Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# 1,3,5-Tris(2*H*-tetrazol-5-ylmethoxy)benzene

#### Hui-Zhou Luo and Heng-Yun Ye\*

Ordered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China Correspondence e-mail: hype@seu.edu.cn

Received 13 November 2007; accepted 23 November 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean  $\sigma$ (C–C) = 0.003 Å; R factor = 0.054; wR factor = 0.148; data-to-parameter ratio = 14.4.

The title compound,  $C_{12}H_{12}N_{12}O_3$ , was obtained by the hydrothermal reaction of 1,3,5-tricyanomethoxybenzene and  $(CH_3)_3SiN_3$ . The molecule is almost planar, with an r.m.s. deviation of 0.0976 Å from the plane through all atoms in the molecule. The three tetrazole rings make dihedral angles of 13.09 (19), 2.01 (19) and 11.56 (18)° with one another and corresponding angles of 8.66 (17), 5.44 (16) and 3.51 (17)° with the central benzene ring. In the crystal structure, intermolecular N-H···N hydrogen bonds form well separated one-dimensional planar sheets.

### **Related literature**

For the use of tetrazole derivatives in coordination chemisty, see: Arp *et al.* (2000); Hu *et al.* (2007); Wang *et al.* (2005); Xiong *et al.* (2002).



## Experimental

### Crystal data

#### Data collection

Rigaku Mercury2 diffractometer Absorption correction: multi-scan (*CrystalClear*; Rigaku, 2005)  $T_{min} = 0.891$ ,  $T_{max} = 1$ (expected range = 0.879–0.986)

#### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.054$  $wR(F^2) = 0.149$ S = 1.053686 reflections 256 parameters  $0.25 \times 0.2 \times 0.12 \text{ mm}$ 

8398 measured reflections 3686 independent reflections 2653 reflections with  $I > 2\sigma(I)$  $R_{\text{int}} = 0.036$ 

| H atoms treated by a mixture of                           |
|-----------------------------------------------------------|
| independent and constrained                               |
| refinement                                                |
| $\Delta \rho_{\rm max} = 0.53 \ {\rm e} \ {\rm \AA}^{-3}$ |
| $\Delta \rho_{\rm min} = -0.23 \text{ e} \text{ Å}^{-3}$  |

| able I        |          |     |    |
|---------------|----------|-----|----|
| Hydrogen-bond | geometry | (Å. | 0, |

| $D - H \cdot \cdot \cdot A$                                                            | D-H                              | $H \cdot \cdot \cdot A$          | $D \cdots A$                        | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|----------------------------------------------------------------------------------------|----------------------------------|----------------------------------|-------------------------------------|--------------------------------------|
| $N1 - H1A \cdots N7^{i}$<br>$N5 - H5A \cdots N10^{ii}$<br>$N12 - H12A \cdots N3^{iii}$ | 0.92 (3)<br>0.89 (3)<br>0.91 (3) | 1.97 (3)<br>2.01 (3)<br>1.94 (3) | 2.872 (3)<br>2.892 (2)<br>2.840 (3) | 168 (3)<br>171 (3)<br>174 (2)        |
| Symmetry codes: (i)                                                                    | -x + 1, -y, -x                   | z + 1; (ii) -                    | -x - 1, -y + 1, -                   | -z + 1; (iii)                        |

Symmetry codes: (1) -x + 1, -y, -z + 1; (ii) -x - 1, -y + 1, -z + 1; (iii) -x + 1, -y + 1, -z + 2.

Data collection: *CrystalClear* (Rigaku, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL/PC* (Sheldrick, 1999); software used to prepare material for publication: *SHELXTL/PC*.

This work was supported by a start-up grant from Southeast University to Professor Ren-Gen Xiong.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2442).

#### References

Arp, H. P. H., Decken, A., Passmore, J. & Wood, D. J. (2000). *Inorg. Chem.* 39, 1840–1848.

Hu, B., Xu, X.-B., Li, Y.-X. & Ye, H.-Y. (2007). Acta Cryst. E63, m2698.

- Rigaku (2005). CrystalClear. Version 1.4.0. Rigaku Corporation, Tokyo, Japan. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (1999). SHELXTL/PC. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Wang, X.-S., Tang, Y.-Z., Huang, X.-F., Qu, Z.-R., Che, C.-M., Chan, C. W. H. & Xiong, R.-G. (2005). *Inorg. Chem.* 44, 5278–5285.
- Xiong, R.-G., Xue, X., Zhao, H., You, X.-Z., Abrahams, B. F. & Xue, Z.-L. (2002). Angew. Chem. Int. Ed. 41, 3800–3803.

# supporting information

Acta Cryst. (2008). E64, o136 [https://doi.org/10.1107/S1600536807062733]

# 1,3,5-Tris(2H-tetrazol-5-ylmethoxy)benzene

# Hui-Zhou Luo and Heng-Yun Ye

# S1. Comment

In the past five years, we have focused on the chemistry of tetrazole derivatives 5 because of their multiple coordination modes as ligands to metal ions and for the construction of novel metal-organic frameworks (Wang, *et al.* 2005; Xiong, *et al.* 2002). We report here the crystal structure of the title compound, 1,3,5-tris((2*H*-tetrazol-5-yl)methoxy)benzene (I), (Fig.1).

In I, there are three chemically equivalent tetrazole moieties. The bond distances and bond angles of the three tetrazole rings are in the usual ranges (Wang, *et al.* 2005; *ARP*, *et al.* 2000; Hu, *et al.* 2007). The molecule is almost planar with an r.m.s. deviation of 0.0976 Å from the plane through all atoms in the molecule. Dihedral angles between the C8 and C10, C10 and C12 and C8 and C12 tetrazole rings are 13.56 (15), 2.01 (19) & 11.56 (18)°, respectively. Dihedral angles between the benzene ring and the C8, C10 and C12 tetrazole rings are 8.66 (17), 5.44 (16) & 3.51 (17)°, respectively. In each tetrazole ring, one N=N bond (N2=N3, N6=N7, and N10=N11), is distinctly shorter than the other two N—N distances (Table I). In the crystal structure, inversion related N1—H1A···N7<sup>i</sup>, N5—H5A···N10<sup>ii</sup>, and N12—H12A<sup>iii</sup>···N3 hydrogen bonds link the molecules into infinite planar sheets. (Symmetry codes: (i) -x + 2, -y - 1, -z + 1; (ii) -x, -y, -z + 2.) (Fig.2).

# **S2. Experimental**

A mixture of benzene-1,3,5-triol (2.5 g, 0.02 mol), 10 g  $K_2CO_3$ , 30 ml and acetone 2-bromoacetonitrile (8.6 g, 0.023 mol) was refluxed overnight. After cooling, the resulting dark mixture was extracted with ether (30 ml), and then the extract was removed at reduced pressure to give a pale yellow solid crude product, which was recrystallized in ethanol to obtain white 1,3,5-tricyanomethoxy-benzene (2.4 g, 0.01 mol). A mixture of 1,3,5-tricyanomethoxy-benzene (24 mg, 0.1 mmol) and (CH<sub>3</sub>)<sub>3</sub>SiN<sub>3</sub> (67 mg, 0.6 mmol), ethanol (0.8 ml) and water (0.4 ml) was sealed in a Pyrex tube at 110 °C for one day. On cooling to room temperature, pale yellow block-like crystals suitable for X-ray analysis were obtained.

# **S3. Refinement**

Positional parameters of all H atoms bonded to C were calculated geometrically and allowed to ride on the C atoms to which they are bound, with d(C-H) = 0.93 Å for sp2 or d(C-H) = 0.97Å for sp3 and  $U_{iso}(H) = 1.2Ueq(C)$ . The N-H hydrogen atoms of tetrazole rings were located in a difference Fourier map and refined freely with isotropic temperature factors.



# Figure 1

A view of the title compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level.



# Figure 2

Crystal packing of the title compound viewed along the *a* axis. All hydrogen atoms not involved in hydrogen bonding (dashed lines) were omitted for clarity.

1,3,5-Tris(2H-tetrazol-5-ylmethoxy)benzene

| Cr       | yst | al d | lata |  |
|----------|-----|------|------|--|
| $\alpha$ | тт  | ЪT   | ~    |  |

C<sub>12</sub>H<sub>12</sub>N<sub>12</sub>O<sub>3</sub>  $M_r = 372.34$ Triclinic, *P*I Hall symbol: -P 1 a = 4.9851 (4) Å b = 11.8822 (7) Å c = 14.1349 (13) Å a = 99.60 (3)°  $\beta = 92.87$  (2)°  $\gamma = 100.943 (15)^{\circ}$   $V = 807.64 (11) Å^{3}$  Z = 2 F(000) = 384  $D_{\rm x} = 1.531 \text{ Mg m}^{-3}$ Mo Ka radiation,  $\lambda = 0.71073 Å$ Cell parameters from 1880 reflections  $\theta = 3.1-27.5^{\circ}$  $\mu = 0.12 \text{ mm}^{-1}$ 

## T = 293 KBlock, colorless

Data collection

| 8398 measured reflections<br>3686 independent reflections          |
|--------------------------------------------------------------------|
| 2653 reflections with $I > 2\sigma(I)$                             |
| $R_{\rm int} = 0.036$                                              |
| $\theta_{\rm max} = 27.5^{\circ},  \theta_{\rm min} = 3.1^{\circ}$ |
| $h = -6 \rightarrow 6$                                             |
| $k = -15 \rightarrow 15$                                           |
| $l = -18 \rightarrow 18$                                           |
|                                                                    |
|                                                                    |
| Secondary atom site location: difference Fourier                   |
| map                                                                |
| Hydrogen site location: inferred from                              |
| neighbouring sites                                                 |
| H atoms treated by a mixture of independent                        |
| and constrained refinement                                         |
| $w = 1/[\sigma^2(F_o^2) + (0.0711P)^2 + 0.2604P]$                  |
| where $P = (F_o^2 + 2F_c^2)/3$                                     |
| $(\Delta/\sigma)_{\rm max} < 0.001$                                |
| $\Delta \rho_{\rm max} = 0.53 \ {\rm e} \ {\rm \AA}^{-3}$          |
| $\Delta \rho_{\rm min} = -0.23 \text{ e} \text{ Å}^{-3}$           |
|                                                                    |

 $0.25 \times 0.2 \times 0.12 \text{ mm}$ 

## Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|     | x           | У             | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|-----|-------------|---------------|--------------|-----------------------------|--|
| 01  | 0.4944 (3)  | 0.29164 (13)  | 0.81580 (10) | 0.0364 (4)                  |  |
| O2  | 0.0878 (3)  | 0.18419 (13)  | 0.49413 (10) | 0.0343 (4)                  |  |
| 03  | -0.1336 (3) | 0.50558 (12)  | 0.70463 (9)  | 0.0309 (4)                  |  |
| N1  | 0.8441 (5)  | 0.23109 (18)  | 0.93683 (14) | 0.0450 (6)                  |  |
| N2  | 1.0188 (5)  | 0.21973 (19)  | 1.00837 (15) | 0.0543 (6)                  |  |
| N3  | 1.0297 (4)  | 0.30962 (18)  | 1.07529 (13) | 0.0435 (5)                  |  |
| N4  | 0.8662 (4)  | 0.38061 (17)  | 1.04861 (13) | 0.0419 (5)                  |  |
| N5  | 0.0149 (4)  | 0.07285 (16)  | 0.31051 (12) | 0.0338 (4)                  |  |
| N6  | 0.0071 (4)  | 0.00274 (18)  | 0.22479 (13) | 0.0433 (5)                  |  |
| N7  | 0.1856 (4)  | -0.06057 (17) | 0.23524 (13) | 0.0426 (5)                  |  |
| N8  | 0.3127 (4)  | -0.03434 (16) | 0.32650 (12) | 0.0369 (5)                  |  |
| N9  | -0.6125 (4) | 0.66664 (15)  | 0.62247 (12) | 0.0329 (4)                  |  |
| N10 | -0.6780 (4) | 0.75385 (16)  | 0.68837 (13) | 0.0363 (5)                  |  |
|     |             |               |              |                             |  |

| N11  | -0.5411 (4) | 0.76527 (16) | 0.77066 (13) | 0.0381 (5)  |
|------|-------------|--------------|--------------|-------------|
| N12  | -0.3816 (4) | 0.68545 (16) | 0.75912 (13) | 0.0318 (4)  |
| C1   | 0.3201 (4)  | 0.31401 (17) | 0.74592 (14) | 0.0260 (4)  |
| C2   | 0.3001 (4)  | 0.23846 (17) | 0.65792 (14) | 0.0276 (5)  |
| H2A  | 0.3999      | 0.1794       | 0.6492       | 0.033*      |
| C3   | 0.1271 (4)  | 0.25444 (17) | 0.58426 (13) | 0.0248 (4)  |
| C4   | -0.0233 (4) | 0.34265 (17) | 0.59459 (13) | 0.0251 (4)  |
| H4A  | -0.1373     | 0.3525       | 0.5438       | 0.030*      |
| C5   | 0.0037 (4)  | 0.41535 (16) | 0.68380 (13) | 0.0235 (4)  |
| C6   | 0.1764 (4)  | 0.40318 (17) | 0.76073 (13) | 0.0262 (4)  |
| H6A  | 0.1941      | 0.4533       | 0.8197       | 0.031*      |
| C7   | 0.5606 (5)  | 0.37403 (19) | 0.90189 (14) | 0.0337 (5)  |
| H7B  | 0.3966      | 0.3825       | 0.9342       | 0.040*      |
| H7C  | 0.6471      | 0.4494       | 0.8885       | 0.040*      |
| C8   | 0.7525 (4)  | 0.32884 (18) | 0.96283 (14) | 0.0304 (5)  |
| C9   | 0.2734 (4)  | 0.10828 (18) | 0.47337 (14) | 0.0288 (5)  |
| H9B  | 0.2553      | 0.0514       | 0.5158       | 0.035*      |
| H9C  | 0.4608      | 0.1520       | 0.4819       | 0.035*      |
| C10  | 0.2012 (4)  | 0.04925 (17) | 0.37119 (14) | 0.0271 (4)  |
| C11  | -0.2956 (4) | 0.52921 (18) | 0.62784 (14) | 0.0278 (5)  |
| H11A | -0.4333     | 0.4607       | 0.6002       | 0.033*      |
| H11B | -0.1816     | 0.5516       | 0.5777       | 0.033*      |
| C12  | -0.4281 (4) | 0.62620 (17) | 0.66905 (14) | 0.0256 (4)  |
| H12A | -0.268 (5)  | 0.681 (2)    | 0.8099 (19)  | 0.048 (7)*  |
| H5A  | -0.090 (7)  | 0.126 (3)    | 0.318 (2)    | 0.077 (10)* |
| H1A  | 0.808 (6)   | 0.176 (3)    | 0.882 (2)    | 0.064 (9)*  |
|      |             |              |              |             |

Atomic displacement parameters  $(\mathring{A}^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$    | $U^{13}$     | $U^{23}$     |
|-----|-------------|-------------|-------------|-------------|--------------|--------------|
| 01  | 0.0490 (9)  | 0.0375 (8)  | 0.0236 (7)  | 0.0275 (7)  | -0.0165 (7)  | -0.0079 (6)  |
| O2  | 0.0413 (9)  | 0.0390 (8)  | 0.0234 (7)  | 0.0269 (7)  | -0.0091 (6)  | -0.0103 (6)  |
| O3  | 0.0391 (8)  | 0.0347 (8)  | 0.0221 (7)  | 0.0253 (7)  | -0.0067 (6)  | -0.0033 (6)  |
| N1  | 0.0618 (14) | 0.0433 (11) | 0.0291 (10) | 0.0286 (10) | -0.0201 (9)  | -0.0090 (9)  |
| N2  | 0.0733 (16) | 0.0548 (13) | 0.0368 (11) | 0.0376 (12) | -0.0231 (11) | -0.0061 (10) |
| N3  | 0.0542 (13) | 0.0512 (12) | 0.0267 (10) | 0.0262 (10) | -0.0139 (9)  | -0.0014 (9)  |
| N4  | 0.0558 (13) | 0.0448 (11) | 0.0241 (9)  | 0.0238 (10) | -0.0154 (9)  | -0.0069 (8)  |
| N5  | 0.0411 (11) | 0.0361 (10) | 0.0257 (9)  | 0.0227 (9)  | -0.0054 (8)  | -0.0046 (8)  |
| N6  | 0.0566 (13) | 0.0449 (11) | 0.0283 (10) | 0.0256 (10) | -0.0070 (9)  | -0.0086 (8)  |
| N7  | 0.0576 (13) | 0.0404 (11) | 0.0303 (10) | 0.0252 (10) | -0.0025 (9)  | -0.0078 (8)  |
| N8  | 0.0483 (12) | 0.0362 (10) | 0.0279 (9)  | 0.0245 (9)  | -0.0041 (8)  | -0.0051 (8)  |
| N9  | 0.0360 (10) | 0.0357 (10) | 0.0305 (9)  | 0.0208 (8)  | -0.0076 (8)  | 0.0030 (8)   |
| N10 | 0.0386 (11) | 0.0351 (10) | 0.0391 (10) | 0.0221 (8)  | -0.0043 (8)  | 0.0034 (8)   |
| N11 | 0.0452 (11) | 0.0385 (10) | 0.0338 (10) | 0.0251 (9)  | -0.0039 (8)  | -0.0009 (8)  |
| N12 | 0.0381 (10) | 0.0347 (10) | 0.0258 (9)  | 0.0218 (8)  | -0.0064 (8)  | 0.0002 (7)   |
| C1  | 0.0287 (10) | 0.0285 (10) | 0.0215 (9)  | 0.0131 (8)  | -0.0066 (8)  | 0.0010 (8)   |
| C2  | 0.0317 (11) | 0.0266 (10) | 0.0254 (10) | 0.0161 (8)  | -0.0037 (8)  | -0.0026 (8)  |
| C3  | 0.0275 (10) | 0.0260 (10) | 0.0194 (9)  | 0.0097 (8)  | -0.0031 (8)  | -0.0032 (8)  |

# supporting information

| C4  | 0.0262 (10) | 0.0293 (10) | 0.0205 (9)  | 0.0127 (8)  | -0.0050 (8) | 0.0011 (8)  |  |
|-----|-------------|-------------|-------------|-------------|-------------|-------------|--|
| C5  | 0.0241 (10) | 0.0246 (10) | 0.0238 (9)  | 0.0131 (8)  | 0.0004 (8)  | 0.0013 (8)  |  |
| C6  | 0.0314 (11) | 0.0290 (10) | 0.0183 (9)  | 0.0136 (8)  | -0.0053 (8) | -0.0022 (8) |  |
| C7  | 0.0420 (12) | 0.0352 (12) | 0.0234 (10) | 0.0191 (10) | -0.0117 (9) | -0.0048 (9) |  |
| C8  | 0.0375 (12) | 0.0319 (11) | 0.0219 (10) | 0.0158 (9)  | -0.0064 (9) | -0.0028 (8) |  |
| C9  | 0.0341 (11) | 0.0279 (10) | 0.0254 (10) | 0.0156 (9)  | -0.0024 (8) | -0.0020 (8) |  |
| C10 | 0.0317 (11) | 0.0247 (10) | 0.0261 (10) | 0.0122 (8)  | -0.0013 (8) | 0.0015 (8)  |  |
| C11 | 0.0313 (11) | 0.0333 (11) | 0.0216 (10) | 0.0176 (9)  | -0.0044 (8) | 0.0017 (8)  |  |
| C12 | 0.0272 (10) | 0.0269 (10) | 0.0235 (9)  | 0.0099 (8)  | -0.0036 (8) | 0.0032 (8)  |  |
|     |             |             |             |             |             |             |  |

Geometric parameters (Å, °)

| 01         | 1.375 (2)   | N11—N12    | 1.344 (2)   |
|------------|-------------|------------|-------------|
| O1—C7      | 1.410 (2)   | N12—C12    | 1.334 (3)   |
| O2—C3      | 1.384 (2)   | N12—H12A   | 0.91 (3)    |
| О2—С9      | 1.418 (2)   | C1—C6      | 1.382 (3)   |
| O3—C5      | 1.378 (2)   | C1—C2      | 1.394 (3)   |
| O3—C11     | 1.417 (2)   | C2—C3      | 1.379 (3)   |
| N1—C8      | 1.330 (3)   | C2—H2A     | 0.9300      |
| N1—N2      | 1.342 (3)   | C3—C4      | 1.393 (3)   |
| N1—H1A     | 0.92 (3)    | C4—C5      | 1.389 (3)   |
| N2—N3      | 1.294 (3)   | C4—H4A     | 0.9300      |
| N3—N4      | 1.362 (3)   | C5—C6      | 1.397 (3)   |
| N4—C8      | 1.312 (3)   | C6—H6A     | 0.9300      |
| N5-C10     | 1.333 (3)   | С7—С8      | 1.488 (3)   |
| N5—N6      | 1.345 (2)   | С7—Н7В     | 0.9700      |
| N5—H5A     | 0.89 (3)    | С7—Н7С     | 0.9700      |
| N6—N7      | 1.288 (3)   | C9—C10     | 1.490 (3)   |
| N7—N8      | 1.368 (2)   | С9—Н9В     | 0.9700      |
| N8—C10     | 1.315 (3)   | С9—Н9С     | 0.9700      |
| N9—C12     | 1.312 (2)   | C11—C12    | 1.486 (3)   |
| N9—N10     | 1.373 (2)   | C11—H11A   | 0.9700      |
| N10—N11    | 1.292 (3)   | C11—H11B   | 0.9700      |
|            |             |            |             |
| C1—O1—C7   | 117.89 (15) | O3—C5—C4   | 123.76 (16) |
| С3—О2—С9   | 116.70 (15) | O3—C5—C6   | 113.94 (16) |
| C5—O3—C11  | 117.10 (15) | C4—C5—C6   | 122.29 (17) |
| C8—N1—N2   | 108.52 (18) | C1—C6—C5   | 117.55 (17) |
| C8—N1—H1A  | 131.7 (18)  | C1—C6—H6A  | 121.2       |
| N2—N1—H1A  | 119.7 (18)  | С5—С6—Н6А  | 121.2       |
| N3—N2—N1   | 106.11 (18) | O1—C7—C8   | 106.33 (16) |
| N2—N3—N4   | 110.95 (17) | O1—C7—H7B  | 110.5       |
| C8—N4—N3   | 105.18 (17) | C8—C7—H7B  | 110.5       |
| C10-N5-N6  | 108.75 (17) | O1—C7—H7C  | 110.5       |
| C10—N5—H5A | 131 (2)     | C8—C7—H7C  | 110.5       |
| N6—N5—H5A  | 120 (2)     | H7B—C7—H7C | 108.7       |
| N7—N6—N5   | 105.78 (17) | N4—C8—N1   | 109.23 (18) |
| N6—N7—N8   | 111.65 (17) | N4—C8—C7   | 125.76 (18) |

| C10—N8—N7    | 104.66 (17) | N1—C8—C7      | 124.96 (17) |
|--------------|-------------|---------------|-------------|
| C12—N9—N10   | 105.02 (16) | O2—C9—C10     | 106.34 (16) |
| N11—N10—N9   | 111.16 (16) | O2—C9—H9B     | 110.5       |
| N10—N11—N12  | 105.82 (17) | С10—С9—Н9В    | 110.5       |
| C12—N12—N11  | 109.01 (16) | O2—C9—H9C     | 110.5       |
| C12—N12—H12A | 132.7 (17)  | С10—С9—Н9С    | 110.5       |
| N11—N12—H12A | 118.2 (17)  | H9B—C9—H9C    | 108.7       |
| O1—C1—C6     | 123.45 (17) | N8—C10—N5     | 109.17 (17) |
| O1—C1—C2     | 114.07 (16) | N8—C10—C9     | 125.23 (18) |
| C6—C1—C2     | 122.48 (17) | N5-C10-C9     | 125.60 (17) |
| C3—C2—C1     | 117.63 (17) | O3—C11—C12    | 106.70 (15) |
| C3—C2—H2A    | 121.2       | O3—C11—H11A   | 110.4       |
| C1—C2—H2A    | 121.2       | C12—C11—H11A  | 110.4       |
| C2—C3—O2     | 122.91 (17) | O3—C11—H11B   | 110.4       |
| C2—C3—C4     | 122.66 (17) | C12—C11—H11B  | 110.4       |
| O2—C3—C4     | 114.43 (16) | H11A—C11—H11B | 108.6       |
| C5—C4—C3     | 117.38 (17) | N9-C12-N12    | 108.99 (17) |
| C5—C4—H4A    | 121.3       | N9-C12-C11    | 125.19 (17) |
| C3—C4—H4A    | 121.3       | N12—C12—C11   | 125.81 (17) |
|              |             |               |             |

Hydrogen-bond geometry (Å, °)

| D—H···A                     | D—H      | H···A    | $D \cdots A$ | D—H…A   |  |
|-----------------------------|----------|----------|--------------|---------|--|
| $N1$ — $H1A$ ···· $N7^{i}$  | 0.92 (3) | 1.97 (3) | 2.872 (3)    | 168 (3) |  |
| N5—H5A····N10 <sup>ii</sup> | 0.89 (3) | 2.01 (3) | 2.892 (2)    | 171 (3) |  |
| N12—H12A…N3 <sup>iii</sup>  | 0.91 (3) | 1.94 (3) | 2.840 (3)    | 174 (2) |  |

Symmetry codes: (i) -*x*+1, -*y*, -*z*+1; (ii) -*x*-1, -*y*+1, -*z*+1; (iii) -*x*+1, -*y*+1, -*z*+2.