distances determined reliably were C2—C3 [1.517 (7) Å] and C3—C4 [1.507 (7) Å]. The other C—C bonds were restrained to 1.54 Å and the chain conformation might be described, starting from the torsion angle about the C2–C3 bond, as: *trans, gauche, trans, trans, cis*, respectively. The actual torsion angles deviate from the ideal 0°, 60° and 180° due to repulsion due to the neighbouring molecules' C chains.

S2. Experimental

The octanesulfonamide was prepared from octanesulfonyl chloride in a similar procedure as described elsewhere (Vogel, 1966). Potassium *N*-(octylsulfonyl)dithiocarbimate was prepared from the sulfonamide using procedures described in the literature for analogous compounds Complex (I) was prepared in 1:1 (10 ml) methanol:water mixture from NiCl₂.6H₂O (1.0 mmol), potassium *N*-(octylsulfonyl)dithiocarbimate dihydrate (1.0 mmol) and tetraphenylphosphonium bromide (2 mmol). The reaction mixture was stirred for 1 h at room temperature. The green solid obtained was filtered, washed with

distilled water and dried under reduced pressure for 1 day. Suitable crystals of (I) were obtained by slow evaporation of the solvent water/methanol (1:1 v/v); m. pt. 427.5–429.1 K. Analysis found: C 62.43, H 5.81, N 2.42, Ni 4.59; C₆₆H₇₄N₂NiO₄P₂S₆ requires: C 62.30, H 5.86, N 2.20, Ni 4.61%. IR (most important bands, cm⁻¹): 1398 v(C=N); 1268 v_{asym} (SO₂); 1123 v_{sym} (SO₂); 936 v_{asym} (CS₂) and 381 v(NiS).

S3. Refinement

All H atoms were positioned geometrically and allowed to ride on their parent atoms with C—H distances in the range 0.93–0.97 Å, and with $U_{iso}(H) = 1.5 U_{eq}(C)$ for methyl-H atoms and $U_{iso}(H) = 1.2 U_{eq}(C)$ for other atoms. The bond distances C4–C5, C5–C6, C6–C7, C7–C8 and C8–C9 were restrained to 1.54 Å. The atoms C5 to C9 are very disordered and any attempt to model this disorder over multiple sites was not reliable.

Figure 1

View of the dianion in (I) with 30% probability displacement ellipsoids showing atom labelling scheme. Symemtry operation (i): -*x*, *y*, -*z* + 1/2.

H-bonding in (I). The **b** axis is oriented upward and the **a** axis points to the right. Symmetry operation (iii): x+1/2, y - 1/2, z; (iv) -x+1, y, -z + 1/2. Only the hydrogen atoms participating in the interactions are shown.

Bis(tetraphenylphosphonium) bis[N-(octylsulfonyl)dithiocarbimato(2-)- $\kappa^2 S_r S'$]nickelate(II)

Crystal data	
$(C_{24}H_{20}P)_2[Ni(C_9H_{17}NO_2S_3)_2]$	F(000) = 2680
$M_r = 1272.32$	$D_{\rm x} = 1.343 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $C2/c$	Melting point: 428 K
Hall symbol: -C 2yc	Cu $K\alpha$ radiation, $\lambda = 1.54180$ Å
a = 29.113 (4) Å	Cell parameters from 25 reflections
b = 10.425 (2) Å	$\theta = 16.2 - 30.1^{\circ}$
c = 22.966 (3) Å	$\mu = 3.17 \text{ mm}^{-1}$
$\beta = 115.50 \ (1)^{\circ}$	T = 297 K
$V = 6291.3 (18) Å^3$	Prism, dark-yellow
Z = 4	$0.16 \times 0.16 \times 0.08 \text{ mm}$

Data collection

Enraf–Nonius CAD-4	5696 independent reflections
diffractometer	3927 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.079$
Graphite monochromator	$\theta_{\rm max} = 68^\circ, \ \theta_{\rm min} = 3.4^\circ$
non–profiled $\omega/2\theta$ scans	$h = -34 \rightarrow 34$
Absorption correction: gaussian	$k = -12 \rightarrow 12$
(Spek, 2003)	$l = -18 \rightarrow 27$
$T_{\min} = 0.629, \ T_{\max} = 0.787$	2 standard reflections every 120 min
11798 measured reflections	intensity decay: 1%

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.061$	H-atom parameters constrained
$wR(F^2) = 0.208$	$w = 1/[\sigma^2(F_o^2) + (0.1159P)^2 + 8.6294P]$
S = 1.05	where $P = (F_o^2 + 2F_c^2)/3$
5696 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
367 parameters	$\Delta \rho_{\rm max} = 0.59 \text{ e } \text{\AA}^{-3}$
5 restraints	$\Delta \rho_{\rm min} = -0.61 \text{ e } \text{\AA}^{-3}$
Secondary atom site location: difference Fourier	Extinction correction: SHELXL97,
map	$Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
-	Extinction coefficient: 0.00064 (8)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Ni	0	0.82980 (10)	0.25	0.0545 (3)	
S 1	0.07020 (4)	0.82179 (13)	0.34078 (6)	0.0654 (4)	
S2	0.05891 (4)	0.82194 (12)	0.21372 (5)	0.0622 (3)	
S3	0.18146 (4)	0.73175 (12)	0.27711 (5)	0.0574 (3)	
O2	0.17880 (14)	0.8302 (3)	0.23259 (18)	0.0748 (9)	
01	0.23151 (12)	0.6954 (4)	0.32300 (17)	0.0849 (11)	
N1	0.15016 (13)	0.7668 (4)	0.31917 (17)	0.0590 (9)	
C1	0.10265 (16)	0.7992 (4)	0.2937 (2)	0.0555 (10)	
C2	0.15171 (18)	0.5925 (5)	0.2332 (3)	0.0697 (12)	
H2A	0.1498	0.5287	0.2628	0.084*	
H2B	0.1172	0.6136	0.2028	0.084*	
C3	0.1798 (2)	0.5359 (5)	0.1968 (3)	0.0793 (15)	
H3A	0.1839	0.6016	0.1695	0.095*	
H3B	0.2134	0.509	0.2275	0.095*	
C4	0.1522 (2)	0.4229 (6)	0.1558 (3)	0.0872 (16)	
H4A	0.1425	0.3646	0.1816	0.105*	
H4B	0.1752	0.3773	0.1426	0.105*	
C5	0.1043 (2)	0.4607 (7)	0.0953 (3)	0.113 (2)	

H5A	0.1126	0.5196	0.0686	0.136*
H5B	0.0792	0.5003	0.1069	0.136*
C6	0.0845 (4)	0.3320 (8)	0.0602 (5)	0.186 (5)
H6A	0.109	0.2948	0.0468	0.224*
H6B	0.0783	0.2716	0.0881	0.224*
C7	0.0349 (5)	0.3651 (11)	0.0013 (6)	0.271 (9)
H7A	0.0424	0.4276	-0.0246	0.325*
H7B	0.012	0.4056	0.0164	0.325*
C8	0.0069 (5)	0.2514 (11)	-0.0422 (6)	0.241 (8)
H8A	-0.0262	0.2494	-0.0414	0.289*
H8B	0.0005	0.2784	-0.0855	0.289*
C9	0.0228 (4)	0.1100 (10)	-0.0385 (5)	0.191 (5)
H9A	-0.0051	0.0606	-0.0687	0.286*
H9B	0.0321	0.0783	0.0044	0.286*
H9C	0.0513	0.1029	-0.0488	0.286*
P1	0.36685 (3)	0.78525 (10)	0.07711 (5)	0.0464 (3)
C21	0.35663 (14)	0.6605 (4)	0.0188 (2)	0.0511 (9)
C22	0.32109 (16)	0.5653 (4)	0.0083 (2)	0.0635 (11)
H22	0.3055	0.5556	0.0359	0.076*
C23	0.3090 (2)	0.4840 (5)	-0.0440 (3)	0.0807 (15)
H23	0.285	0.4197	-0.0514	0.097*
C24	0.3315 (2)	0.4963 (6)	-0.0847 (3)	0.0868 (17)
H24	0.3226	0.4411	-0.1197	0.104*
C25	0.3678 (2)	0.5917 (6)	-0.0740 (2)	0.0788 (15)
H25	0.3834	0.6006	-0.1016	0.095*
C26	0.38034 (18)	0.6729 (5)	-0.0218 (2)	0.0664 (12)
H26	0.4048	0.7361	-0.0138	0.08*
C31	0.43463 (14)	0.8089 (4)	0.12143 (19)	0.0496 (9)
C32	0.46464 (16)	0.7003 (4)	0.1410 (2)	0.0606 (11)
H32	0.4504	0.6194	0.1282	0.073*
C33	0.51645 (17)	0.7136 (5)	0.1802 (2)	0.0703 (13)
H33	0.5369	0.641	0.1939	0.084*
C34	0.53720 (17)	0.8314 (5)	0.1985 (3)	0.0727 (14)
H34	0.5718	0.8387	0.2253	0.087*
C35	0.50824 (18)	0.9399 (5)	0.1782 (3)	0.0746 (14)
H35	0.5231	1.0203	0.1906	0.09*
C36	0.45635 (16)	0.9291 (4)	0.1388 (2)	0.0621 (11)
H36	0.4364	1.0023	0.1242	0.075*
C41	0.33391 (14)	0.9246 (4)	0.03316 (18)	0.0474 (9)
C42	0.30224 (14)	0.9135 (4)	-0.03291 (19)	0.0520 (9)
H42	0.299	0.835	-0.0535	0.062*
C43	0.27604 (15)	1.0182 (4)	-0.0673 (2)	0.0556 (10)
H43	0.2546	1.0099	-0.111	0.067*
C44	0.28115 (16)	1.1355 (5)	-0.0377 (2)	0.0618 (11)
H44	0.2638	1.2066	-0.0615	0.074*
C45	0.31226 (17)	1.1474 (4)	0.0278 (2)	0.0634 (11)
H45	0.3157	1.2266	0.0479	0.076*
C46	0.33794 (15)	1.0433 (4)	0.0630(2)	0.0546 (10)

H46	0.3582	1.0517	0.1071	0.065*	
C11	0.34119 (14)	0.7416 (4)	0.13264 (19)	0.0488 (9)	
C12	0.36240 (16)	0.6398 (4)	0.1756 (2)	0.0601 (11)	
H12	0.3891	0.5926	0.1744	0.072*	
C13	0.34362 (17)	0.6096 (5)	0.2196 (2)	0.0639 (11)	
H13	0.3582	0.5432	0.2488	0.077*	
C14	0.30335 (18)	0.6772 (5)	0.2207 (2)	0.0675 (13)	
H14	0.2907	0.6549	0.2503	0.081*	
C15	0.28174 (17)	0.7762 (5)	0.1792 (2)	0.0649 (12)	
H15	0.2547	0.8216	0.1806	0.078*	
C16	0.30044 (16)	0.8092 (4)	0.1344 (2)	0.0589 (11)	
H16	0.2857	0.8763	0.1057	0.071*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni	0.0469 (5)	0.0568 (6)	0.0611 (6)	0	0.0243 (5)	0
S1	0.0547 (6)	0.0852 (9)	0.0590 (7)	0.0010 (5)	0.0271 (5)	-0.0024 (6)
S2	0.0493 (6)	0.0812 (8)	0.0548 (6)	0.0051 (5)	0.0213 (5)	0.0067 (5)
S3	0.0461 (5)	0.0688 (7)	0.0559 (6)	0.0026 (4)	0.0206 (5)	-0.0007(5)
O2	0.088 (2)	0.065 (2)	0.087 (2)	-0.0014 (17)	0.054 (2)	0.0053 (17)
O1	0.0511 (18)	0.126 (3)	0.069 (2)	0.0167 (18)	0.0180 (16)	-0.006(2)
N1	0.0489 (18)	0.076 (2)	0.0522 (19)	0.0010 (17)	0.0215 (15)	0.0001 (18)
C1	0.052 (2)	0.054 (2)	0.059 (2)	-0.0034 (18)	0.0225 (19)	-0.0018 (19)
C2	0.065 (3)	0.066 (3)	0.086 (3)	0.000 (2)	0.041 (3)	-0.003 (3)
C3	0.075 (3)	0.080 (4)	0.097 (4)	-0.006 (3)	0.051 (3)	-0.011 (3)
C4	0.103 (4)	0.078 (4)	0.104 (4)	-0.005 (3)	0.066 (4)	-0.006(3)
C5	0.102 (5)	0.131 (6)	0.117 (6)	-0.024 (4)	0.058 (5)	-0.019 (5)
C6	0.151 (9)	0.249 (14)	0.147 (9)	0.014 (9)	0.054 (7)	-0.079 (9)
C7	0.259 (18)	0.29 (2)	0.175 (12)	-0.043 (14)	0.007 (13)	-0.060 (14)
C8	0.154 (10)	0.306 (19)	0.185 (12)	0.055 (12)	0.000 (9)	-0.129 (13)
C9	0.182 (11)	0.218 (14)	0.141 (9)	-0.021 (10)	0.040 (8)	0.020 (9)
P1	0.0402 (5)	0.0469 (6)	0.0489 (6)	0.0006 (4)	0.0164 (4)	0.0005 (4)
C21	0.0459 (19)	0.049 (2)	0.055 (2)	0.0075 (16)	0.0184 (17)	0.0009 (18)
C22	0.056 (2)	0.051 (2)	0.079 (3)	-0.0062 (19)	0.025 (2)	-0.004(2)
C23	0.070 (3)	0.060 (3)	0.094 (4)	-0.005 (2)	0.018 (3)	-0.019 (3)
C24	0.087 (4)	0.076 (4)	0.083 (4)	0.015 (3)	0.022 (3)	-0.028 (3)
C25	0.082 (3)	0.090 (4)	0.060 (3)	0.011 (3)	0.027 (3)	-0.013 (3)
C26	0.062 (3)	0.070 (3)	0.067 (3)	-0.001 (2)	0.028 (2)	-0.005 (2)
C31	0.0409 (19)	0.055 (2)	0.050(2)	-0.0031 (16)	0.0177 (17)	0.0007 (18)
C32	0.048 (2)	0.061 (3)	0.069 (3)	0.0011 (19)	0.021 (2)	0.002 (2)
C33	0.047 (2)	0.083 (3)	0.078 (3)	0.008 (2)	0.023 (2)	0.014 (3)
C34	0.043 (2)	0.096 (4)	0.073 (3)	-0.010 (2)	0.019 (2)	0.007 (3)
C35	0.056 (2)	0.076 (3)	0.089 (4)	-0.020 (2)	0.028 (2)	-0.002 (3)
C36	0.049 (2)	0.062 (3)	0.075 (3)	-0.0077 (19)	0.027 (2)	0.003 (2)
C41	0.0435 (18)	0.049 (2)	0.047 (2)	0.0023 (16)	0.0167 (16)	0.0017 (17)
C42	0.047 (2)	0.052 (2)	0.051 (2)	-0.0022 (17)	0.0163 (17)	-0.0052 (18)
C43	0.052 (2)	0.060 (3)	0.050(2)	0.0046 (19)	0.0181 (18)	0.004 (2)

supporting information

C44	0.058 (2)	0.057 (3)	0.066 (3)	0.013 (2)	0.023 (2)	0.009 (2)
C45	0.068 (3)	0.050(2)	0.067 (3)	0.008 (2)	0.024 (2)	-0.007 (2)
C46	0.053 (2)	0.054 (2)	0.053 (2)	0.0023 (18)	0.0191 (18)	-0.0032 (19)
C11	0.0417 (19)	0.049 (2)	0.051 (2)	-0.0034 (16)	0.0154 (17)	-0.0023 (17)
C12	0.054 (2)	0.057 (2)	0.067 (3)	0.0031 (19)	0.023 (2)	0.007 (2)
C13	0.061 (2)	0.065 (3)	0.063 (3)	-0.008(2)	0.024 (2)	0.007 (2)
C14	0.063 (3)	0.084 (3)	0.060 (3)	-0.021 (2)	0.030 (2)	-0.008(2)
C15	0.056 (2)	0.075 (3)	0.073 (3)	0.002 (2)	0.037 (2)	-0.002 (3)
C16	0.048 (2)	0.064 (3)	0.063 (3)	0.0029 (18)	0.0214 (19)	0.004 (2)

Geometric parameters (Å, °)

Ni—S1	2.2048 (12)	C22—H22	0.93
Ni—S1 ⁱ	2.2048 (12)	C23—C24	1.359 (8)
Ni—S2 ⁱ	2.2075 (11)	C23—H23	0.93
Ni—S2	2.2075 (11)	C24—C25	1.394 (8)
S1—C1	1.731 (4)	C24—H24	0.93
S2—C1	1.743 (4)	C25—C26	1.383 (7)
S3—O2	1.427 (3)	С25—Н25	0.93
S3—O1	1.434 (3)	C26—H26	0.93
S3—N1	1.629 (4)	C31—C32	1.381 (6)
S3—C2	1.766 (5)	C31—C36	1.382 (6)
N1—C1	1.294 (5)	C32—C33	1.391 (6)
С2—С3	1.517 (7)	С32—Н32	0.93
C2—H2A	0.97	C33—C34	1.353 (7)
C2—H2B	0.97	С33—Н33	0.93
C3—C4	1.507 (7)	C34—C35	1.367 (7)
С3—НЗА	0.97	C34—H34	0.93
С3—Н3В	0.97	C35—C36	1.392 (6)
C4—C5	1.537 (9)	С35—Н35	0.93
C4—H4A	0.97	C36—H36	0.93
C4—H4B	0.97	C41—C46	1.396 (6)
С5—С6	1.543 (11)	C41—C42	1.400 (6)
C5—H5A	0.97	C42—C43	1.370 (6)
С5—Н5В	0.97	C42—H42	0.93
C6—C7	1.534 (17)	C43—C44	1.376 (6)
С6—Н6А	0.97	C43—H43	0.93
C6—H6B	0.97	C44—C45	1.388 (7)
С7—С8	1.538 (17)	C44—H44	0.93
C7—H7A	0.97	C45—C46	1.367 (6)
С7—Н7В	0.97	C45—H45	0.93
С8—С9	1.536 (18)	C46—H46	0.93
C8—H8A	0.97	C11—C16	1.395 (6)
C8—H8B	0.97	C11—C12	1.399 (6)
С9—Н9А	0.96	C12—C13	1.377 (6)
С9—Н9В	0.96	C12—H12	0.93
С9—Н9С	0.96	C13—C14	1.377 (7)
P1—C11	1.792 (4)	C13—H13	0.93

D1 C/11	1 702 (1)	C14 C15	1 362 (7)
$\begin{array}{c} 1 & \\ 1 & \\ \\ 1 & \\ \\ 1 & \\ \\ 1 & \\ \\ 1 & \\ \\ 1 & \\ \\ 1 & \\ 1 & \\ 1 & \\ 1 & \\ 1 & \\ 1 & \\ 1 & \\ 1 & \\ 1 & \\ 1 &$	1.793(4)	C14 = U14	1.302(7)
P1	1.790 (4)		0.93
	1.806 (4)		1.399 (6)
C21—C22	1.378 (6)	С15—Н15	0.93
C21—C26	1.385 (6)	C16—H16	0.93
C22—C23	1.386 (7)		
S1 N; S1	175 66 (8)	C22 C21 C26	120.2 (4)
S1 = Ni = S1	175.00(8) 101.21(4)	$C_{22} = C_{21} = C_{20}$	120.2(4)
SI - NI - SZ	101.31(4)	$C_{22} = C_{21} = 1$	121.0(3)
SI - NI - S2	78.52 (4)	$C_{20} = C_{21} = P_1$	117.0(3)
SI - INI - SZ	/8.52 (4)	C_{21} C_{22} C_{23} C	118.9 (5)
S1 - N1 - S2	101.31(4)	C21—C22—H22	120.5
S2'—N1—S2	1/5./5 (8)	C23—C22—H22	120.5
CI—SI—Ni	87.00 (15)	C24—C23—C22	121.4 (5)
C1—S2—N1	86.61 (15)	С24—С23—Н23	119.3
O2—S3—O1	116.2 (2)	C22—C23—H23	119.3
O2—S3—N1	113.0 (2)	C23—C24—C25	120.0 (5)
O1—S3—N1	105.9 (2)	C23—C24—H24	120
O2—S3—C2	108.7 (2)	C25—C24—H24	120
O1—S3—C2	107.2 (2)	C26—C25—C24	119.1 (5)
N1—S3—C2	105.1 (2)	С26—С25—Н25	120.5
C1—N1—S3	123.6 (3)	С24—С25—Н25	120.5
N1—C1—S1	121.2 (3)	C25—C26—C21	120.4 (5)
N1—C1—S2	131.7 (4)	С25—С26—Н26	119.8
S1—C1—S2	107.0 (2)	C21—C26—H26	119.8
C3—C2—S3	112.7 (3)	C32—C31—C36	120.1 (4)
C3-C2-H2A	109.1	C32—C31—P1	1171(3)
S3—C2—H2A	109.1	$C_{36} - C_{31} - P_{1}$	122.6(3)
$C_3 - C_2 - H_2B$	109.1	C_{31} C_{32} C_{33}	1192(4)
S3_C2_H2B	109.1	$C_{31} = C_{32} = H_{32}$	120.4
$H_{2A} = C_2 + H_{2B}$	107.8	C_{33} C_{32} H_{32}	120.4
CA = C2 = H2B	117 A (A)	C_{34} C_{33} C_{32}	120.4 120.4(5)
$C_4 = C_3 = C_2$	100.1	$C_{34} = C_{33} = C_{32}$	120.4 (5)
$C_{1} = C_{2} = H_{2}$	109.1	C_{22} C_{22} H_{22}	119.8
$C_2 = C_3 = H_3 A$	109.1	$C_{32} = C_{33} = H_{33}$	119.0
$C_4 = C_3 = H_3 D_1$	109.1	$C_{33} = C_{34} = C_{33}$	121.2 (4)
$C_2 - C_3 - H_3 B$	109.1	C35—C34—H34	119.4
H3A—C3—H3B	107.9	C35—C34—H34	119.4
$C_3 - C_4 - C_5$	113.4 (5)	C34—C35—C36	119.5 (5)
C3—C4—H4A	108.9	С34—С35—Н35	120.3
C5—C4—H4A	108.9	С36—С35—Н35	120.3
C3—C4—H4B	108.9	C31—C36—C35	119.6 (4)
C5—C4—H4B	108.9	С31—С36—Н36	120.2
H4A—C4—H4B	107.7	С35—С36—Н36	120.2
C4—C5—C6	103.8 (6)	C46—C41—C42	118.8 (4)
C4—C5—H5A	111	C46—C41—P1	122.1 (3)
С6—С5—Н5А	111	C42—C41—P1	119.1 (3)
C4—C5—H5B	111	C43—C42—C41	120.2 (4)
С6—С5—Н5В	111	C43—C42—H42	119.9

H5A—C5—H5B	109	C41—C42—H42	119.9
C7—C6—C5	105.2 (7)	C42—C43—C44	120.5 (4)
С7—С6—Н6А	110.7	C42—C43—H43	119.7
С5—С6—Н6А	110.7	C44—C43—H43	119.7
С7—С6—Н6В	110.7	C43—C44—C45	119.7 (4)
С5—С6—Н6В	110.7	C43—C44—H44	120.1
H6A—C6—H6B	108.8	C45—C44—H44	120.1
C6—C7—C8	115.7 (9)	C46—C45—C44	120.4 (4)
С6—С7—Н7А	108.4	C46—C45—H45	119.8
С8—С7—Н7А	108.4	C44—C45—H45	119.8
С6—С7—Н7В	108.4	C45—C46—C41	120.3 (4)
С8—С7—Н7В	108.4	C45—C46—H46	119.8
H7A—C7—H7B	107.4	C41—C46—H46	119.8
C9—C8—C7	129.8 (11)	C16—C11—C12	119.1 (4)
С9—С8—Н8А	104.8	C16—C11—P1	120.8 (3)
С7—С8—Н8А	104.8	C12—C11—P1	120.1 (3)
С9—С8—Н8В	104.8	C13—C12—C11	119.8 (4)
C7—C8—H8B	104.8	C13—C12—H12	120.1
H8A—C8—H8B	105.8	C11—C12—H12	120.1
C8—C9—H9A	109.5	C12 - C13 - C14	120.1 120.5(5)
C8—C9—H9B	109.5	C12—C13—H13	119.8
H9A—C9—H9B	109.5	C14—C13—H13	119.8
C8-C9-H9C	109.5	C_{15} C_{14} C_{13}	121.0(4)
H9A - C9 - H9C	109.5	C_{15} C_{14} H_{14}	119.5
H9B-C9-H9C	109.5	C13 - C14 - H14	119.5
C11 - P1 - C41	108 68 (18)	C_{14} C_{15} C_{16}	119.5 119.5(4)
C_{11} P_{1} C_{21}	111 12 (19)	C14-C15-H15	120.2
$C_{41} = P_{1} = C_{21}$	106 86 (19)	C16-C15-H15	120.2
$C_{11} = P_1 = C_{31}$	108.82(19)	C_{11} C_{16} C_{15} C_{15}	120.2 120.1 (4)
$C_{11} = 11 = C_{31}$	113.36(18)	$C_{11} = C_{10} = C_{15}$	110.0
C_{21} P_1 C_{31}	108 01 (18)	C15 C16 H16	110.0
021-11-051	100.01 (10)		119.9
S2 ⁱ —Ni—S1—C1	169.45 (15)	C11—P1—C31—C36	-99.4 (4)
S2—Ni—S1—C1	-6.21 (15)	C41—P1—C31—C36	21.7 (4)
S1—Ni—S2—C1	6.17 (15)	C21—P1—C31—C36	139.9 (4)
S1 ⁱ —Ni—S2—C1	-169.41 (15)	C36—C31—C32—C33	2.3 (7)
O2—S3—N1—C1	54.5 (5)	P1-C31-C32-C33	-174.3 (4)
O1—S3—N1—C1	-177.2 (4)	C31—C32—C33—C34	-0.4 (8)
C2—S3—N1—C1	-63.9 (4)	C32—C33—C34—C35	-1.1 (8)
S3—N1—C1—S1	174.3 (2)	C33—C34—C35—C36	0.9 (8)
S3—N1—C1—S2	-2.7 (7)	C32—C31—C36—C35	-2.5(7)
Ni—S1—C1—N1	-169.6 (4)	P1-C31-C36-C35	173.9 (4)
Ni—S1—C1—S2	8.07 (19)	C34—C35—C36—C31	0.9 (8)
Ni—S2—C1—N1	169.3 (5)	C11—P1—C41—C46	66.4 (4)
Ni—S2—C1—S1	-8.06 (19)	C21—P1—C41—C46	-173.6 (3)
O2—S3—C2—C3	65.5 (4)	C31—P1—C41—C46	-54.8 (4)
O1—S3—C2—C3	-60.8 (5)	C11—P1—C41—C42	-112.2(3)
N1—S3—C2—C3	-173.2 (4)	C21—P1—C41—C42	7.8 (4)

S3—C2—C3—C4	-175.9 (4)	C31—P1—C41—C42	126.7 (3)
C2—C3—C4—C5	73.1 (6)	C46—C41—C42—C43	0.3 (6)
C3—C4—C5—C6	177.4 (6)	P1-C41-C42-C43	179.0 (3)
C4—C5—C6—C7	176.9 (10)	C41—C42—C43—C44	1.1 (6)
C5—C6—C7—C8	-179.6 (12)	C42—C43—C44—C45	-1.4 (7)
C6—C7—C8—C9	-5 (3)	C43—C44—C45—C46	0.2 (7)
C11—P1—C21—C22	17.5 (4)	C44—C45—C46—C41	1.2 (7)
C41—P1—C21—C22	-100.9 (4)	C42—C41—C46—C45	-1.5 (6)
C31—P1—C21—C22	136.8 (3)	P1-C41-C46-C45	179.9 (3)
C11—P1—C21—C26	-171.4 (3)	C41—P1—C11—C16	2.8 (4)
C41—P1—C21—C26	70.1 (4)	C21—P1—C11—C16	-114.5 (4)
C31—P1—C21—C26	-52.1 (4)	C31—P1—C11—C16	126.7 (3)
C26—C21—C22—C23	-1.1 (7)	C41—P1—C11—C12	-176.3 (3)
P1—C21—C22—C23	169.7 (4)	C21—P1—C11—C12	66.4 (4)
C21—C22—C23—C24	0.2 (7)	C31—P1—C11—C12	-52.4 (4)
C22—C23—C24—C25	0.4 (8)	C16—C11—C12—C13	-1.4 (6)
C23—C24—C25—C26	-0.1 (8)	P1-C11-C12-C13	177.8 (3)
C24—C25—C26—C21	-0.8 (8)	C11—C12—C13—C14	1.4 (7)
C22—C21—C26—C25	1.4 (7)	C12—C13—C14—C15	-1.0(7)
P1-C21-C26-C25	-169.7 (4)	C13—C14—C15—C16	0.5 (7)
C11—P1—C31—C32	77.1 (4)	C12-C11-C16-C15	0.9 (6)
C41—P1—C31—C32	-161.9 (3)	P1-C11-C16-C15	-178.3 (3)
C21—P1—C31—C32	-43.6 (4)	C14—C15—C16—C11	-0.5 (7)

Symmetry code: (i) -x, y, -z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H··· A
C2—H2 <i>B</i> ···S2	0.97	2.83	3.490 (5)	126
C13—H13…O2 ⁱⁱ	0.93	2.58	3.276 (6)	132

Symmetry code: (ii) –*x*+1/2, *y*–1/2, –*z*+1/2.