metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis[(*E*)-2-(3-hydroxy-4-methoxyphenyl)ethenyl]-1-methylquinolinium tetraiodidozincate(II) methanol solvate¹

Suchada Chantrapromma,^a§ Hoong-Kun Fun,^b* Kullapa Chanawanno^a and Pumsak Ruanwas^a

^aDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and ^bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia Correspondence e-mail: hkfun@usm.my

Received 27 November 2007; accepted 28 November 2007

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; R factor = 0.035; wR factor = 0.091; data-to-parameter ratio = 40.8.

In the title compound, $(C_{19}H_{18}NO_2)_2[ZnI_4] \cdot CH_3OH$, each cation is nearly planar and exists in an E configuration, the dihedral angles between the quinolinium systems and the benzene rings being 1.78 (10) and 5.44 $(10)^{\circ}$ for the two cations. The [ZnI₄]²⁻ anion displays a very slightly distorted tetrahedral geometry. There are intramolecular $O-H \cdots O$ hydrogen bonds between the hydroxy and methoxy groups in each cation which generate S(5) ring motifs. In the crystal structure, cations are linked together by $O-H \cdots O$ hydrogen bonds and weak C-H···O interactions, whereas the anions are linked to the cations through weak $C-H \cdots I$ interactions. The asymmetric unit also contains a methanol solvent molecule which is linked to one of the cations by an O- $H \cdots O$ hydrogen bond and the anion through an $O - H \cdots I$ hydrogen bond. The crystal is further stabilized by $C-H\cdots\pi$ and π - π interactions [centroid-centroid distances 3.6054 (15) and 3.6057 (15) Å].

Related literature

For bond-length data, see: Allen *et al.* (1987). For details of hydrogen-bond motifs, see: Bernstein *et al.* (1995). For related structures, see for example: Chantrapromma *et al.* (2006*a*,*b*; 2007*a*,*b*,*c*); Fun *et al.* (2006); Glavcheva *et al.* (2004); Jindawong *et al.* (2005). For background to non-linear optics, see for example: Oudar & Chemla (1977); Williams (1984).

Experimental

Crystal data

 $\begin{array}{ll} (C_{19}H_{18}NO_2)_2[ZnI_4]\cdot CH_4O & V = 4004.08 \ (10) \ \text{\AA}^3 \\ M_r = 1189.72 & Z = 4 \\ \text{Monoclinic, } P2_1/c & \text{Mo } K\alpha \ \text{radiation} \\ a = 8.6449 \ (1) \ \text{\AA} & \mu = 3.74 \ \text{mm}^{-1} \\ b = 23.4312 \ (4) \ \text{\AA} & T = 100.0 \ (1) \ \text{K} \\ c = 19.7763 \ (3) \ \text{\AA} & 0.43 \times 0.28 \times 0.13 \ \text{mm} \\ \beta = 91.724 \ (1)^\circ \end{array}$

Data collection

Bruker SMART APEX2 CCD area-	100181 measured reflections
detector diffractometer	18959 independent reflections
Absorption correction: multi-scan	15305 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2005)	$R_{\rm int} = 0.033$
$T_{\min} = 0.295, \ T_{\max} = 0.646$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.035$	465 parameters
$vR(F^2) = 0.091$	H-atom parameters constrained
S = 1.10	$\Delta \rho_{\rm max} = 4.98 \ {\rm e} \ {\rm \AA}^{-3}$
8959 reflections	$\Delta \rho_{\rm min} = -1.46 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O1−H1 <i>O</i> 1···O2	0.82	2.15	2.611 (3)	116
O3−H1 <i>O</i> 3···O4	0.82	2.23	2.673 (3)	114
$O3-H1O3\cdots O5^{i}$	0.82	1.92	2.693 (3)	156
$O5-H1O5\cdots I1^{ii}$	0.82	2.82	3.6161 (17)	163
$C2-H2A\cdots O3^{iii}$	0.93	2.56	3.476 (3)	167
$C18-H18B\cdots O3^{iii}$	0.96	2.60	3.355 (3)	136
$C27 - H27A \cdots I4^{iv}$	0.93	3.02	3.899 (3)	158
C19−H19B···Cg4	0.96	2.99	3.944 (3)	172
$C38-H38B\cdots Cg2$	0.96	2.94	3.871 (3)	165

Symmetry codes: (i) $-x + 1, y - \frac{1}{2}, -z + \frac{1}{2}$; (ii) -x + 1, -y + 1, -z + 1; (iii) $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}$; (iv) x - 1, y, z - 1. *Cg2* and *Cg4* are the centroids of the C12–C17 and C31–C36 benzene rings, respectively.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *APEX2*; data reduction: *SAINT* (Bruker, 2005); program(s) used to solve structure: *SHELXTL* (Sheldrick, 1998); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2003).

The authors thank Prince of Songkla University for a research grant. The authors also thank the Malaysian Government and Universiti Sains Malaysia for the Scientific Advancement Grant Allocation (SAGA) grant No. 304/ PFIZIK/653003/A118. KC thanks the Development and Promotion of Science and Technology Talents Project for a

¹ This paper is dedicated to His Majesty, Thai King Bhumibol Adulyadej on the occasion of his 80th Birthday Anniversary which fell on December 5th, 2007.

[§] Additional correspondence author, email: suchada.c@psu.ac.th

study grant. PR thanks the Graduate School, Prince of Songkla University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2450).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2005). APEX2 (Version 1.27), SAINT (Version V7.12a) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.
- Chantrapromma, S., Jindawong, B. & Fun, H.-K. (2006b). Acta Cryst. E62, 04004–04006.

- Chantrapromma, S., Jindawong, B. & Fun, H.-K. (2007a). Acta Cryst. E63, 02020–02022.
- Chantrapromma, S., Jindawong, B., Fun, H.-K. & Patil, P. S. (2007*c*). *Anal. Sci.* **23**, x81–x82.
- Chantrapromma, S., Jindawong, B., Fun, H.-K., Patil, P. S. & Karalai, C. (2006a). Acta Cryst. E62, o1802–o1804.
- Chantrapromma, S., Jindawong, B., Fun, H.-K., Patil, P. S. & Karalai, C. (2007b). Anal. Sci. 23, x27-x28.
- Fun, H.-K., Rodwatcharapiban, P., Jindawong, B. & Chantrapromma, S. (2006). Acta Cryst. E62, 02725–02727.
- Glavcheva, Z., Umezawa, H., Okada, S. & Nakanishi, H. (2004). Mat. Lett., 58, 2466–2471.
- Jindawong, B., Chantrapromma, S., Fun, H.-K. & Karalai, C. (2005). Acta Cryst. E61, o3237–o3239.
- Oudar, J.-L. & Chemla, D. S. (1977). J. Chem. Phys. 66, 2664-2668.
- Sheldrick, G. M. (1998). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Williams, D. J. (1984). Ang. Chem. Int. Ed. Engl. 23, 690-703.

Acta Cryst. (2008). E64, m126-m127 [https://doi.org/10.1107/S1600536807064215]

Bis[(*E*)-2-(3-hydroxy-4-methoxyphenyl)ethenyl]-1-methylquinolinium tetraiodidozincate(II) methanol solvate

Suchada Chantrapromma, Hoong-Kun Fun, Kullapa Chanawanno and Pumsak Ruanwas

S1. Comment

There is considerable interest in the synthesis of new materials with large second-order nonlinear properties because of their potential usage in a varity of applications such as in optical data storage, optical information processing and telecommunication. We have previously reported the structures of several quinolinium salts (Chantrapromma *et al.*, 2006*a*,*b*, 2007*a*,*b*,*c*; Fun *et al.*, 2006; Jindawong *et al.*, 2005), which were synthesized to study their nonlinear optical (NLO) properties. At the molecular level, a generally popular approach towards NLO materials is to design and systhesize compounds with extended conjugated π systems with donor and acceptor groups because such compounds are likely to exhibit large values of molecular hyperpolarizability (β) and to possess polarizable electrons (as in a conjugated π system) spread over a large distance (Oudar & Chemla, 1977). Quinolinium derivatives are considered to be good conjugated π systems. Organic–inorganic hybrid complexes also present a promising new type of materials for various applications. Thus, we extended our synthesis to this class of materials. This single-crystal X-ray structural study of the title compound was carried out in order to obtain detailed information about its crystal structure. However, the title compound crystallized in the centrosymmetric monoclinic space group $P2_1/c$ and therefore does not exhibit nonlinear optical properties (Williams, 1984).

The asymmetric unit of the title compound consists of two $C_{19}H_{18}NO_2^+$ cations, a ZnI_4^{2-} anion and a methanol solvate molecule (Fig. 1). Each cation is nearly planar as indicated by the dihedral angle between the quinolinium planes and the benzene rings in each cation being 1.78 (10) and 5.44 (10)°, respectively. The H atoms attached to the alkene C atoms C10 and C11 and C29 and C30 are mutually *trans*; torsion angles C9—C10—C11—C12 = 179.1 (2)° and C28—C29—C30—C31 = -179.3 (2)°. Both the hydroxy and methoxy groups are reasonably coplanar with the benzene rings to which they are attached with torsion angles C19—O2—C15—C16 = -0.4 (4)° and C38—O4—C34—C35 = 1.2 (4)°. Both cations form intramolecular O—H…O hydrogen bonds between the hydroxy and methoxy groups which generate S(5) ring motifs (Bernstein *et al.*, 1995). The two cations are approximately parallel to one another with dihedral angles 7.55 (7)° between the two quinolinium planes (C1–C9/N1 and C20–C28/N2) and 12.82 (12)° between the two benzene rings (C12–C17 and C31–C36). The ZnI4²⁻ anion shows only small distortions from a regular tetrahedron as was found previously (Glavcheva *et al.*, 2004). Zn—I bond distances are in the range 2.6035 (3)–2.6409 (3) Å, and I—Zn—I bond angles lie in the range 106.583 (11)–114.187 (11)°. Bond distances and angles of the cations show normal values (Allen *et al.*, 1987) and are comparable with closely related structures (Chantrapromma *et al.*, 2006*a,b*, 2007*a,b,c*; Fun *et al.*, 2006; Jindawong *et al.*, 2005).

In the crystal packing, the cations are linked together through O—H···O hydrogen bonds and weak C—H···O interactions (Table 1). The cations are also linked to the ZnI_4^{2-} anions through weak C27—H27A···I4 interactions (symmetry code: -1 + x, *y*, -1 + z). The methanol molecule links with the cation by an O3—H1O3···O5 hydrogen bond

(symmetry code: 1 - x, -1/2 + y, 1/2 - z) and with the ZnI₄²⁻ anion by an O5—H1O5…I1 hydrogen bond (symmetry code: 1 - x, 1 - y, 1 - z). The cations are arranged in an antiparallel manner and stacked along the *a* axis in such a way that the centroid–centroid distance between the C1–C6 (*Cg*₁) and C12–C17 (*Cg*₂) rings is 3.6054 (15)Å (symmetry code: 1 - x, 1 - y, 1 - z) and that between the C20–C25 (*Cg*₃) and C31–C36 (*Cg*₄) rings is 3.6057 (15)Å (symmetry code: 1 - x, 1 - y, -z), indicating π – π interactions. The crystal is further stabilized by C—H… π interactions (Table 1); *Cg*₂ and *Cg*₄ are the centroids of the C12–C17 and C31–C36 benzene rings, respectively.

S2. Experimental

The title compound was synthesized by mixing a solution of 2-[(*E*)-2-(3-Hydroxy-4-methoxyphenyl)ethynyl]-1-methylquinolinium iodide (Chantrapromma *et al.*, 2006*a*) (0.20 g, 0.48 mmol) in hot methanol (50 ml) and a solution of ZnI₂ (0.19 g, 0.48 mmol) in hot methanol (30 ml). The mixture was stirred for half an hour and then left at room-temperature. The title compound formed as a red solid after 2 days. Red plates suitable for X-ray diffraction analysis were obtained by recrystallization from a methanol/ethanol (1:2 v/v) by slow evaporation of the solvents at ambient temperature after several days, *M*.p. 493–494 K.

S3. Refinement

All H atoms were placed in calculated positions with an O—H distance of 0.82 Å and C—H distances in the range 0.93– 0.97 Å. The $U_{iso}(H)$ values were constrained to be $1.5U_{eq}$ of the carrier atom for hydroxyl and methyl H atoms, and $1.2U_{eq}(C)$ for the remaining H atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 0.76 Å from I4 and the deepest hole is located at 0.50 Å from I4.

Figure 1

The asymmetric unit of (I), showing 50% probability displacement ellipsoids and the atomic numbering. The dashed lines indicate O—H…O hydrogen bonds.

The crystal packing of (I), viewed down the *b* axis. Hydrogen bonds are shown as dashed lines.

Bis[(E)-2-(3-hydroxy-4-methoxyphenyl)ethenyl]-1-methylquinolinium tetraiodidozincate(II) methanol solvate

Crystal data

$(C_{19}H_{18}NO_2)_2[ZnI_4]\cdot CH_4O$	F(000) = 2280
$M_r = 1189.72$	$D_{\rm x} = 1.974 {\rm ~Mg~m^{-3}}$
Monoclinic, $P2_1/c$	Melting point = $493-494$ K
Hall symbol: -P 2ybc	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
a = 8.6449 (1) Å	Cell parameters from 18959 reflections
b = 23.4312 (4) Å	$\theta = 1.4 - 36.0^{\circ}$
c = 19.7763 (3) Å	$\mu = 3.74 \text{ mm}^{-1}$
$\beta = 91.724$ (1)°	T = 100 K
$V = 4004.08 (10) \text{ Å}^3$	Plate, orange
Z=4	$0.43 \times 0.28 \times 0.13 \text{ mm}$

Data collection

Bruker SMART APEX2 CCD area-detector diffractometer	100181 measured reflection 18959 independent reflection
Radiation source: fine-focus sealed tube	15305 reflections with $I > 2$
Graphite monochromator	$R_{\rm int} = 0.033$
Detector resolution: 8.33 pixels mm ⁻¹	$\theta_{\rm max} = 36.0^\circ, \ \theta_{\rm min} = 1.4^\circ$
ω scans	$h = -14 \rightarrow 14$
Absorption correction: multi-scan	$k = -38 \rightarrow 38$
(SADABS; Bruker, 2005)	$l = -32 \rightarrow 32$
$T_{\min} = 0.295, \ T_{\max} = 0.646$	

ns ons $2\sigma(I)$ Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.035$	Hydrogen site location: inferred from
$wR(F^2) = 0.091$	neighbouring sites
S = 1.10	H-atom parameters constrained
18959 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0361P)^2 + 5.8575P]$
465 parameters	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.003$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 4.98 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -1.46 \text{ e } \text{\AA}^{-3}$

Special details

Experimental. The low-temparture data was collected with the Oxford Cyrosystem Cobra low-temperature attachment. **Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	<i>x</i>	У	Z	$U_{ m iso}$ */ $U_{ m eq}$
Zn1	1.00933 (3)	0.428527 (12)	0.759635 (14)	0.01632 (5)
I1	0.961758 (19)	0.360714 (7)	0.654410 (8)	0.01980 (4)
I2	0.763779 (18)	0.492846 (7)	0.768472 (8)	0.02042 (4)
I3	1.242365 (18)	0.496650(7)	0.741500 (8)	0.01896 (3)
I4	1.06173 (2)	0.361619 (7)	0.865320 (8)	0.02277 (4)
01	0.4535 (3)	0.23008 (8)	0.41531 (10)	0.0276 (4)
H1O1	0.3889	0.2141	0.3908	0.041*
O2	0.2948 (2)	0.26419 (8)	0.30840 (10)	0.0228 (4)
N1	0.7449 (2)	0.57253 (9)	0.48296 (10)	0.0157 (3)
C1	0.8311 (3)	0.61157 (10)	0.52232 (11)	0.0157 (4)
C2	0.8240 (3)	0.67052 (11)	0.50971 (12)	0.0195 (4)
H2A	0.7600	0.6848	0.4751	0.023*
C3	0.9135 (3)	0.70685 (12)	0.54942 (13)	0.0217 (5)
H3A	0.9080	0.7459	0.5414	0.026*
C4	1.0122 (3)	0.68662 (12)	0.60141 (13)	0.0226 (5)
H4A	1.0736	0.7119	0.6266	0.027*
C5	1.0179 (3)	0.62947 (12)	0.61501 (13)	0.0218 (5)
H5A	1.0824	0.6160	0.6499	0.026*
C6	0.9259 (3)	0.59056 (11)	0.57618 (12)	0.0179 (4)
C7	0.9253 (3)	0.53154 (11)	0.59081 (12)	0.0202 (4)
H7A	0.9854	0.5174	0.6268	0.024*
C8	0.8368 (3)	0.49546 (11)	0.55219 (13)	0.0204 (4)
H8A	0.8354	0.4568	0.5626	0.024*
C9	0.7464 (3)	0.51611 (10)	0.49612 (12)	0.0166 (4)

C10	0.6567 (3)	0.47728 (11)	0.45303 (13)	0.0209 (4)
H10A	0.5975	0.4932	0.4178	0.025*
C11	0.6525 (3)	0.42026 (11)	0.46004 (12)	0.0182 (4)
H11A	0.7128	0.4042	0.4948	0.022*
C12	0.5606 (3)	0.38162 (10)	0.41721 (12)	0.0166 (4)
C13	0.5545 (3)	0.32353 (10)	0.43517 (12)	0.0184 (4)
H13A	0.6117	0.3103	0.4725	0.022*
C14	0.4634 (3)	0.28614 (10)	0.39728 (12)	0.0180 (4)
C15	0.3786 (3)	0.30571 (10)	0.34013 (11)	0.0165 (4)
C16	0.3839 (3)	0.36292 (10)	0.32192 (12)	0.0175 (4)
H16A	0.3272	0.3760	0.2843	0.021*
C17	0.4750 (3)	0.40049 (11)	0.36050 (12)	0.0186 (4)
H17A	0.4789	0.4388	0.3483	0.022*
C18	0.6509(3)	0.59471 (11)	0.42510 (13)	0.0217 (5)
H18A	0.6655	0.5710	0.3863	0.033*
H18B	0.6825	0.6330	0.4152	0.033*
H18C	0.5436	0.5946	0.4363	0.033*
C19	0.2009 (3)	0.27958 (12)	0.25072 (13)	0.0235 (5)
H19A	0.1487	0.2463	0.2332	0.035*
H19B	0.2649	0.2954	0.2166	0.035*
H19C	0.1258	0.3074	0.2636	0.035*
03	0.4542 (2)	0.23128 (8)	0.09856 (10)	0.0247 (4)
H1O3	0.5009	0.2121	0.1272	0.037*
04	0.6512 (2)	0.26270 (8)	0.19848 (10)	0.0218 (4)
N2	0.2764 (2)	0.58183 (9)	0.01849 (10)	0.0164 (3)
C20	0.1990 (3)	0.62274 (10)	-0.02175 (11)	0.0162 (4)
C21	0.2255 (3)	0.68161 (10)	-0.01304 (12)	0.0183 (4)
H21A	0.2984	0.6945	0.0189	0.022*
C22	0.1422 (3)	0.71975 (11)	-0.05247 (13)	0.0211 (4)
H22A	0.1611	0.7586	-0.0473	0.025*
C23	0.0292 (3)	0.70159 (12)	-0.10046 (14)	0.0228 (5)
H23A	-0.0293	0.7282	-0.1251	0.027*
C24	0.0065 (3)	0.64442 (11)	-0.11052 (13)	0.0209 (4)
H24A	-0.0664	0.6322	-0.1429	0.025*
C25	0.0921 (3)	0.60365 (11)	-0.07241 (12)	0.0175 (4)
C26	0.0762 (3)	0.54494 (11)	-0.08489(12)	0.0201 (4)
H26A	0.0072	0.5320	-0.1185	0.024*
C27	0.1627 (3)	0.50671 (11)	-0.04747 (13)	0.0201 (4)
H27A	0.1556	0.4680	-0.0574	0.024*
C28	0.2627 (3)	0.52520 (10)	0.00606 (11)	0.0159 (4)
C29	0.3499 (3)	0.48449 (10)	0.04726 (12)	0.0180 (4)
H29A	0.4236	0.4988	0.0780	0.022*
C30	0.3313 (3)	0.42729 (10)	0.04406 (12)	0.0166 (4)
H30A	0.2583	0.4130	0.0129	0.020*
C31	0.4171 (3)	0.38655 (10)	0.08570 (11)	0.0158 (4)
C32	0.3966 (3)	0.32777 (10)	0.07350 (12)	0.0165 (4)
H32A	0.3285	0.3159	0.0390	0.020*
C33	0.4759 (3)	0.28738 (10)	0.11199 (12)	0.0168 (4)

C34	0.5794 (3)	0.30554 (10)	0.16424 (11)	0.0156 (4)
C35	0.5998 (3)	0.36337 (10)	0.17718 (12)	0.0167 (4)
H35A	0.6670	0.3752	0.2120	0.020*
C36	0.5195 (3)	0.40361 (10)	0.13794 (12)	0.0172 (4)
H36A	0.5342	0.4423	0.1466	0.021*
C37	0.3706 (3)	0.60281 (11)	0.07710 (12)	0.0208 (4)
H37A	0.3660	0.5758	0.1135	0.031*
H37B	0.3308	0.6389	0.0916	0.031*
H37C	0.4760	0.6074	0.0642	0.031*
C38	0.7552 (3)	0.27751 (12)	0.25358 (13)	0.0231 (5)
H38A	0.7961	0.2433	0.2741	0.035*
H38B	0.7005	0.2990	0.2866	0.035*
H38C	0.8385	0.3001	0.2370	0.035*
05	0.4508 (2)	0.64459 (8)	0.32101 (11)	0.0268 (4)
H1O5	0.3567	0.6404	0.3178	0.040*
C39	0.5133 (4)	0.64612 (14)	0.25496 (16)	0.0316 (6)
H39A	0.4609	0.6749	0.2283	0.047*
H39B	0.4993	0.6096	0.2336	0.047*
H39C	0.6217	0.6549	0.2585	0.047*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
Zn1	0.01907 (12)	0.01326 (12)	0.01669 (11)	-0.00056 (9)	0.00160 (9)	-0.00004 (9)
I1	0.02518 (7)	0.01483 (7)	0.01937 (7)	-0.00102 (5)	0.00049 (6)	-0.00314 (5)
I2	0.01964 (7)	0.02145 (8)	0.02027 (7)	0.00436 (5)	0.00210 (5)	0.00072 (5)
13	0.01906 (6)	0.01890 (7)	0.01889 (6)	-0.00450 (5)	-0.00014 (5)	-0.00183 (5)
I4	0.03423 (9)	0.01546 (7)	0.01869 (7)	0.00205 (6)	0.00207 (6)	0.00244 (5)
01	0.0404 (11)	0.0138 (8)	0.0280 (10)	-0.0005 (7)	-0.0109 (9)	0.0017 (7)
O2	0.0283 (9)	0.0184 (8)	0.0214 (8)	-0.0023 (7)	-0.0062 (7)	-0.0020 (7)
N1	0.0155 (8)	0.0180 (9)	0.0135 (8)	0.0002 (6)	-0.0010 (6)	0.0006 (6)
C1	0.0145 (8)	0.0188 (10)	0.0139 (8)	-0.0014 (7)	0.0013 (7)	-0.0015 (7)
C2	0.0218 (10)	0.0202 (11)	0.0167 (9)	-0.0032 (8)	0.0000 (8)	-0.0009 (8)
C3	0.0237 (11)	0.0216 (12)	0.0199 (10)	-0.0044 (9)	0.0016 (9)	-0.0011 (9)
C4	0.0203 (10)	0.0275 (13)	0.0200 (10)	-0.0048 (9)	-0.0009 (9)	-0.0049 (9)
C5	0.0196 (10)	0.0271 (13)	0.0185 (10)	-0.0020 (9)	-0.0020 (8)	-0.0044 (9)
C6	0.0155 (9)	0.0232 (11)	0.0150 (9)	-0.0008(8)	0.0000 (7)	-0.0003 (8)
C7	0.0200 (10)	0.0236 (12)	0.0168 (10)	0.0017 (8)	-0.0017 (8)	0.0001 (8)
C8	0.0233 (10)	0.0197 (11)	0.0179 (10)	0.0000 (8)	-0.0020 (8)	0.0028 (8)
C9	0.0171 (9)	0.0171 (10)	0.0157 (9)	-0.0008(7)	0.0000 (7)	0.0002 (7)
C10	0.0267 (11)	0.0168 (11)	0.0188 (10)	-0.0022 (8)	-0.0056 (9)	0.0016 (8)
C11	0.0174 (9)	0.0193 (11)	0.0179 (9)	0.0008 (8)	-0.0017 (8)	0.0005 (8)
C12	0.0165 (9)	0.0172 (10)	0.0160 (9)	0.0003 (7)	0.0000 (8)	0.0002 (7)
C13	0.0203 (10)	0.0180 (10)	0.0168 (9)	0.0011 (8)	-0.0023 (8)	0.0018 (8)
C14	0.0224 (10)	0.0135 (10)	0.0179 (9)	0.0017 (8)	-0.0018 (8)	0.0011 (7)
C15	0.0183 (9)	0.0167 (10)	0.0145 (9)	0.0004 (7)	-0.0002 (7)	0.0000 (7)
C16	0.0185 (9)	0.0176 (10)	0.0163 (9)	-0.0004 (8)	-0.0016 (8)	0.0028 (8)
C17	0.0192 (10)	0.0165 (10)	0.0200 (10)	-0.0015 (8)	-0.0004 (8)	0.0020 (8)

C18	0.0248 (11)	0.0194 (11)	0.0204 (10)	-0.0004 (9)	-0.0067 (9)	-0.0002 (8)
C19	0.0261 (11)	0.0274 (13)	0.0168 (10)	-0.0027 (10)	-0.0036 (9)	-0.0019 (9)
O3	0.0359 (10)	0.0135 (8)	0.0237 (9)	-0.0023 (7)	-0.0147 (8)	0.0008 (6)
O4	0.0239 (8)	0.0195 (8)	0.0214 (8)	-0.0006 (7)	-0.0082 (7)	0.0012 (6)
N2	0.0189 (8)	0.0157 (9)	0.0145 (8)	-0.0002 (7)	-0.0006 (7)	-0.0003 (6)
C20	0.0172 (9)	0.0179 (10)	0.0134 (8)	0.0002 (7)	0.0020 (7)	0.0016 (7)
C21	0.0207 (10)	0.0152 (10)	0.0191 (10)	0.0002 (8)	0.0029 (8)	0.0010 (8)
C22	0.0254 (11)	0.0169 (11)	0.0210 (10)	0.0035 (8)	0.0033 (9)	0.0020 (8)
C23	0.0219 (11)	0.0233 (12)	0.0232 (11)	0.0041 (9)	0.0004 (9)	0.0047 (9)
C24	0.0199 (10)	0.0239 (12)	0.0188 (10)	0.0014 (8)	-0.0002 (8)	0.0026 (9)
C25	0.0171 (9)	0.0200 (11)	0.0155 (9)	0.0012 (8)	0.0011 (8)	0.0018 (8)
C26	0.0209 (10)	0.0219 (11)	0.0172 (10)	-0.0009 (8)	-0.0027 (8)	-0.0005 (8)
C27	0.0237 (10)	0.0174 (11)	0.0189 (10)	-0.0015 (8)	-0.0021 (8)	-0.0017 (8)
C28	0.0190 (9)	0.0142 (10)	0.0147 (9)	-0.0015 (7)	0.0012 (8)	-0.0009 (7)
C29	0.0205 (10)	0.0172 (10)	0.0163 (9)	-0.0003 (8)	-0.0016 (8)	0.0004 (8)
C30	0.0181 (9)	0.0149 (10)	0.0167 (9)	-0.0010 (7)	0.0005 (8)	0.0004 (7)
C31	0.0163 (9)	0.0160 (10)	0.0151 (9)	-0.0004 (7)	-0.0015 (7)	-0.0013 (7)
C32	0.0161 (9)	0.0170 (10)	0.0162 (9)	-0.0011 (7)	-0.0030 (7)	-0.0005 (7)
C33	0.0196 (9)	0.0143 (9)	0.0163 (9)	-0.0015 (7)	-0.0031 (8)	-0.0010 (7)
C34	0.0167 (9)	0.0151 (10)	0.0150 (9)	-0.0004 (7)	-0.0016 (7)	-0.0003 (7)
C35	0.0165 (9)	0.0185 (10)	0.0151 (9)	-0.0014 (7)	-0.0019 (7)	-0.0023 (7)
C36	0.0185 (9)	0.0146 (10)	0.0185 (9)	-0.0003 (7)	-0.0001 (8)	-0.0024 (8)
C37	0.0279 (11)	0.0175 (11)	0.0168 (10)	-0.0024 (9)	-0.0049 (9)	0.0008 (8)
C38	0.0210 (10)	0.0282 (13)	0.0196 (10)	-0.0005 (9)	-0.0058 (9)	-0.0009 (9)
O5	0.0260 (9)	0.0240 (10)	0.0300 (10)	-0.0015 (7)	-0.0094 (8)	0.0014 (8)
C39	0.0382 (16)	0.0235 (14)	0.0330 (15)	0.0020 (11)	0.0005 (13)	-0.0007 (11)

Geometric parameters (Å, °)

Zn1—I3	2.6035 (3)	O3—H1O3	0.8200
Zn1—I2	2.6135 (3)	O4—C34	1.351 (3)
Zn1—I1	2.6406 (3)	O4—C38	1.434 (3)
Zn1—I4	2.6409 (3)	N2—C28	1.354 (3)
O1—C14	1.364 (3)	N2—C20	1.403 (3)
01—H101	0.8200	N2—C37	1.480 (3)
O2—C15	1.356 (3)	C20—C21	1.408 (3)
O2—C19	1.426 (3)	C20—C25	1.415 (3)
N1—C9	1.347 (3)	C21—C22	1.375 (3)
N1-C1	1.401 (3)	C21—H21A	0.9300
N1-C18	1.478 (3)	C22—C23	1.407 (4)
C1—C2	1.405 (3)	C22—H22A	0.9300
C1—C6	1.413 (3)	C23—C24	1.368 (4)
C2—C3	1.380 (3)	C23—H23A	0.9300
C2—H2A	0.9300	C24—C25	1.412 (3)
C3—C4	1.399 (4)	C24—H24A	0.9300
С3—НЗА	0.9300	C25—C26	1.404 (4)
C4—C5	1.366 (4)	C26—C27	1.370 (3)
C4—H4A	0.9300	C26—H26A	0.9300

a. a.			
C5—C6	1.420 (3)	C27—C28	1.415 (3)
С5—Н5А	0.9300	С27—Н27А	0.9300
C6—C7	1.413 (4)	C28—C29	1.450 (3)
С7—С8	1.359 (4)	C29—C30	1.351 (3)
С7—Н7А	0.9300	С29—Н29А	0.9300
C8—C9	1.422 (3)	C30—C31	1.450 (3)
C8—H8A	0.9300	С30—Н30А	0.9300
C9—C10	1.455 (3)	C31—C36	1.398 (3)
C10—C11	1 344 (3)	$C_{31} - C_{32}$	1409(3)
C10—H10A	0.9300	C_{32} C_{33}	$1.10^{\circ}(3)$ 1.384(3)
C_{11} C_{12}	1.450(3)	C_{32} H_{32A}	0.0300
C11_U11A	0.0300	C_{32} C_{34}	0.9300
	0.9300	$C_{33} = C_{34}$	1.412(3)
	1.397 (3)		1.389 (3)
C12—C13	1.408 (3)	C35—C36	1.393 (3)
C13—C14	1.383 (3)	C35—H35A	0.9300
C13—H13A	0.9300	С36—Н36А	0.9300
C14—C15	1.405 (3)	С37—Н37А	0.9600
C15—C16	1.389 (3)	С37—Н37В	0.9600
C16—C17	1.393 (3)	С37—Н37С	0.9600
C16—H16A	0.9300	C38—H38A	0.9600
C17—H17A	0.9300	C38—H38B	0.9600
C18—H18A	0.9600	C38—H38C	0.9600
C18—H18B	0.9600	Q5—C39	1.429 (4)
C18—H18C	0.9600	05—H105	0.8200
	0.9600	C39_H39A	0.9600
C10 H10R	0.9600	C30 H30P	0.9600
C10_1119B	0.9000	C20 U20C	0.9000
C19—H19C	0.9000	С39—п39С	0.9600
03-033	1.353 (3)		
I3—Zn1—I2	106.804 (12)	C34—O4—C38	118.0 (2)
I3—Zn1—I1	111.295 (11)	C28—N2—C20	122.0 (2)
I2—Zn1—I1	106.985 (11)	C28—N2—C37	120.7 (2)
I3—Zn1—I4	110.977 (11)	C20—N2—C37	117.3 (2)
I2— $Zn1$ — $I4$	114.187 (11)	N2—C20—C21	121.8 (2)
I1—Zn1—I4	106.583 (11)	N2-C20-C25	118.4(2)
C14 - 01 - H101	109.5	C_{21} C_{20} C_{25}	119.1(2)
$C_{15} - C_{2} - C_{19}$	118.2(2)	$C_{22} = C_{21} = C_{20}$	119.0(2)
$C_{13} = 0.2 = 0.1$	110.2(2) 122.00(10)	$C_{22} C_{21} C_{20} C_{20}$	120.4
C_{0} N1 C_{18}	122.09(19) 110.8(2)	$C_{22} = C_{21} = H_{21A}$	120.4
$C_{2} = N_{1} = C_{18}$	119.0(2)	C_{20} C_{21} C_{22} C_{22}	120.4
	118.1 (2)	$C_{21} = C_{22} = C_{23}$	121.8 (2)
NI—CI—C2	121.6 (2)	C21—C22—H22A	119.1
NI-CI-C6	118.6 (2)	С23—С22—Н22А	119.1
C2—C1—C6	119.8 (2)	C24—C23—C22	119.2 (2)
C3—C2—C1	119.0 (2)	C24—C23—H23A	120.4
C3—C2—H2A	120.5	С22—С23—Н23А	120.4
C1—C2—H2A	120.5	C23—C24—C25	120.9 (2)
C2—C3—C4	121.9 (3)	C23—C24—H24A	119.5
С2—С3—НЗА	119.0	C25—C24—H24A	119.5

C4—C3—H3A	119.0	C26—C25—C24	121.5 (2)
C5—C4—C3	119.6 (2)	C26—C25—C20	119.5 (2)
C5—C4—H4A	120.2	C24—C25—C20	119.0 (2)
C3—C4—H4A	120.2	C27—C26—C25	119.8 (2)
C4—C5—C6	120.4 (2)	C27—C26—H26A	120.1
С4—С5—Н5А	119.8	C25—C26—H26A	120.1
С6—С5—Н5А	119.8	C26—C27—C28	121.0(2)
C1 - C6 - C7	119 3 (2)	С26—С27—Н27А	119.5
C1-C6-C5	119.1 (2)	C28—C27—H27A	119.5
C7-C6-C5	121.5(2)	N_{2} C_{28} C_{27}	1189(2)
$C_{8} - C_{7} - C_{6}$	121.3(2) 1199(2)	$N_2 = C_{28} = C_{29}$	1201(2)
C8—C7—H7A	120.0	C_{27} C_{28} C_{29}	120.1(2) 1210(2)
C6-C7-H7A	120.0	$C_{20} - C_{20} - C_{28}$	121.0(2) 124.5(2)
C7 - C8 - C9	120.0 120.9(2)	C_{30} C_{29} H_{29A}	1177
C7 - C8 - H8A	119.6	C_{28} C_{29} H_{29A}	1177
C_{1} C_{2} C_{3} H_{8A}	119.6	$C_{20} = C_{20} = 1127X$	117.7 124.6(2)
$N_1 = C_0 = C_8$	119.0 110 1 (2)	$C_{29} = C_{30} = C_{31}$	124.0(2)
N1 = C9 = C3	119.1(2) 110.0(2)	C_{2} C_{3} C_{3	117.7
$C_{1} = C_{1} = C_{1} = C_{1}$	119.9(2) 121.0(2)	$C_{31} = C_{30} = 1150 \text{A}$	117.7 1187(2)
$C_{3} - C_{3} - C_{10}$	121.0(2) 125.2(2)	$C_{30} = C_{31} = C_{32}$	110.7(2) 122.2(2)
$C_{11} = C_{10} = C_{3}$	123.2 (2)	$C_{30} = C_{31} = C_{30}$	122.2(2) 110 1(2)
C_{11} C_{10} H_{10A}	117.4	$C_{32} = C_{31} = C_{30}$	119.1(2) 121.1(2)
C_{10} C_{11} C_{12}	117.4	$C_{33} = C_{32} = C_{31}$	121.1(2) 110 /
$C_{10} = C_{11} = C_{12}$	123.0 (2)	$C_{33} - C_{32} - H_{32A}$	119.4
C12 - C11 - H11A	117.5	$C_{31} - C_{32} - C_{32}$	119.4
C12— $C12$ — $C12$ — $C12$	117.3	03 - 03 - 032	119.3(2)
C17 - C12 - C13	119.0(2)	03 - 03 - 034	121.2(2)
C12 - C12 - C11	122.4(2)	$C_{32} = C_{33} = C_{34}$	119.3(2)
C13 - C12 - C11	118.5(2)	04 - C34 - C33	125.5(2)
C14 - C13 - C12	120.0 (2)	04 - 034 - 033	114.5 (2)
C12 C13—H13A	120.0	$C_{35} - C_{34} - C_{33}$	120.2(2)
C12—C13—H13A	120.0	$C_{34} = C_{35} = C_{36}$	119.9 (2)
01 - C14 - C13	120.5 (2)	C34—C35—H35A	120.0
01 - 014 - 015	119.3 (2)	C36—C35—H35A	120.0
C13 - C14 - C15	120.2(2)	$C_{35} = C_{36} = C_{31}$	120.8 (2)
02 - C15 - C16	126.4 (2)	$C_{35} - C_{36} - H_{36A}$	119.6
02-015-014	113.4 (2)	C31—C36—H36A	119.6
C16—C15—C14	120.2 (2)	N2-C3/-H3/A	109.5
	119.4 (2)	N2—C37—H37B	109.5
С15—С16—Н16А	120.3	$H_3/A - C_3/ - H_3/B$	109.5
С17—С16—Н16А	120.3	N2—C37—H37C	109.5
C16—C17—C12	121.1 (2)	Н37А—С37—Н37С	109.5
С16—С17—Н17А	119.4	Н37В—С37—Н37С	109.5
С12—С17—Н17А	119.4	04—C38—H38A	109.5
NI-C18-H18A	109.5	O4—C38—H38B	109.5
N1—C18—H18B	109.5	H38A—C38—H38B	109.5
H18A—C18—H18B	109.5	O4—C38—H38C	109.5
N1—C18—H18C	109.5	H38A—C38—H38C	109.5
H18A—C18—H18C	109.5	H38B—C38—H38C	109.5

H18B—C18—H18C	109.5	C39—O5—H1O5	109.5
O2—C19—H19A	109.5	O5—C39—H39A	109.5
O2—C19—H19B	109.5	O5—C39—H39B	109.5
H19A—C19—H19B	109.5	H39A—C39—H39B	109.5
O2—C19—H19C	109.5	O5—C39—H39C	109.5
H19A—C19—H19C	109.5	H39A—C39—H39C	109.5
H19B—C19—H19C	109.5	H39B—C39—H39C	109.5
C33—O3—H1O3	109.5		
C9—N1—C1—C2	-177.6 (2)	C28—N2—C20—C21	-173.4(2)
C18—N1—C1—C2	2.9 (3)	C37—N2—C20—C21	8.6 (3)
C9—N1—C1—C6	2.0 (3)	C28—N2—C20—C25	6.4 (3)
C18—N1—C1—C6	-177.6 (2)	C37—N2—C20—C25	-171.7 (2)
N1—C1—C2—C3	-178.9(2)	N2-C20-C21-C22	-177.8(2)
C6—C1—C2—C3	1.6 (4)	C25—C20—C21—C22	2.5 (4)
C1—C2—C3—C4	0.7 (4)	C20—C21—C22—C23	1.1 (4)
C2—C3—C4—C5	-1.9 (4)	C21—C22—C23—C24	-3.1 (4)
C3—C4—C5—C6	0.8 (4)	C22—C23—C24—C25	1.5 (4)
N1—C1—C6—C7	-3.1 (3)	C23—C24—C25—C26	-176.3 (2)
C2-C1-C6-C7	176.4 (2)	C23—C24—C25—C20	2.1 (4)
N1—C1—C6—C5	177.9 (2)	N2-C20-C25-C26	-5.4 (3)
C2—C1—C6—C5	-2.6 (3)	C21—C20—C25—C26	174.4 (2)
C4—C5—C6—C1	1.4 (4)	N2-C20-C25-C24	176.2 (2)
C4—C5—C6—C7	-177.6 (2)	C21—C20—C25—C24	-4.0(3)
C1—C6—C7—C8	1.5 (4)	C24—C25—C26—C27	179.1 (2)
C5—C6—C7—C8	-179.4 (2)	C20—C25—C26—C27	0.8 (4)
C6—C7—C8—C9	1.2 (4)	C25—C26—C27—C28	3.2 (4)
C1—N1—C9—C8	0.8 (3)	C20—N2—C28—C27	-2.5(3)
C18—N1—C9—C8	-179.7 (2)	C37—N2—C28—C27	175.4 (2)
C1—N1—C9—C10	-179.0 (2)	C20—N2—C28—C29	177.5 (2)
C18—N1—C9—C10	0.5 (3)	C37—N2—C28—C29	-4.6(3)
C7—C8—C9—N1	-2.4 (4)	C26—C27—C28—N2	-2.4(4)
C7—C8—C9—C10	177.4 (2)	C26—C27—C28—C29	177.7 (2)
N1-C9-C10-C11	178.1 (3)	N2-C28-C29-C30	172.1 (2)
C8—C9—C10—C11	-1.7 (4)	C27—C28—C29—C30	-7.9 (4)
C9-C10-C11-C12	179.1 (2)	C28—C29—C30—C31	-179.3 (2)
C10-C11-C12-C17	4.9 (4)	C29—C30—C31—C36	5.7 (4)
C10-C11-C12-C13	-173.1 (3)	C29—C30—C31—C32	-174.6 (2)
C17—C12—C13—C14	-0.7 (4)	C36—C31—C32—C33	-0.2 (4)
C11—C12—C13—C14	177.4 (2)	C30—C31—C32—C33	-180.0 (2)
C12—C13—C14—O1	-178.3 (2)	C31—C32—C33—O3	-179.5 (2)
C12—C13—C14—C15	1.0 (4)	C31—C32—C33—C34	-0.2 (4)
C19—O2—C15—C16	-0.4 (4)	C38—O4—C34—C35	1.2 (4)
C19—O2—C15—C14	178.4 (2)	C38—O4—C34—C33	-178.3 (2)
O1—C14—C15—O2	-0.5 (3)	O3—C33—C34—O4	-0.4 (3)
C13—C14—C15—O2	-179.8 (2)	C32—C33—C34—O4	-179.7 (2)
O1-C14-C15-C16	178.3 (2)	O3—C33—C34—C35	-180.0 (2)
C13—C14—C15—C16	-1.0 (4)	C32—C33—C34—C35	0.7 (4)

O2—C15—C16—C17	179.2 (2)	O4—C34—C35—C36	179.6 (2)
C14—C15—C16—C17	0.5 (4)	C33—C34—C35—C36	-0.9 (4)
C15-C16-C17-C12	-0.2 (4)	C34—C35—C36—C31	0.5 (4)
C13—C12—C17—C16	0.2 (4)	C32—C31—C36—C35	0.0 (4)
C11—C12—C17—C16	-177.7 (2)	C30-C31-C36-C35	179.8 (2)

Hydrogen-bond geometry (Å, °)

	D—H	Н…А	D····A	D—H···A
01—H1 <i>0</i> 1…O2	0.82	2.15	2.611 (3)	116
O3—H1 <i>O</i> 3····O4	0.82	2.23	2.673 (3)	114
O3—H1 <i>O</i> 3····O5 ⁱ	0.82	1.92	2.693 (3)	156
O5—H1 <i>O</i> 5…I1 ⁱⁱ	0.82	2.82	3.6161 (17)	163
C2—H2A···O3 ⁱⁱⁱ	0.93	2.56	3.476 (3)	167
C18—H18 <i>B</i> ····O3 ⁱⁱⁱ	0.96	2.60	3.355 (3)	136
C27—H27A····I4 ^{iv}	0.93	3.02	3.899 (3)	158
C19—H19 <i>B</i> ··· <i>Cg</i> 4	0.96	2.99	3.944 (3)	172
C38—H38 <i>B</i> ··· <i>Cg</i> 2	0.96	2.94	3.871 (3)	165

Symmetry codes: (i) -x+1, y-1/2, -z+1/2; (ii) -x+1, -y+1, -z+1; (iii) -x+1, y+1/2, -z+1/2; (iv) x-1, y, z-1.