metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

catena-Poly[[nickel(II)-µ₃-1,1-dicyanoethene-2,2-dithiolato- κ^4 S,S':N:N'bis[(15-crown-5)magnesium(II)]- μ_3 -1,1-dicvanoethene-2,2-dithiolato- $\kappa^4 N: N': S, S'$ dichloride

Junli Yang, Chengjuan Li,* Dacheng Li and Dagi Wang

School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China Correspondence e-mail: dougroup@163.com

Received 15 November 2007; accepted 4 December 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.026 Å; R factor = 0.064; wR factor = 0.192; data-to-parameter ratio = 8.2.

The reaction of MgCl₂, NiCl₂, and Na₂(i-mnt) (i-mnt is 1,1dicyanothene-2,2-dithiolate) with 15-crown-5 (15-C-5) leads to an infinite chain polymer, $\{[NiMg_2(C_4N_2S_2)_2(C_{10}H_{20}O_5)_2]$ - Cl_2 or { $[Mg(15-C-5)]_2[Ni(i-mnt)_2]Cl_2$, which consists of two $[Mg(15-C-5)]^{2+}$ complex cations, one $[Ni(i-mnt)_2]^{2-}$ complex anion and two Cl⁻ ions per formula unit. In the $[Ni(i-mnt)_2]^{2-}$ complex anion, Ni^{2+} is located on a crystallographic mirror plane with a slightly distorted square-planar coordination by four S atoms. In the $[Mg(15-C-5)]^{2+}$ complex cations, the Mg and one O atom of the crown lie on mirror planes and the Mg atoms are in sevenfold coordination environments of five O atoms from the crown and two N atoms from two i-mnt anions. The bridging of the two complexes via the Mg-N bonds leads to the formation of onedimensional chains along the *a* axis.

Related literature

For studies on crown ether complexes of alkaline earth metals, see: Junk & Steed (1999). For comparative data on Ni-S bonds, see: Gao et al. (2005). For comparative data on Mg-O bonds, see: Chadwick et al. (1999).

Experimental

Crystal data

[NiMg₂(C₄N₂S₂)₂(C₁₀H₂₀O₅)₂]Cl₂ $M_r = 899.11$ Orthorhombic, Cmc21 a = 13.6227 (16) Åb = 20.591 (3) Å c = 15.148 (2) Å

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.719, T_{\max} = 0.783$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.065$	H-atom parameters constrained
$wR(F^2) = 0.192$	$\Delta \rho_{\rm max} = 0.92 \ {\rm e} \ {\rm \AA}^{-3}$
S = 1.06	$\Delta \rho_{\rm min} = -0.47 \text{ e } \text{\AA}^{-3}$
1979 reflections	Absolute structure: Flack (1983),
242 parameters	1979 Friedel pairs
1 restraint	Flack parameter: 0.02 (5)
S = 1.06 1979 reflections 242 parameters 1 restraint	$\begin{split} &\Delta\rho_{\rm min}^{}=-0.47~e~{\rm \AA}^{-3}\\ &{\rm Absolute~structure:~Flack~(1983),}\\ &1979~{\rm Friedel~pairs}\\ &{\rm Flack~parameter:~0.02~(5)} \end{split}$

 $V = 4249 (1) \text{ Å}^3$

Mo $K\alpha$ radiation

 $0.41 \times 0.32 \times 0.30 \text{ mm}$

10632 measured reflections

1979 independent reflections

1651 reflections with $I > 2\sigma(I)$

 $\mu = 0.86 \text{ mm}^{-1}$

T = 298 (2) K

 $R_{\rm int} = 0.033$

Z = 4

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

The authors acknowledge the support of the National Natural Science Foundation of China.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SO2001).

References

- Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chadwick, S., Englich, U. & Ruhlandt-Senge, K. (1999). Inorg. Chem. 38, 6289-6293.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Gao, X. K., Dou, J. M., Li, D. C., Dong, F. Y. & Wang, D. Q. (2005). J. Chem. Crystallogr. 35, 107-110.
- Junk, P. C. & Steed, J. W. (1999). J. Chem. Soc. Dalton Trans. pp. 407-414.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.

Acta Cryst. (2008). E64, m174 [https://doi.org/10.1107/S1600536807065622]

catena-Poly[[nickel(II)- μ_3 -1,1-dicyanoethene-2,2-dithiolato- $\kappa^4 S,S':N:N'$ -bis[(15-crown-5)magnesium(II)]- μ_3 -1,1-dicyanoethene-2,2-dithiolato- $\kappa^4 N:N':S,S'$] dichloride]

Junli Yang, Chengjuan Li, Dacheng Li and Daqi Wang

S1. Comment

Crown ethers have gained special attention due to their coordination abilities with not only alkali metal ions, but also alkaline earth ions (Junk & Steed, 1999). In this work, we report the synthesis and structure of a crown ether complex of Mg²⁺ networked with a dithiolate Ni^{II} complex. As shown in Fig. 1, the asymmetric unit of title complex is made up of two half $[Mg(15-C-5)]^{2+}$ complex cations, one half $[Ni(i-mnt)_2]^{2-}$ complex anion and two dissociative Cl⁻ ions on mirror planes. For the two crystallographically independent $[Mg(15-C-5)]^{2+}$ complex cations, each Mg^{2+} is coordinated by five O atoms of the crown ether with the average Mg–O distance of 2.566 (12) Å, which is far longer than the value in the complex [Mg(15-C-5)(SCPh₃)₂](2.177 Å) (Chadwick et al., 1999). The additional coordination sites of Mg²⁺ are occupied by two N atoms from cyano groups of the neighboring complex anions [Ni(i-mnt)₂]²⁻, with the average Mg-N bond length of 2.531 (12) Å. For the complex anion, the Ni²⁺ is coordinated by four S atoms of two (i-mnt)²⁻ anions in a square planar geometry. The Ni–S bond lengths are in the range of 2.207 (3) to 2.212 (3) Å, which is in perfect agreement with the values (average 2.215 Å) reported in the complex [Na(N15-C-5)]2[Ni(i-mnt)2] (Gao et al., 2005). Fig. 2 shows that the title complex is assembled into a one-dimensional polymer by the Mg–N bonds between the adjacent [Mg(15— (C-5)]²⁺ complex cations and the [Ni(i-mnt)₂]²⁻ complex anions along the a axis. This motif is similar to what is found in the complex [Na(N15—C-5)]₂[Ni(i-mnt)₂], which is also assembled into a one-dimensional stucture by the Na–N bonds between the complex cations and the complex anions. [Na(N15-C-5)]₂[Ni(i-mnt)₂] further exhibits a two-dimensional supramolecular structure resulting from π - π stacking interactions between the naphthylene moieties of N15—C-5, which is not observed in the title complex.

S2. Experimental

A solution of NiCl₂ (0.2377 g, 0.1 mmol), Na₂(i-mnt) and MgCl₂ in methanol (10 ml), was added to a solution of 15-C-5 (0.44 g, 2 mmol) in CH₂Cl₂ (10 ml). The mixture was stirred for 3 hrs at room temperature, and then separated. The underlayer was recrystallized in a mixture of CH₂Cl₂ and ether, and crystals suitable for X-ray diffraction were obtained after two weeks (m.p. 471–473 K). Analysis calc. for $C_{28}H_{40}Cl_2Mg_2N_4O_{10}S_4$: C 37.37, H 4.49, N 6.23%; found: C 37.29, H 4.40, N 6.32%.

S3. Refinement

All H atoms were placed in geometrically idealized positions (C–H 0.97 Å) and treated as riding on their parent atoms, with $U_{iso}(H) = 1.2U_{eq}(C)$. 1979 Friedel pairs were used to determine the Flack parameter.

CII

Figure 1

The molecular structure of (I), with atom labels and 20% probability displacement ellipsoids for non-H atoms. Symmetry codes: (A) 1 - x, +y, +z; (B) -x, +y, +z.

Figure 2

One-dimensional chain-like structure of the title complex (Cl⁻ ions are omitted).

catena-Poly[[nickel(II)- μ_3 -1,1-dicyanothene-2,2-dithiolato- $\kappa^4 S, S':N:N'$ - bis[(15-crown-5)magnesium(II)]- μ_3 -1,1-dicyanoethene-2,2-dithiolato- $\kappa^4 N:N':S,S'$] dichloride]

Crystal data [NiMg₂(C₄N₂S₂)₂(C₁₀H₂₀O₅)₂]Cl₂ $M_r = 899.11$

Orthorhombic, $Cmc2_1$ Hall symbol: C 2c -2 a = 13.6227 (16) Å b = 20.591 (3) Å c = 15.148 (2) Å $V = 4249 (1) \text{ Å}^{3}$ Z = 4 F(000) = 1864 $D_{x} = 1.406 \text{ Mg m}^{-3}$

Data collection

Bruker SMART CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.719, T_{\max} = 0.783$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.065$ $wR(F^2) = 0.192$ S = 1.061979 reflections 242 parameters 1 restraint Primary atom site location: structure-invariant direct methods Mo Ka radiation, $\lambda = 0.71073$ Å Cell parameters from 4296 reflections $\theta = 2.2-24.9^{\circ}$ $\mu = 0.86 \text{ mm}^{-1}$ T = 298 KBlock, brown $0.41 \times 0.32 \times 0.30 \text{ mm}$

10632 measured reflections 1979 independent reflections 1651 reflections with $I > 2\sigma(I)$ $R_{int} = 0.033$ $\theta_{max} = 25.0^{\circ}, \theta_{min} = 2.4^{\circ}$ $h = -16 \rightarrow 16$ $k = -24 \rightarrow 23$ $l = -9 \rightarrow 18$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.1309P)^2 + 12.7693P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.92$ e Å⁻³ $\Delta\rho_{min} = -0.47$ e Å⁻³ Absolute structure: Flack (1983) Absolute structure parameter: 0.02 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Nil	0.0000	0.12793 (7)	0.9803 (2)	0.0492 (4)	
Mg1	0.5000	0.3176 (3)	1.0866 (4)	0.0713 (14)	
Mg2	0.5000	-0.0308 (2)	0.8135 (3)	0.0565 (11)	
N1	0.3850 (8)	0.2476 (5)	0.9910 (9)	0.093 (4)	
N2	0.3863 (6)	0.0587 (5)	0.8547 (8)	0.074 (3)	
01	0.5000	0.4399 (6)	1.1122 (9)	0.084 (3)	
O2	0.3268 (7)	0.3721 (4)	1.1116 (7)	0.084 (2)	
03	0.3963 (10)	0.2655 (6)	1.2030 (8)	0.112 (4)	

04	0.5000	-0.0908(6)	0.9581 (9)	0.109 (5)
05	0.6412 (9)	-0.1054(5)	0.8323 (8)	0.103 (3)
06	0.5988 (12)	-0.0446 (7)	0.6826 (9)	0.131 (4)
C11	0.0000	0.9064 (4)	0.8312 (9)	0.159 (4)
C12	0.0000	0.2859 (4)	0.2265 (8)	0.149 (3)
S1	0.12480 (17)	0.18894 (12)	1.02320 (19)	0.0571 (6)
S2	0.12522 (16)	0.07215 (11)	0.9274 (2)	0.0564 (6)
C1	0.4140 (11)	0.4707 (7)	1.1444 (12)	0.095 (4)
H1A	0.4158	0.5167	1.1309	0.114*
H1B	0.4095	0.4655	1.2079	0.114*
C2	0.3302 (12)	0.4407 (6)	1.1020 (12)	0.098 (4)
H2A	0.2706	0.4591	1.1265	0.118*
H2B	0.3316	0.4512	1.0395	0.118*
C3	0.2781 (12)	0.3557 (9)	1.1909 (12)	0.100 (4)
H3A	0.2084	0.3647	1.1863	0.120*
H3B	0.3047	0.3803	1.2401	0.120*
C4	0.2959 (14)	0.2843 (9)	1.2035 (13)	0.108 (5)
H4A	0.2670	0.2712	1.2592	0.129*
H4B	0.2620	0.2609	1.1569	0.129*
C5	0.4508 (14)	0.2588 (10)	1.2820 (11)	0.116 (6)
H5A	0.4301	0.2936	1.3210	0.140*
H5B	0.4301	0.2185	1.3093	0.140*
C6	0.589 (2)	-0.1249 (9)	0.9749 (16)	0.132 (7)
H6A	0.5784	-0.1707	0.9635	0.159*
H6B	0.6055	-0.1202	1.0368	0.159*
C7	0.674 (2)	-0.1019 (10)	0.9200 (15)	0.130 (7)
H7A	0.6922	-0.0577	0.9353	0.156*
H7B	0.7311	-0.1297	0.9287	0.156*
C8	0.7145 (16)	-0.0869 (10)	0.7714 (16)	0.123 (6)
H8A	0.7715	-0.1148	0.7775	0.147*
H8B	0.7347	-0.0425	0.7823	0.147*
C9	0.6722 (17)	-0.0931 (10)	0.6793 (15)	0.127 (7)
H9A	0.7209	-0.0838	0.6343	0.152*
H9B	0.6445	-0.1358	0.6691	0.152*
C10	0.552 (2)	-0.0474 (13)	0.600 (2)	0.172 (11)
H10A	0.5743	-0.0863	0.5698	0.206*
H10B	0.5743	-0.0105	0.5652	0.206*
C11	0.1961 (6)	0.1356 (4)	0.9620 (6)	0.051 (2)
C12	0.2935 (7)	0.1459 (4)	0.9403 (7)	0.0521 (19)
C13	0.3435 (7)	0.2023 (5)	0.9693 (8)	0.061 (2)
C14	0.3456 (7)	0.0975 (5)	0.8923 (8)	0.057 (2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	0.0437 (7)	0.0506 (8)	0.0532 (8)	0.000	0.000	-0.0009 (7)
Mg1	0.077 (3)	0.067 (3)	0.069 (3)	0.000	0.000	-0.006 (3)
Mg2	0.057 (2)	0.058 (2)	0.055 (2)	0.000	0.000	-0.009 (2)

Acta Cryst. (2008). E**64**, m174

N1	0.075 (6)	0.090 (7)	0.116 (9)	-0.019 (5)	0.025 (6)	-0.051 (7)
N2	0.044 (4)	0.075 (6)	0.104 (7)	0.008 (4)	0.006 (5)	-0.033 (6)
01	0.080 (8)	0.071 (7)	0.101 (9)	0.000	0.000	-0.023 (6)
O2	0.078 (5)	0.086 (5)	0.089 (6)	0.005 (4)	0.003 (5)	-0.012 (5)
03	0.121 (9)	0.138 (9)	0.077 (6)	0.016 (7)	0.026 (6)	0.007 (6)
04	0.185 (16)	0.072 (7)	0.069 (8)	0.000	0.000	0.007 (6)
05	0.126 (9)	0.080 (6)	0.103 (8)	0.020 (6)	-0.031 (7)	-0.013 (6)
O6	0.173 (12)	0.117 (9)	0.103 (9)	0.033 (9)	0.043 (9)	0.004 (7)
Cl1	0.130 (6)	0.122 (5)	0.225 (11)	0.000	0.000	0.018 (7)
C12	0.115 (5)	0.136 (5)	0.197 (9)	0.000	0.000	0.046 (6)
S 1	0.0443 (12)	0.0618 (13)	0.0652 (14)	0.0027 (9)	0.0003 (11)	-0.0202 (12)
S2	0.0471 (12)	0.0464 (11)	0.0757 (15)	0.0005 (8)	0.0012 (12)	-0.0051 (11)
C1	0.092 (9)	0.084 (8)	0.108 (11)	0.010 (7)	-0.009 (9)	-0.006 (8)
C2	0.096 (10)	0.081 (8)	0.117 (11)	0.016 (7)	-0.011 (9)	-0.009 (8)
C3	0.085 (9)	0.116 (12)	0.100 (11)	-0.005 (8)	0.004 (8)	-0.006 (9)
C4	0.103 (11)	0.120 (12)	0.101 (11)	-0.014 (9)	0.026 (9)	-0.002 (10)
C5	0.132 (13)	0.136 (14)	0.081 (9)	-0.036 (10)	0.006 (9)	0.012 (9)
C6	0.21 (2)	0.098 (11)	0.085 (9)	0.031 (14)	-0.032 (16)	0.003 (9)
C7	0.161 (19)	0.104 (12)	0.126 (16)	0.037 (12)	-0.043 (15)	-0.029 (12)
C8	0.121 (15)	0.108 (12)	0.140 (16)	0.038 (11)	0.015 (14)	-0.022 (12)
C9	0.138 (16)	0.110 (13)	0.132 (16)	0.022 (12)	0.044 (14)	-0.013 (11)
C10	0.20 (3)	0.18 (2)	0.135 (18)	0.064 (19)	0.041 (18)	-0.006 (17)
C11	0.046 (4)	0.052 (4)	0.055 (6)	0.007 (4)	-0.005 (4)	0.001 (4)
C12	0.052 (5)	0.049 (4)	0.055 (5)	0.006 (4)	-0.002 (4)	-0.005 (4)
C13	0.053 (5)	0.062 (5)	0.066 (6)	-0.002 (4)	0.004 (5)	-0.017 (5)
C14	0.048 (5)	0.052 (5)	0.072 (6)	0.000 (4)	-0.003 (5)	-0.006 (5)

Geometric parameters (Å, °)

Ni1—S2 ⁱ	2.207 (3)	O6—C10	1.41 (3)
Ni1—S2	2.207 (3)	O6—C9	1.41 (2)
Ni1—S1	2.212 (3)	S1—C11	1.734 (9)
Ni1—S1 ⁱ	2.212 (3)	S2—C11	1.708 (9)
Mg1—O3	2.502 (13)	C1—C2	1.45 (2)
Mg1—O3 ⁱⁱ	2.502 (13)	C1—H1A	0.9700
Mg1—O1	2.548 (13)	C1—H1B	0.9700
Mg1—N1	2.575 (12)	C2—H2A	0.9700
Mg1—N1 ⁱⁱ	2.575 (12)	C2—H2B	0.9700
Mg1—O2 ⁱⁱ	2.640 (10)	C3—C4	1.50 (2)
Mg102	2.640 (10)	С3—НЗА	0.9700
Mg2—O6 ⁱⁱ	2.414 (12)	С3—Н3В	0.9700
Mg2—O6	2.414 (12)	C4—H4A	0.9700
Mg2—O5 ⁱⁱ	2.478 (11)	C4—H4B	0.9700
Mg2—O5	2.478 (11)	С5—Н5А	0.9700
Mg2—N2 ⁱⁱ	2.487 (10)	С5—Н5В	0.9700
Mg2—N2	2.487 (9)	C6—C7	1.51 (3)
Mg2—O4	2.514 (14)	C6—H6A	0.9700
N1—C13	1.140 (13)	C6—H6B	0.9700

N2—C14	1.128 (13)	С7—Н7А	0.9700
O1—C1 ⁱⁱ	1.418 (16)	С7—Н7В	0.9700
01—C1	1.418 (16)	C8—C9	1.51 (3)
O2—C3	1.41 (2)	C8—H8A	0.9700
O2—C2	1.420 (15)	C8—H8B	0.9700
03	1.41 (2)	С9—Н9А	0.9700
03-C4	1.42 (2)	C9—H9B	0.9700
04	1.42(2)	C10—H10A	0.9700
$04-C6^{ii}$	1.12(2) 1.42(2)	C10—H10B	0.9700
05-07	1.12(2) 1.40(2)	C11-C12	1.383(13)
05	1.40(2) 1.41(2)	011 012	1.505 (15)
05	1.41 (2)		
S2 ⁱ —Ni1—S2	101.24 (16)	C11—S2—Ni1	85.8 (3)
S2 ⁱ —Ni1—S1	175.2 (2)	O1—C1—C2	108.0 (12)
S2—Ni1—S1	78.94 (8)	O1—C1—H1A	110.1
S2 ⁱ —Ni1—S1 ⁱ	78.94 (8)	C2—C1—H1A	110.1
$s_{2} = N_{1} = s_{1}^{i}$	175.2 (2)	01—C1—H1B	110.1
$s_1 - s_1$	100.48 (15)	C2-C1-H1B	110.1
$M_{\sigma} = M_{\sigma} = M_{\sigma}$	68 8 (6)	H1A—C1—H1B	108.4
Mg1 = 01	1085(4)	$0^{2}-0^{2}-0^{1}$	113.8(12)
03^{ii} Mg1 01	108.5(4)	$\Omega^2 - \Omega^2 - H^2 A$	108.8
Mg1 = N1	79 2 (4)	C1 - C2 - H2A	108.8
$O3^{ii}$ Mg1 N1	1200(5)	$\Omega^2 - \Omega^2 - H^2 B$	108.8
O1 Mg1 N1	120.0(3) 120.7(4)	$C_1 = C_2 = H_2 B$	108.8
$O_1 = Mg_1 = M_1$ $O_2 = Mg_1 = M_1^{ij}$	129.7(4) 120.0(5)	$C_1 = C_2 = H_2 B$	108.8
$O_{2ii} M_{c1} N_{1ii}$	120.0(3)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	107.7 105.4(12)
$O_{1} = M_{2} = N_{1}$	19.2(4)	02 - 03 - 04	103.4 (13)
$M_{\rm mg1}$ $M_{\rm m1}$	129.7(4)	$O_2 - C_3 - H_3 A$	110.7
$N1 - Mg1 - N1^{2}$	74.9 (5)	C4 - C3 - H3A	110.7
O_3 —Mg1— O_2^{n}	125.9 (4)	02—C3—H3B	110.7
O_3^{n} Mg1 O_2^{n}	64.9 (4)	C4—C3—H3B	110.7
$OI-MgI-O2^n$	63.8 (2)	H3A—C3—H3B	108.8
NI-MgI-O2 ⁿ	149.6 (4)	03	114.9 (14)
$N1^{n}$ —Mg1—O2 ⁿ	77.0 (3)	O3—C4—H4A	108.5
O3—Mg1—O2	64.9 (4)	C3—C4—H4A	108.5
$O3^{n}$ —Mg1—O2	125.9 (4)	O3—C4—H4B	108.5
O1—Mg1—O2	63.8 (2)	C3—C4—H4B	108.5
N1—Mg1—O2	77.0 (3)	H4A—C4—H4B	107.5
N1 ⁱⁱ —Mg1—O2	149.6 (4)	C5 ⁱⁱ —C5—O3	121.6 (8)
O2 ⁱⁱ —Mg1—O2	126.7 (4)	C5 ⁱⁱ —C5—H5A	106.9
O6 ⁱⁱ —Mg2—O6	67.8 (9)	O3—C5—H5A	106.9
O6 ⁱⁱ —Mg2—O5 ⁱⁱ	65.7 (5)	C5 ⁱⁱ —C5—H5B	106.9
O6—Mg2—O5 ⁱⁱ	117.0 (5)	O3—C5—H5B	106.9
O6 ⁱⁱ —Mg2—O5	117.0 (5)	H5A—C5—H5B	106.7
O6—Mg2—O5	65.7 (5)	O4—C6—C7	113.9 (16)
O5 ⁱⁱ —Mg2—O5	101.9 (6)	O4—C6—H6A	108.8
O6 ⁱⁱ —Mg2—N2 ⁱⁱ	129.8 (5)	С7—С6—Н6А	108.8
O6—Mg2—N2 ⁱⁱ	86.9 (5)	O4—C6—H6B	108.8
O5 ⁱⁱ —Mg2—N2 ⁱⁱ	156.1 (4)	С7—С6—Н6В	108.8

O5—Mg2—N2 ⁱⁱ	87.0 (3)	H6A—C6—H6B	107.7
O6 ⁱⁱ —Mg2—N2	86.9 (5)	O5—C7—C6	104.8 (19)
O6—Mg2—N2	129.8 (5)	O5—C7—H7A	110.8
O5 ⁱⁱ —Mg2—N2	87.0 (3)	С6—С7—Н7А	110.8
O5—Mg2—N2	156.1 (4)	O5—C7—H7B	110.8
N2 ⁱⁱ —Mg2—N2	77.0 (4)	С6—С7—Н7В	110.8
O6 ⁱⁱ —Mg2—O4	131.1 (4)	H7A—C7—H7B	108.9
O6—Mg2—O4	131.1 (4)	O5—C8—C9	108.1 (17)
O5 ⁱⁱ —Mg2—O4	66.1 (4)	O5—C8—H8A	110.1
O5—Mg2—O4	66.1 (4)	C9—C8—H8A	110.1
N2 ⁱⁱ —Mg2—O4	98.4 (4)	O5—C8—H8B	110.1
N2—Mg2—O4	98.4 (4)	C9—C8—H8B	110.1
C13—N1—Mg1	157.3 (12)	H8A—C8—H8B	108.4
C14—N2—Mg2	163.5 (10)	O6—C9—C8	100.3 (15)
C1 ⁱⁱ —O1—C1	111.5 (14)	O6—C9—H9A	111.7
C1 ⁱⁱ —O1—Mg1	119.6 (7)	С8—С9—Н9А	111.7
C1—O1—Mg1	119.6 (8)	O6—C9—H9B	111.7
C3—O2—C2	109.9 (13)	С8—С9—Н9В	111.7
C3—O2—Mg1	116.1 (9)	H9A—C9—H9B	109.5
C2—O2—Mg1	112.2 (9)	O6—C10—C10 ⁱⁱ	116.9 (12)
C5—O3—C4	121.8 (13)	O6—C10—H10A	108.1
C5—O3—Mg1	110.0 (10)	C10 ⁱⁱ —C10—H10A	108.1
C4—O3—Mg1	115.4 (10)	O6—C10—H10B	108.1
C6—O4—C6 ⁱⁱ	117 (2)	C10 ⁱⁱ —C10—H10B	108.1
C6—O4—Mg2	113.4 (13)	H10A-C10-H10B	107.3
C6 ⁱⁱ —O4—Mg2	113.4 (13)	C12—C11—S2	125.9 (7)
C7—O5—C8	112.1 (18)	C12—C11—S1	124.6 (7)
C7—O5—Mg2	109.1 (11)	S2—C11—S1	109.4 (5)
C8—O5—Mg2	107.9 (10)	C11—C12—C13	120.9 (8)
C10—O6—C9	105.1 (16)	C11—C12—C14	119.5 (8)
C10—O6—Mg2	119.0 (14)	C13—C12—C14	119.5 (8)
C9—O6—Mg2	120.5 (12)	N1—C13—C12	178.5 (12)
C11—S1—Ni1	85.1 (3)	N2-C14-C12	179.3 (13)

Symmetry codes: (i) -x, y, z; (ii) -x+1, y, z.