metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

$(\eta^{6}$ -Benzene)(2,2'-bipyridine- $\kappa^{2}N,N'$)chloridoruthenium(II) chloride methanol sesquisolvate

Matthew I. J. Polson

Chemistry Department, University of Canterbury, PO Box 4800, Christchurch, New Zealand

Correspondence e-mail: matthew.polson@canterbury.ac.nz

Received 9 November 2007; accepted 13 December 2007

Key indicators: single-crystal X-ray study; T = 93 K; mean σ (C–C) = 0.006 Å; disorder in solvent or counterion; R factor = 0.033; wR factor = 0.086; data-to-parameter ratio = 14.0.

In the title compound, $[RuCl(C_6H_6)(C_{10}H_8N_2)]Cl\cdot1.5CH_4O$, the Ru^{II} atom is in a distorted octahedral environment coordinated by an η^6 -benzene ring, a chelating 2,2'-bipyridine ligand and a chloride ion. The asymmetric unit is completed by a chloride anion and two methanol molecules, one of which is disordered about a centre of inversion with an occupancy of 0.5. It is an example of a ruthenium complex with a less sterically congested environment than in similar derivatives. In the crystal structure, $O-H \cdots Cl$ hydrogen bonds, together with $\pi-\pi$ stacking interactions [centroid–centroid distances of 3.472Å(2) Å], stabilize the structure.

Related literature

For literature concerning the synthesis of this class of compound, see Freedman *et al.* (2001). For related structures, see Himeda *et al.* (2007); Lalrempuia & Kollipara (2003).

Experimental

Crystal data	
$[RuCl(C_6H_6)(C_{10}H_8N_2)]Cl-$	c = 12.895 (2) Å
1.5CH ₄ O	$\alpha = 85.597 \ (2)^{\circ}$
$M_r = 454.33$	$\beta = 84.531 \ (2)^{\circ}$
Triclinic, P1	$\gamma = 75.875 \ (2)^{\circ}$
a = 6.9027 (11) Å	$V = 878.1 (2) \text{ Å}^3$
b = 10.2346 (16) Å	Z = 2

T = 93 (2) K $0.36 \times 0.34 \times 0.13$ mm

 $R_{\rm int} = 0.014$

4385 measured reflections

3082 independent reflections

2867 reflections with $I > 2\sigma(I)$

Data collection

Mo $K\alpha$ radiation

 $\mu = 1.21 \text{ mm}^{-1}$

Bruker APEXII CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2007) $T_{\rm min} = 0.660, T_{\rm max} = 0.854$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.033$ 220 parameters $wR(F^2) = 0.086$ H-atom parameters constrainedS = 1.06 $\Delta \rho_{max} = 1.13$ e Å $^{-3}$ 3082 reflections $\Delta \rho_{min} = -0.69$ e Å $^{-3}$

Table 1

Selected geometric parameters (Å, °).

Ru1-N1	2.083 (3)	Ru1-C2	2.198 (4)
Ru1-N2	2.084 (3)	Ru1-C4	2.198 (4)
Ru1-C1	2.165 (4)	Ru1-C3	2.199 (4)
Ru1-C6	2.186 (4)	Ru1-Cl1	2.4105 (9)
Ru1-C5	2.193 (4)		
N1-Ru1-N2	77.18 (11)	N2-Ru1-Cl1	86.34 (8)
N1-Ru1-Cl1	84.01 (8)		

Table 2Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O51−H51…Cl2 O61−H61…Cl2	0.84 0.84	2.18 2.15	3.013 (4) 2.986 (6)	170 171

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997) and *Mercury* (Macrae *et al.*, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2008).

The author acknowledges the extensive advice of Professor Peter Steel and funding from the New Zealand Foundation of Research, Science and Technology.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2425).

References

- Bruker (2007). APEX2 (Version 2.1-4), SAINT (Version 7.34A) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Freedman, D. A., Evju, J. K., Pomije, M. K. & Mann, K. R. (2001). Inorg. Chem. 40, 5711–5715.
- Himeda, Y., Onozawa-Komatsuzaki, N., Sugihara, H. & Kasuga, K. (2007). Organometallics, 26, 702–712.
- Lalrempuia, R. & Kollipara, M. R. (2003). Polyhedron, 22, 3155-3160.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
- Sheldrick, G. M. (1997). *SHELXS97* and *SHELXL97*. University of Göttingen, Germany.
- Westrip, S. P. (2008). publCIF. In preparation.

supporting information

Acta Cryst. (2008). E64, m256 [https://doi.org/10.1107/S1600536807066858]

$(\eta^6$ -Benzene)(2,2'-bipyridine- $\kappa^2 N, N'$)chloridoruthenium(II) chloride methanol sesquisolvate

Matthew I. J. Polson

S1. Comment

The desire for a ruthenium complex which could be used to synthesize facially coordinated complexes led to the preparation of the starting material (1) (Freedman et al. 2001). It is convenient to use, in that the benzene ring can be readily removed in a photolytic reaction leaving ruthenium with three, vacant, facially arranged coordination sites. The Ru^{II} atom is in a distorted octahedral environment, Table 1, coordinating to an η^6 -benzene ring, a chelating 2,2'-bipyridine ligand and a chloride anion. Compared to other similar complexes from the literature, the cation is less bulky both around the benzene ring (Himeda et al., 2007) and in the bipyridine unit (Lalrempuia & Kollipara, 2003). This manifests itself in two angles. The angles between the mean plane of the bipyridine ligand and the mean plane of the benzene ring (60.47 (18)° in 1) become smaller as the ligands become larger due to additional substitution by methyl groups. This forces the two ligands become more parallel to each other. This effect is seen when either the bipyridine (32.24° Lalrempuia & Kollipara, 2003) or the benzene ring (36.04° Himeda et al. 2007) is larger due to additional substitution. With the smaller unsubstituted ligands of (1) the ruthenium atom is also more able to sit in the same plane as the bipyridine ligand, lying only 0.075 (1) Å above the plane in the direction of the choride ligand. The methanol solvate molecules form O—H…Cl hydrogen bonds to the chloride anion, Table 2, with D–H A distances of 3.013 (4) Å (O51– Cl2) and 2.986 (6) Å (O61–Cl2). The structure is further stabilized by offset $\pi - \pi$ stacking interactions between adjacent N1, C7...C11 rings of the bipyridine ligands, with centroid to centroid distances of 3.472 (2) Å, related by the symmetry operation 1 - x, 1 - y, 1 - z, Fig. 2.

S2. Experimental

The complex was prepared according to literature procedures (Freedman *et al.* 2001). X-ray quality crystals were grown by slow evaporation of a solution in methanol.

S3. Refinement

The C and O atoms of both methanol solvate molecules were refined isotropically. One of these molecules (C60, O60) is disordered about an inversion centre and was refined with the occupancy of all atoms fixed at 0.5. A l l H-atoms were positioned geometrically and refined using a riding model with d(C-H) = 0.93 Å, $U_{iso} = 1.2U_{eq}$ (C) for aromatic, 0.96 Å, $U_{iso} = 1.5U_{eq}$ (C) for CH₃ atoms and 0.82 Å, $U_{iso} = 1.5U_{eq}$ (O) for the OH groups.

Figure 1

The molecular structure of (1), showing displacement ellipsoids at the 50% probability level.

Figure 2

A packing diagram showing the π stacking. The close centroid-centroid approach is shown as a dashed line.

 $(\eta^6$ -Benzene)(2,2'-bipyridine- $\kappa^2 N, N'$)chloridoruthenium(II) chloride methanol sesquisolvate

Crystal data [RuCl(C₆H₆)(C₁₀H₈N₂)]Cl·1.5CH₄O $M_r = 454.33$ Triclinic, P1

Hall symbol: -P 1 *a* = 6.9027 (11) Å *b* = 10.2346 (16) Å Mo *K* α radiation, $\lambda = 0.71073$ Å

 $\theta = 2.5 - 26.4^{\circ}$

 $\mu = 1.21 \text{ mm}^{-1}$

Block, yellow

 $0.36 \times 0.34 \times 0.13 \text{ mm}$

T = 93 K

Cell parameters from 3474 reflections

c = 12.895 (2) Å $\alpha = 85.597 (2)^{\circ}$ $\beta = 84.531 (2)^{\circ}$ $\gamma = 75.875 (2)^{\circ}$ $V = 878.1 (2) \text{ Å}^{3}$ Z = 2 F(000) = 458 $D_{x} = 1.718 \text{ Mg m}^{-3}$

Data collection

Bruker APEXII CCD area-detector	4385 measured reflections
diffractometer	3082 independent reflections
Radiation source: sealed tube	2867 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.014$
φ and ω scans	$\theta_{\rm max} = 25.1^{\circ}, \ \theta_{\rm min} = 2.5^{\circ}$
Absorption correction: multi-scan	$h = -8 \rightarrow 8$
(SADABS; Bruker, 2007)	$k = -12 \rightarrow 12$
$T_{\min} = 0.660, \ T_{\max} = 0.854$	$l = -15 \rightarrow 10$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.033$	Hydrogen site location: inferred from
$wR(F^2) = 0.086$	neighbouring sites
<i>S</i> = 1.06	H-atom parameters constrained
3082 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0562P)^2 + 0.5007P]$
220 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 1.13 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.69 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Ru1	0.60854 (4)	0.67682 (3)	0.77268 (2)	0.02474 (11)	
C11	0.89451 (12)	0.76724 (9)	0.71514 (7)	0.0277 (2)	
Cl2	0.12633 (18)	0.29047 (14)	0.82005 (9)	0.0536 (3)	
N1	0.6736 (4)	0.5821 (3)	0.6319 (2)	0.0217 (6)	
N2	0.4510 (4)	0.8207 (3)	0.6686 (2)	0.0244 (6)	
C7	0.6008 (5)	0.6559 (3)	0.5465 (2)	0.0201 (7)	
C12	0.4677 (5)	0.7878 (3)	0.5677 (3)	0.0217 (7)	
C2	0.4713 (8)	0.7559 (5)	0.9230 (3)	0.0530 (13)	
H2	0.4272	0.8559	0.9289	0.064*	

C1	0.3440 (7)	0.6888 (5)	0.8796 (3)	0.0463 (11)	
H1	0.2101	0.7407	0.8579	0.056*	
C6	0.4177 (8)	0.5533 (5)	0.8541 (3)	0.0499 (13)	
H6	0.3375	0.5085	0.8140	0.060*	
C3	0.6688 (8)	0.6925 (6)	0.9351 (3)	0.0557 (14)	
H3	0.7634	0.7478	0.9496	0.067*	
C4	0.7456 (8)	0.5604 (6)	0.9086 (3)	0.0515 (12)	
H4	0.8939	0.5224	0.9047	0.062*	
C5	0.6250 (8)	0.4896 (5)	0.8699 (3)	0.0489 (12)	
Н5	0.6880	0.4012	0.8385	0.059*	
C11	0.7918 (5)	0.4575 (3)	0.6204 (3)	0.0234 (7)	
H11	0.8430	0.4054	0.6803	0.028*	
C8	0.6504 (5)	0.6079 (3)	0.4470 (2)	0.0220 (7)	
H8	0.6023	0.6628	0.3876	0.026*	
С9	0.7708 (5)	0.4794 (4)	0.4354 (3)	0.0232 (7)	
Н9	0.8048	0.4442	0.3682	0.028*	
C10	0.8406 (5)	0.4030 (4)	0.5234 (3)	0.0236 (7)	
H10	0.9215	0.3140	0.5174	0.028*	
C14	0.2393 (5)	0.9964 (4)	0.5210 (3)	0.0307 (8)	
H14	0.1655	1.0562	0.4708	0.037*	
C13	0.3616 (5)	0.8737 (4)	0.4923 (3)	0.0255 (7)	
H13	0.3729	0.8485	0.4222	0.031*	
C16	0.3322 (5)	0.9412 (4)	0.6948 (3)	0.0307 (8)	
H16	0.3216	0.9650	0.7652	0.037*	
C15	0.2259 (5)	1.0307 (4)	0.6237 (3)	0.0337 (9)	
H15	0.1444	1.1150	0.6447	0.040*	
O51	0.5683 (5)	0.2257 (4)	0.7539 (3)	0.0553 (8)	
H51	0.4459	0.2334	0.7716	0.083*	
C50	0.6807 (7)	0.1122 (5)	0.8067 (4)	0.0484 (11)	
H50A	0.5976	0.0837	0.8658	0.073*	
H50B	0.7973	0.1347	0.8322	0.073*	
H50C	0.7261	0.0388	0.7590	0.073*	
O61	0.1958 (9)	0.0351 (6)	0.9544 (5)	0.0413 (13)*	0.50
H61	0.1872	0.1092	0.9201	0.062*	0.50
C60	-0.002 (4)	0.035 (3)	1.016 (2)	0.135 (8)*	0.50
H60A	0.0149	0.0364	1.0909	0.202*	0.50
H60B	-0.0448	-0.0459	1.0032	0.202*	0.50
H60C	-0.1028	0.1156	0.9950	0.202*	0.50

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
 D.1	0.02860 (18)	0.02251 (18)	0.01564 (16)	_0.01206 (12)	_0.00220 (11)	_0.00015 (11)
KUI	0.02800 (18)	0.05551 (18)	0.01304 (10)	-0.01390 (12)	-0.00550 (11)	-0.00013 (11)
Cl1	0.0235 (4)	0.0287 (4)	0.0335 (5)	-0.0100(3)	-0.0057 (3)	-0.0006(3)
Cl2	0.0509 (7)	0.0718 (8)	0.0416 (6)	-0.0182 (6)	-0.0168 (5)	0.0028 (5)
N1	0.0215 (14)	0.0283 (15)	0.0187 (13)	-0.0131 (12)	-0.0036 (11)	0.0024 (11)
N2	0.0206 (14)	0.0305 (16)	0.0246 (15)	-0.0109 (12)	-0.0005 (11)	-0.0024 (12)
C7	0.0175 (16)	0.0258 (17)	0.0203 (16)	-0.0120 (13)	-0.0044 (12)	0.0032 (13)

Acta Cryst. (2008). E**64**, m256

supporting information

C12	0.0176 (16)	0.0281 (17)	0.0231 (16)	-0.0140 (14)	-0.0012 (13)	0.0022 (13)
C2	0.072 (3)	0.064 (3)	0.028 (2)	-0.031 (3)	0.017 (2)	-0.015 (2)
C1	0.041 (2)	0.076 (3)	0.0229 (19)	-0.021 (2)	0.0037 (17)	0.008 (2)
C6	0.073 (3)	0.081 (3)	0.0145 (18)	-0.058 (3)	-0.0018 (19)	0.0070 (19)
C3	0.065 (3)	0.099 (4)	0.0178 (19)	-0.046 (3)	-0.0041 (19)	-0.006 (2)
C4	0.054 (3)	0.085 (4)	0.0195 (19)	-0.027 (3)	-0.0085 (19)	0.016 (2)
C5	0.074 (3)	0.048 (3)	0.022 (2)	-0.020 (2)	0.007 (2)	0.0148 (18)
C11	0.0226 (17)	0.0259 (17)	0.0242 (17)	-0.0112 (14)	-0.0059 (13)	0.0049 (13)
C8	0.0191 (16)	0.0318 (18)	0.0176 (16)	-0.0122 (14)	-0.0039 (12)	0.0046 (13)
C9	0.0179 (16)	0.0344 (19)	0.0217 (16)	-0.0140 (14)	-0.0014 (13)	-0.0033 (14)
C10	0.0167 (16)	0.0267 (17)	0.0298 (18)	-0.0096 (14)	-0.0039 (13)	0.0007 (14)
C14	0.0183 (17)	0.0299 (19)	0.046 (2)	-0.0122 (15)	-0.0043 (15)	0.0085 (16)
C13	0.0214 (17)	0.0291 (18)	0.0296 (18)	-0.0138 (14)	-0.0050 (14)	0.0045 (14)
C16	0.0263 (19)	0.036 (2)	0.0326 (19)	-0.0139 (16)	0.0049 (15)	-0.0091 (16)
C15	0.0213 (18)	0.0283 (19)	0.051 (2)	-0.0086 (15)	0.0045 (16)	-0.0028 (17)
O51	0.063 (2)	0.058 (2)	0.0437 (18)	-0.0138 (17)	-0.0090 (16)	0.0107 (15)
C50	0.048 (3)	0.042 (2)	0.054 (3)	-0.010 (2)	-0.012 (2)	0.005 (2)

Geometric parameters (Å, °)

Ru1—N1	2.083 (3)	C4—H4	1.0000
Ru1—N2	2.084 (3)	С5—Н5	1.0000
Ru1—C1	2.165 (4)	C11—C10	1.387 (5)
Ru1—C6	2.186 (4)	C11—H11	0.9500
Ru1—C5	2.193 (4)	C8—C9	1.385 (5)
Ru1—C2	2.198 (4)	C8—H8	0.9500
Ru1—C4	2.198 (4)	C9—C10	1.384 (5)
Ru1—C3	2.199 (4)	С9—Н9	0.9500
Ru1—Cl1	2.4105 (9)	C10—H10	0.9500
N1—C11	1.346 (4)	C14—C15	1.385 (6)
N1—C7	1.352 (4)	C14—C13	1.386 (5)
N2—C16	1.351 (5)	C14—H14	0.9500
N2—C12	1.356 (4)	C13—H13	0.9500
С7—С8	1.392 (5)	C16—C15	1.374 (6)
C7—C12	1.464 (5)	C16—H16	0.9500
C12—C13	1.394 (5)	C15—H15	0.9500
C2—C3	1.378 (8)	O51—C50	1.398 (6)
C2—C1	1.417 (7)	O51—H51	0.8400
С2—Н2	1.0000	C50—H50A	0.9800
C1—C6	1.408 (7)	C50—H50B	0.9800
C1—H1	1.0000	С50—Н50С	0.9800
C6—C5	1.447 (7)	O61—C60	1.51 (3)
С6—Н6	1.0000	O61—H61	0.8400
C3—C4	1.383 (8)	C60—H60A	0.9800
С3—Н3	1.0000	C60—H60B	0.9800
C4—C5	1.378 (7)	C60—H60C	0.9800
N1—Ru1—N2	77.18 (11)	C1—C6—Ru1	70.3 (2)

N1—Ru1—C1	127.42 (15)	C5—C6—Ru1	70.9 (2)
N2—Ru1—C1	91.75 (15)	С1—С6—Н6	120.4
N1—Ru1—C6	99.21 (14)	С5—С6—Н6	120.4
N2—Ru1—C6	111.47 (16)	Ru1—C6—H6	120.4
C1—Ru1—C6	37.76 (19)	C2—C3—C4	120.9 (5)
N1—Ru1—C5	94.95 (14)	C2—C3—Ru1	71.7 (2)
N2—Ru1—C5	148.17 (16)	C4—C3—Ru1	71.6 (2)
C1—Ru1—C5	68.40 (19)	С2—С3—Н3	119.0
C6—Ru1—C5	38.58 (19)	С4—С3—Н3	119.0
N1—Ru1—C2	165.29 (15)	Ru1—C3—H3	119.0
N2—Ru1—C2	101.06 (17)	C5—C4—C3	120.4 (5)
C1— $Ru1$ — $C2$	37.89 (18)	C5—C4—Ru1	71.5 (2)
C6— $Ru1$ — $C2$	67.59 (18)	C3-C4-Ru1	71.7 (3)
C5—Ru1— $C2$	78.80 (19)	C5-C4-H4	119.3
N1— $Ru1$ — $C4$	116.02(17)	C3-C4-H4	119.3
N2—Ru1—C4	166.80 (17)	Ru1—C4—H4	119.3
C1— $Ru1$ — $C4$	80 20 (18)	C4-C5-C6	120.4(5)
C6— $Ru1$ — $C4$	68.00(18)	C4-C5-Bu1	71.9(3)
C5—Ru1—C4	36 57 (19)	C6-C5-Ru1	70.5(2)
$C_2 = R_{\rm H} I = C_4$	66 2 (2)	C4-C5-H5	119.1
N1 = Ru1 = C3	151 14 (18)	C6-C5-H5	119.1
$N_2 = R_{11} = C_3$	130.37(18)	Bu1-C5-H5	119.1
C1 = Ru1 = C3	67.60 (18)	N1-C11-C10	121.8(3)
C6 Ru1 C3	79 73 (17)	N1_C11_H11	119.1
$C_5 R_{\rm H} 1 - C_3$	66 1 (2)	C10-C11-H11	119.1
C_2 Rul C_3	36.5(2)	C9 - C8 - C7	119.1
C4 Ru1 $C3$	36.7(2)	C_{2} C_{3} C_{4} H_{8}	120.4
N1 - Ru1 - C11	84 01 (8)	C^{7} C^{8} H^{8}	120.4
N2— $Ru1$ — $C11$	86 34 (8)	C_{10} C_{9} C_{8}	118.8(3)
C1— $Ru1$ — $C11$	147 23 (14)	C10-C9-H9	120.6
C6— $Ru1$ — $C11$	147.23(14) 162 19 (14)	С8—С9—Н9	120.0
C5—Ru1—C11	102.19(14) 123 93 (14)	C9-C10-C11	120.0 119.6(3)
$C_2 = R_{11} = C_{11}$	125.55(14) 110.55(13)	C9-C10-H10	120.2
C4— $Ru1$ — $C11$	94 76 (13)	C_{11} C_{10} H_{10}	120.2
$C_3 = R_{11} = C_{11}$	89.00 (13)	C_{15} C_{14} C_{13}	120.2 119.2 (3)
C_{11} N_{1} C_{7}	1190(3)	C_{15} C_{14} H_{14}	120.4
C11 N1 $Ru1$	119.0(5) 124.3(2)	C_{13} C_{14} H_{14}	120.4
$C7$ _N1_Ru1	124.5(2) 1165(2)	C_{14} C_{13} C_{12}	120.4
$C_1 = N_1 = K_{u_1}$	110.5(2) 118 5 (3)	C_{14} C_{13} H_{13}	120.4
$C_{16} N_{2} R_{11}$	1250(2)	C_{12} C_{13} H_{13}	120.4
C12 N2 Ru1	125.0(2) 116.5(2)	N2 C16 C15	120.7 122.7(3)
N1 - C7 - C8	110.5(2) 121.6(3)	N2-C16-H16	118.6
N1 = C7 = C3	121.0(3) 114.8(3)	C_{15} C_{16} H_{16}	118.6
C8 - C7 - C12	114.0(3)	$C_{16} - C_{15} - C_{14}$	110.0 119.0(3)
$N_2 - C_{12} - C_{13}$	123.0(3) 1214(3)	C16-C15-H15	120.5
$N_2 - C_{12} - C_{13}$	114 6 (3)	C14—C15—H15	120.5
C_{13} C_{12} C_{7}	124.0 (3)	C50-O51-H51	109.5
C_{3} C_{2} C_{1}	129.7 (5)	O51-C50-H50A	109.5
	1 - 0 . / (-)		107.5

C3—C2—Ru1	71.8 (3)	O51—C50—H50B	109.5
C1—C2—Ru1	69.8 (2)	H50A—C50—H50B	109.5
С3—С2—Н2	118.9	O51—C50—H50C	109.5
C1—C2—H2	118.9	H50A—C50—H50C	109.5
Ru1—C2—H2	118.9	H50B—C50—H50C	109.5
C6—C1—C2	119.4 (5)	С60—О61—Н61	109.5
C6—C1—Ru1	71.9 (2)	O61—C60—H60A	109.5
C2—C1—Ru1	72.3 (2)	O61—C60—H60B	109.5
C6—C1—H1	120.0	H60A—C60—H60B	109.5
C2—C1—H1	120.0	O61—C60—H60C	109.5
Ru1—C1—H1	120.0	H60A—C60—H60C	109.5
C1—C6—C5	118.2 (4)	H60B—C60—H60C	109.5

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
O51—H51···Cl2	0.84	2.18	3.013 (4)	170
O61—H61…Cl2	0.84	2.15	2.986 (6)	171