metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Hexaaquacadmium(II) bis{[N-(2oxidobenzylidene)glycyl-L-leucinato]cuprate(II)} dihydrate

Guolin Zhang, Lihua Ye, Yanyan Zhang and Wenlong Liu*

College of Chemistry and Chemical Engineering, Yangzhou Universitry, Yangzhou, 225002, People's Republic of China Correspondence e-mail: liuwl@yzu.edu.cn

Received 19 November 2007; accepted 26 November 2007

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.005 Å; R factor = 0.024; wR factor = 0.054; data-to-parameter ratio = 14.0.

The title compound, $[Cd(H_2O)_6][Cu(C_{15}H_{17}N_2O_4)]_2 \cdot 2H_2O$, has a chiral structure. Copper has a square-planar coordination with two N and two O atoms of the quadridentate chiral Schiff base ligand. The Cd^{2+} ion is coordinated by six aqua ligands with a slightly distorted octahedral configuration. Ions are linked by $O-H\cdots O$ hydrogen bonds, and the $[Cd(H_2O)_6]^{2+}$ cations and $[CuL]^-$ anions (L = Schiff base derived from glycyl-L-leucine and salicylaldehyde) occupy a stacking structure within well separated columns along the *a* axis. The two crystallographically independent copper–Schiff base anions each have a chiral carbon centre with an *S* configuration. They are related by a non-crystallographic twofold rotation axis parallel to the [010] direction.

Related literature

For related literature, see: Liu et al. (2004).

Experimental

Crystal data $[Cd(H_2O)_6][Cu(C_{15}H_{17}N_2O_4)]_{2}$ - $2H_2O$ $M_r = 962.22$ Monoclinic, $P2_1$ a = 7.0569 (6) Å b = 17.4745 (14) Å c = 15.9430 (13) Å

```
\beta = 100.680 (1)^{\circ}

V = 1932.0 (3) \text{ Å}^{3}

Z = 2

Mo K\alpha radiation

\mu = 1.71 \text{ mm}^{-1}

T = 296 (2) \text{ K}

0.30 \times 0.28 \times 0.23 \text{ mm}
```

Data collection

Bruker SMART APEX CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2004) $T_{min} = 0.602, T_{max} = 0.678$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.024$ $wR(F^2) = 0.054$ S = 1.016936 reflections 494 parameters 361 restraints 15044 measured reflections 6936 independent reflections 6430 reflections with $I > 2\sigma(I)$ $R_{int} = 0.024$

H atoms treated by a mixture of
independent and constrained
refinement
$\Delta \rho_{\rm max} = 0.33 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.28 \text{ e } \text{\AA}^{-3}$
Absolute structure: Flack (1983),
3005 Friedel pairs
Flack parameter: 0.008 (9)

Table 1 Selected geometric parameters (Å, °).

Cd1-O10 2.228(2)Cu1 - N21.903 (2) 1.927 (3) Cd1-013 2.268 (3) Cu1-N1Cd1-O12 2.280 (2) Cu1-O2 1.954 (2) 2.281(2)Cd1-O9 Cu2-O5 1.878(2)Cd1-O11 2.285 (2) Cu2-N4 1.895 (3) 2.373 (2) 1.915 (3) Cd1-014 Cu2-N3Cu1 - O11.886(2) $Cu_{2} - O6$ 1.945 (2) O1-Cu1-N2 179.61 (11) $05 - Cu^2 - N4$ 174.48 (11) O1-Cu1-N1 95.61 (11) O5-Cu2-N3 96.40 (11) N2-Cu1-N1 84.62 (11) N4-Cu2-N3 84.99 (11) O1-Cu1-O2 95.93 (10) O5-Cu2-O6 95.53 (10) 83.87 (11) 83.99 (10) N2 - Cu1 - O2N4 - Cu2 - O6N1-Cu1-O2 167.28 (11) N3-Cu2-O6 165.06 (12)

Table 2			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O16-H16B\cdots O8^{i}$	0.85	1.94	2.783 (4)	171
$O16-H16A\cdots O4^{ii}$	0.85	2.11	2.937 (4)	165
$O15 - H15B \cdots O5$	0.878 (18)	1.91 (2)	2.769 (3)	164 (4)
$O15-H15A\cdots O14^{iii}$	0.861 (19)	1.980 (19)	2.828 (4)	168 (4)
$O14-H14D\cdots O4^{iv}$	0.865 (18)	1.86 (2)	2.714 (4)	171 (3)
$O14-H14E\cdots O3$	0.838 (17)	2.073 (18)	2.911 (3)	177 (3)
$O12 - H12B \cdot \cdot \cdot O8^{v}$	0.85	2.12	2.853 (3)	144
$O10-H10A\cdots O6^{vi}$	0.85	1.93	2.685 (3)	147
O10−H10B···O2	0.85	2.52	3.261 (3)	147
O9−H9A…O15	0.85	1.81	2.652 (4)	167
$O9-H9B\cdots O2$	0.84	1.99	2.812 (3)	166

Symmetry codes: (i) -x + 1, $y + \frac{1}{2}$, -z + 1; (ii) -x + 1, $y + \frac{1}{2}$, -z + 2; (iii) x + 1, y, z; (iv) -x, $y + \frac{1}{2}$, -z + 2; (v) -x, $y + \frac{1}{2}$, -z + 1; (vi) x - 1, y, z.

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT-Plus* (Bruker, 2003); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 2000); software used to prepare material for publication: *SHELXTL*.

This work was supported by the Natural Science Foundation of the Education Department of Jiangsu Province (No. 06KJD150208). Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2059).

References

- Bruker (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2002). *SMART* for WNT/2000. Version 5.630. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2003). SAINT-Plus. Version 6.45. Bruker AXS Inc., Madison, Wisconsin, USA.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Liu, W. L., Song, Y., Li, Y. Z., Zou, Y., Dang, D. B., Ni, C. L. & Meng, Q. J. (2004). Chem. Commun. pp. 2946–2947.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.

Acta Cryst. (2008). E64, m94–m95 [https://doi.org/10.1107/S1600536807063635]

Hexaaquacadmium(II) bis{[N-(2-oxidobenzylidene)glycyl-Lleucinato]cuprate(II)} dihydrate

Guolin Zhang, Lihua Ye, Yanyan Zhang and Wenlong Liu

S1. Comment

We are making a systematic investigation of chiral complexes of Schiff base derived from chiral dipeptides to which little attention has been given, and recently reported a chiral Cu(II)—Sr(II)—Na(I) complex of a Schiff base ligand resulting from the condensation of glycyl-*L*-tyrosine with *N*-5-bromosalicylaldehyde (Liu *et al.*, 2004). Herein, we report the synthesis and structure of a Cu(II)—Cd(II) chiral Schiff base complex derived from glycyl-*L*-leucine and salicylaldehyde.

The asymmetric unit consists of two [CuL]⁻ anions ([Cu1L]⁻ and [Cu2L]⁻)(*L* is a Schiff base derived from glycyl-*L*-leucine and salicylaldehyde), one cation [Cd^{II}, O9, O10, O11, O12, O13 and O14]²⁺, and two uncoordinated water molecules (O15 and O16) (Fig. 1). [CuL]⁻ has an approximate square-planar structure. The two crystallographically independent copper-Schiff base anions each have a chiral carbon centre (C10 and C25) with S-configuration. They are related by a non-crystallographic twofold rotation axis parallel to the [0 1 0] direction (Fig. 2). The deprotonated Schiff base ligand is a triple negatively charged quadridentate ONNO chelant, coordinating to the Cu^{II} ion *via* one phenolic oxygen, one deprotonated amide nitrogen atom, one imino nitrogen atom and one carboxylate oxygen. The Cu—O and Cu—N bond distances are in the range of 1.878 (2)–1.954 (2) Å and 1.895 (3)–1.927 (3) Å, respectively (Table 1). The best-fit least-squares plane through the four basal and Cu atoms shows these atoms to be nearly coplanar. The Cd^{II} is coordinated by six aqua ligands with a slightly distorted octahedral geometry. The six Cd—O bonds in the structure are in the range of 2.228 (2)–2.373 (2) Å.

The anions and cations linked by O—H···O hydrogen bonds (Table 2) form well separated columns along the *a*-axis in the stacking structure of (Fig. 3). The intermolecular and intramolecular hydrogen bonds in the title compound play an important role in the stabilization of the whole structure.

S2. Experimental

Glycyl-*L*-leucine (5 mmol), salicylaldehyde (5 mmol) and LiOH (10 mmol) were dissolved in MeOH/H₂O (30 ml, v:v = 1:1) and refluxed for 30 min. Then Cu(ClO₄)₂.6H₂O (5 mmol) was added to the solution and the resulting solution was adjusted to the pH 9–11 by using 5 mol.*L*⁻¹ NaOH solution. After stirring at room temperature (25 °C) for 1 hr, CdCl₂.6H₂O (2.5 mmol) was added. A violet precipitate was obtained immediately. After stirring for 30 min and then filtered, the precipitate was recrystallized in water. The violet crystals suitable for X-ray diffraction were obtained after 1 week.

S3. Refinement

The water H atoms were located in a difference Fourier map and refined in riding mode, with a distance restraint of O— H = 0.85 Å and $U_{iso}(H) = 1.5U_{eq}(O)$. All other H atoms were positioned geometrically and constrained as riding atoms, with C—H distances of 0.93–0.98 Å and $U_{iso}(H)$ set to 1.2 or 1.5_{eq}(C) of the parent atom. The refinement of the structure

was performed using 361 least-squares restraints by applying SIMU and DFIX instructions of SHELXTL.

The molecular structure of the title compound, with atom labels and 50% probability displacement ellipsoids.

Figure 2

View of the title structure in *ac* projection showing the non-crystallographic twofold rotation symmetry between the [CuL]⁻ anions.

Figure 3

The packing of the title compound, viewed down the a axis, showing a separated columns stacking structure connected by O—H···O hydrogen bonds, indicated by dashed lines.

Hexaaquacadmium(II) bis{[N-(2-oxidobenzylidene)glycyl-L-leucinato]cuprate(II)} dihydrate

Crystal data

$[Cd(H_2O)_6][Cu(C_{15}H_{17}N_2O_4)]_2 \cdot 2H_2O$ $M_r = 962.22$ Monoclinic, $P2_1$ Hall symbol: P 2yb a = 7.0569 (6) Å b = 17.4745 (14) Å c = 15.9430 (13) Å $\beta = 100.680$ (1)° V = 1932.0 (3) Å ³ Z = 2	F(000) = 984 $D_x = 1.654 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 7167 reflections $\theta = 2.3-26.6^{\circ}$ $\mu = 1.71 \text{ mm}^{-1}$ T = 296 K Block, violet $0.30 \times 0.28 \times 0.23 \text{ mm}$
Data collectionBruker SMART APEX CCD diffractometerRadiation source: sealed tubeGraphite monochromator φ and ω scansAbsorption correction: multi-scan $(SADABS: Sheldrick, 2004)$	15044 measured reflections 6936 independent reflections 6430 reflections with $I > 2\sigma(I)$ $R_{int} = 0.024$ $\theta_{max} = 26.0^{\circ}, \ \theta_{min} = 2.3^{\circ}$ $h = -8 \rightarrow 8$ $k = -10 \rightarrow 21$
$T_{\rm min} = 0.602, \ T_{\rm max} = 0.678$	$l = -19 \rightarrow 19$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.024$	H atoms treated by a mixture of independent
$wR(F^2) = 0.054$	and constrained refinement
S = 1.01	$w = 1/[\sigma^2(F_o^2) + (0.0201P)^2]$
6936 reflections	where $P = (F_o^2 + 2F_c^2)/3$
494 parameters	$(\Delta/\sigma)_{\rm max} = 0.002$
361 restraints	$\Delta \rho_{\rm max} = 0.33 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm min} = -0.28 \ {\rm e} \ {\rm \AA}^{-3}$
direct methods	Absolute structure: Flack (1983), 3005 Friedel
Secondary atom site location: difference Fourier	pairs
map	Absolute structure parameter: 0.008 (9)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Z	$U_{\rm iso}$ */ $U_{\rm eq}$
Cd1	0.05438 (3)	0.678849 (13)	0.730726 (13)	0.03116 (6)
Cu1	0.14923 (5)	0.41364 (2)	0.89059 (2)	0.03101 (9)
Cu2	0.60569 (6)	0.40862 (2)	0.62847 (2)	0.03172 (10)
C1	0.0796 (5)	0.3718 (2)	0.6304 (2)	0.0395 (8)
H1	0.0698	0.4219	0.6102	0.047*
C2	0.0601 (5)	0.3127 (2)	0.5729 (2)	0.0424 (9)
H2	0.0361	0.3235	0.5148	0.051*
C3	0.0753 (5)	0.2376 (2)	0.5997 (2)	0.0448 (9)
Н3	0.0632	0.1978	0.5603	0.054*
C4	0.1088 (5)	0.2223 (2)	0.6863 (2)	0.0394 (8)
H4	0.1167	0.1717	0.7047	0.047*
C5	0.1315 (5)	0.2817 (2)	0.7474 (2)	0.0342 (7)
C6	0.1140 (4)	0.3592 (2)	0.7193 (2)	0.0318 (7)
C7	0.1665 (4)	0.25880 (19)	0.8363 (2)	0.0336 (7)
H7	0.1742	0.2067	0.8483	0.040*
C8	0.2178 (5)	0.27673 (18)	0.9874 (2)	0.0326 (7)
H8A	0.3478	0.2569	1.0036	0.039*
H8B	0.1283	0.2355	0.9921	0.039*
С9	0.1871 (4)	0.34199 (18)	1.0471 (2)	0.0290 (7)
C10	0.1302 (5)	0.47934 (18)	1.0534 (2)	0.0309 (7)
H10	0.0151	0.4695	1.0780	0.037*
C11	0.2893 (5)	0.5061 (2)	1.1262 (2)	0.0360 (8)
H11A	0.2568	0.5572	1.1426	0.043*

H11B	0.2880	0.4729	1.1748	0.043*
C12	0.4951 (5)	0.5080 (2)	1.1086 (2)	0.0398 (8)
H12	0.5295	0.4556	1.0954	0.048*
C13	0.5223 (5)	0.5579 (2)	1.0346 (2)	0.0514 (10)
H13A	0.6571	0.5612	1.0325	0.077*
H13B	0.4730	0.6082	1.0418	0.077*
H13C	0.4542	0.5360	0.9824	0.077*
C14	0.6328 (6)	0.5326 (3)	1.1889 (3)	0.0626 (11)
H14A	0.5961	0.5821	1.2063	0.094*
H14B	0.7617	0.5348	1.1776	0.094*
H14C	0.6278	0 4962	1 2336	0.094*
C15	0.0278 (4)	0.54010 (18)	0.9829(2)	0.0315(7)
C16	0.6710(1)	0.3991 (2)	0.9029(2) 0.8915(2)	0.0313(7)
H16	0.6679	0.4511	0.0015 (2)	0.051*
C17	0.7038 (5)	0.4311 0.3480 (2)	0.9035 0.9577 (2)	0.031
H17	0.7038 (5)	0.3460 (2)	1 0135	0.0431 (8)
C19	0.7222	0.3001	0.0435(2)	0.032
	0.7085 (5)	0.2701 (2)	0.9433(2)	0.0432 (9)
П18 С10	0.7309	0.2550	0.9888	0.032°
U19	0.6789 (5)	0.2451 (2)	0.8600 (2)	0.0394 (8)
H19	0.6805	0.1928	0.8495	0.04/*
C20	0.6466 (5)	0.29517 (19)	0.7907 (2)	0.0324 (7)
C21	0.64/8 (4)	0.3/532 (19)	0.8058 (2)	0.0325 (7)
C22	0.6117 (5)	0.26192 (19)	0.7058 (2)	0.0337 (7)
H22	0.6095	0.2088	0.7019	0.040*
C23	0.5484 (5)	0.26228 (18)	0.5525 (2)	0.0333 (7)
H23A	0.4279	0.2342	0.5451	0.040*
H23B	0.6512	0.2262	0.5493	0.040*
C24	0.5385 (4)	0.32158 (19)	0.4817 (2)	0.0296 (7)
C25	0.5794 (5)	0.45912 (18)	0.4560 (2)	0.0308 (7)
H25	0.6829	0.4480	0.4244	0.037*
C26	0.3991 (5)	0.4801 (2)	0.3906 (2)	0.0364 (8)
H26A	0.4222	0.5293	0.3662	0.044*
H26B	0.3856	0.4428	0.3448	0.044*
C27	0.2086 (5)	0.4847 (2)	0.4204 (2)	0.0429 (8)
H27	0.1841	0.4347	0.4442	0.052*
C28	0.2036 (6)	0.5437 (3)	0.4880 (3)	0.0611 (11)
H28A	0.2386	0.5926	0.4681	0.092*
H28B	0.2930	0.5299	0.5387	0.092*
H28C	0.0758	0.5465	0.5005	0.092*
C29	0.0475 (6)	0.5000 (3)	0.3436 (3)	0.0704 (13)
H29A	0.0448	0 4595	0 3027	0.106*
H29B	0.0710	0.5478	0.3177	0.106*
H29C	-0.0741	0.5022	0.3622	0.106*
C30	0.6475(4)	0 52643 (19)	0.5175 (2)	0.0342 (8)
N1	0 1872 (4)	0.30447 (16)	0.9175(2) 0.89864(17)	0.0342(0)
N2	0.1072(7)	0.40911 (15)	1 01137 (15)	0.0310(7) 0.0280(5)
1N2	0.1733(3) 0.5838(4)	0.70911(13) 0.20072(16)	1.01137(13) 0.62580(16)	0.0207(3)
1N.3 N.4	0.3030 (4)	0.299/2 (10) 0.20242 (14)	0.03369 (10)	0.0311(0)
IN4	0.3387 (4)	0.39243 (14)	0.50891 (16)	0.0287(6)

01	0.1267 (3)	0.41864 (13)	0.77098 (13)	0.0369 (5)	
02	0.0898 (3)	0.52136 (12)	0.90607 (14)	0.0374 (6)	
03	0.0209 (4)	0.60371 (13)	1.00130 (16)	0.0443 (6)	
04	0.1794 (3)	0.32572 (13)	1.12385 (15)	0.0391 (6)	
05	0.6277 (3)	0.42809 (12)	0.74572 (13)	0.0382 (6)	
06	0.6665 (4)	0.51242 (13)	0.59822 (15)	0.0405 (6)	
07	0.6854 (3)	0.58814 (13)	0.48932 (15)	0.0427 (6)	
08	0.5149 (3)	0.29840 (13)	0.40516 (14)	0.0399 (6)	
09	0.2842 (4)	0.64352 (15)	0.84431 (15)	0.0493 (7)	
H9A	0.3804	0.6232	0.8274	0.074*	
H9B	0.2295	0.6115	0.8707	0.074*	
O10	-0.0061 (4)	0.55560 (14)	0.70150 (17)	0.0501 (7)	
H10B	0.0342	0.5289	0.7458	0.075*	
H10A	-0.1269	0.5493	0.6860	0.075*	
011	0.2908 (3)	0.67554 (17)	0.65034 (14)	0.0486 (6)	
H11D	0.3784	0.7078	0.6694	0.073*	
H11C	0.3389	0.6308	0.6530	0.073*	
012	-0.1939 (3)	0.69629 (14)	0.61856 (15)	0.0494 (7)	
H12A	-0.1492	0.6987	0.5726	0.074*	
H12B	-0.2501	0.7381	0.6260	0.074*	
013	0.0777 (4)	0.80624 (15)	0.75778 (18)	0.0505 (7)	
H13E	-0.0350	0.8253	0.7486	0.076*	
H13D	0.1301	0.8135	0.8096	0.076*	
014	-0.1360 (3)	0.67596 (16)	0.83875 (14)	0.0382 (5)	
H14D	-0.147 (5)	0.7248 (10)	0.845 (2)	0.057*	
H14E	-0.092 (5)	0.6565 (17)	0.8865 (15)	0.057*	
015	0.5499 (4)	0.58134 (15)	0.7677 (2)	0.0545 (7)	
H15A	0.656 (4)	0.605 (2)	0.788 (3)	0.082*	
H15B	0.590 (6)	0.5359 (14)	0.755 (3)	0.082*	
016	0.4485 (4)	0.84117 (19)	0.75926 (18)	0.0655 (9)	
H16A	0.5562	0.8284	0.7892	0.098*	
H16B	0.4512	0.8324	0.7072	0.098*	

Atomic displacement parameters $(Å^2)$

	U^{11}	<i>U</i> ²²	U^{33}	U^{12}	U^{13}	U^{23}
Cd1	0.03613 (11)	0.02655 (12)	0.03007 (12)	-0.00048 (11)	0.00428 (8)	-0.00025 (12)
Cu1	0.0439 (2)	0.0219 (2)	0.02635 (19)	-0.00039 (18)	0.00396 (16)	0.00266 (17)
Cu2	0.0432 (2)	0.0210 (2)	0.0280 (2)	-0.00213 (18)	-0.00093 (16)	-0.00087 (18)
C1	0.0453 (18)	0.0391 (19)	0.0342 (18)	0.0029 (15)	0.0074 (15)	-0.0012 (15)
C2	0.049 (2)	0.049 (2)	0.0300 (18)	0.0006 (17)	0.0085 (15)	-0.0053 (17)
C3	0.0473 (19)	0.049 (2)	0.0378 (19)	-0.0040 (17)	0.0073 (15)	-0.0172 (17)
C4	0.0461 (18)	0.0306 (18)	0.0408 (19)	-0.0014 (14)	0.0061 (15)	-0.0062 (15)
C5	0.0352 (16)	0.0338 (18)	0.0332 (17)	0.0010 (14)	0.0051 (13)	-0.0029 (14)
C6	0.0308 (15)	0.0348 (18)	0.0302 (16)	0.0016 (13)	0.0062 (12)	-0.0012 (14)
C7	0.0373 (17)	0.0234 (16)	0.0398 (18)	0.0017 (13)	0.0062 (14)	-0.0008 (15)
C8	0.0425 (18)	0.0225 (16)	0.0324 (17)	0.0029 (14)	0.0064 (14)	0.0056 (14)
C9	0.0311 (16)	0.0281 (17)	0.0275 (17)	-0.0029 (13)	0.0048 (13)	0.0025 (14)

C10	0.0349 (17)	0.0264 (16)	0.0326 (17)	0.0002 (13)	0.0096 (13)	0.0034 (14)
C11	0.0474 (18)	0.0290 (17)	0.0310 (17)	-0.0012 (15)	0.0058 (14)	-0.0031 (14)
C12	0.0408 (18)	0.0351 (18)	0.0406 (19)	0.0030 (15)	0.0004 (15)	-0.0030 (16)
C13	0.044 (2)	0.059 (2)	0.050(2)	0.0036 (18)	0.0076 (17)	0.004 (2)
C14	0.056 (2)	0.072 (3)	0.052 (2)	-0.009 (2)	-0.0109 (19)	-0.001 (2)
C15	0.0314 (16)	0.0235 (17)	0.0387 (19)	-0.0016 (13)	0.0041 (14)	0.0008 (14)
C16	0.0477 (18)	0.040 (2)	0.0380 (18)	-0.0031 (16)	0.0052 (15)	-0.0022 (16)
C17	0.0427 (18)	0.057 (2)	0.0298 (18)	-0.0022 (17)	0.0056 (14)	0.0035 (17)
C18	0.0435 (19)	0.050(2)	0.0364 (19)	0.0010 (16)	0.0079 (15)	0.0096 (17)
C19	0.0427 (17)	0.0344 (18)	0.0408 (19)	-0.0006 (15)	0.0071 (15)	0.0078 (15)
C20	0.0350 (16)	0.0305 (17)	0.0326 (17)	-0.0022 (13)	0.0084 (13)	0.0032 (14)
C21	0.0337 (16)	0.0334 (17)	0.0290 (16)	-0.0010 (13)	0.0021 (13)	0.0035 (14)
C22	0.0382 (17)	0.0226 (16)	0.0401 (18)	-0.0017 (13)	0.0069 (14)	0.0021 (15)
C23	0.0397 (18)	0.0231 (17)	0.0370 (18)	-0.0006 (13)	0.0068 (14)	-0.0036 (14)
C24	0.0264 (15)	0.0302 (18)	0.0329 (18)	0.0012 (13)	0.0075 (13)	-0.0012 (14)
C25	0.0345 (16)	0.0251 (17)	0.0330 (17)	0.0014 (13)	0.0068 (13)	0.0026 (13)
C26	0.0477 (19)	0.0312 (18)	0.0279 (17)	0.0023 (15)	0.0012 (15)	-0.0001 (14)
C27	0.0410 (18)	0.042 (2)	0.043 (2)	-0.0024 (15)	-0.0002 (15)	0.0082 (16)
C28	0.045 (2)	0.076 (3)	0.064 (3)	0.008 (2)	0.0113 (19)	-0.004 (2)
C29	0.048 (2)	0.088 (3)	0.066 (3)	0.002 (2)	-0.011 (2)	0.010 (2)
C30	0.0315 (16)	0.0297 (19)	0.0390 (19)	-0.0002 (14)	0.0008 (14)	0.0022 (16)
N1	0.0400 (16)	0.0246 (16)	0.0300 (15)	0.0014 (12)	0.0056 (12)	0.0042 (12)
N2	0.0369 (13)	0.0211 (13)	0.0282 (13)	-0.0035 (12)	0.0044 (10)	-0.0011 (12)
N3	0.0328 (15)	0.0254 (15)	0.0328 (16)	-0.0031 (11)	-0.0001 (12)	-0.0029 (13)
N4	0.0359 (14)	0.0202 (15)	0.0281 (14)	-0.0004 (10)	0.0008 (11)	-0.0006 (11)
01	0.0566 (14)	0.0249 (12)	0.0282 (11)	0.0040 (11)	0.0050 (10)	0.0016 (11)
O2	0.0579 (15)	0.0232 (13)	0.0306 (13)	0.0031 (11)	0.0067 (11)	0.0029 (10)
O3	0.0563 (15)	0.0272 (13)	0.0488 (15)	0.0093 (11)	0.0080 (12)	-0.0019 (12)
O4	0.0543 (15)	0.0300 (13)	0.0340 (13)	-0.0021 (11)	0.0103 (11)	0.0053 (11)
05	0.0575 (14)	0.0234 (14)	0.0317 (12)	0.0012 (10)	0.0033 (10)	-0.0032 (10)
O6	0.0622 (16)	0.0239 (13)	0.0301 (13)	-0.0106 (11)	-0.0057 (11)	0.0014 (10)
O7	0.0563 (15)	0.0261 (13)	0.0438 (15)	-0.0090 (11)	0.0041 (12)	0.0071 (11)
08	0.0583 (16)	0.0330 (14)	0.0283 (13)	-0.0032 (12)	0.0081 (11)	-0.0082 (10)
09	0.0445 (14)	0.0643 (17)	0.0391 (14)	0.0055 (12)	0.0078 (11)	0.0095 (13)
O10	0.0642 (16)	0.0272 (14)	0.0483 (15)	-0.0054 (12)	-0.0170 (13)	0.0046 (12)
O11	0.0589 (14)	0.0389 (14)	0.0533 (14)	-0.0068 (16)	0.0241 (11)	-0.0025 (15)
O12	0.0587 (15)	0.0384 (16)	0.0438 (14)	0.0141 (12)	-0.0096 (11)	-0.0047 (12)
013	0.0626 (18)	0.0347 (16)	0.0559 (17)	-0.0028 (13)	0.0150 (14)	-0.0038 (14)
014	0.0487 (12)	0.0294 (12)	0.0372 (12)	0.0039 (14)	0.0101 (10)	-0.0007 (14)
015	0.0487 (16)	0.0359 (16)	0.081 (2)	0.0024 (13)	0.0162 (14)	-0.0107 (15)
O16	0.0576 (17)	0.090 (2)	0.0504 (17)	-0.0138 (16)	0.0138 (13)	-0.0207 (16)

Geometric parameters (Å, °)

Cd1—O10	2.228 (2)	C16—C21	1.407 (4)	
Cd1-013	2.268 (3)	C16—H16	0.9300	
Cd1-012	2.280 (2)	C17—C18	1.381 (5)	
Cd1—O9	2.281 (2)	C17—H17	0.9300	

Cd1—O11	2.285 (2)	C18—C19	1.380 (5)
Cd1—O14	2.373 (2)	C18—H18	0.9300
Cu1—O1	1.886 (2)	C19—C20	1.394 (5)
Cu1—N2	1.903 (2)	С19—Н19	0.9300
Cu1—N1	1.927 (3)	C20—C21	1.421 (5)
Cu1—O2	1.954 (2)	C20—C22	1.452 (5)
Cu2—O5	1.878 (2)	C21—O5	1.318 (4)
Cu2—N4	1.895 (3)	C22—N3	1.279 (4)
Cu2—N3	1.915 (3)	C22—H22	0.9300
Cu2—O6	1.945 (2)	C23—N3	1.461 (4)
C1-C2	1 371 (5)	C^{23} C^{24}	1 524 (4)
C1-C6	1410(4)	C23—H23A	0.9700
C1—H1	0.9300	C23_H23B	0.9700
$C^2 - C^3$	1 379 (5)	$C_{23} = 1123D$	1.267(4)
$C_2 = C_3$	0.0300	$C_{24} = 0.0$	1.207(4)
$C_2 = C_1$	1 382 (5)	C_{24} N4	1.311(4) 1.462(4)
$C_3 = U_4$	0.0200	C_{25}	1.402(4)
С3—ПЗ	0.9300	$C_{25} = C_{20}$	1.555 (4)
C4—C3	1.413 (5)	$C_{25} = C_{30}$	1.549 (5)
C4—H4	0.9300	C25—H25	0.9800
C5—C6	1.424 (5)	C_{26} C_{27}	1.509 (5)
C5C7	1.450 (4)	С26—Н26А	0.9700
C6—O1	1.319 (4)	C26—H26B	0.9700
C7—N1	1.261 (4)	C27—C28	1.497 (5)
С7—Н7	0.9300	C27—C29	1.532 (5)
C8—N1	1.473 (4)	С27—Н27	0.9800
C8—C9	1.526 (4)	C28—H28A	0.9600
C8—H8A	0.9700	C28—H28B	0.9600
C8—H8B	0.9700	C28—H28C	0.9600
C9—O4	1.267 (4)	С29—Н29А	0.9600
C9—N2	1.300 (4)	С29—Н29В	0.9600
C10—N2	1.457 (4)	С29—Н29С	0.9600
C10—C11	1.530 (4)	С30—О7	1.217 (4)
C10—C15	1.543 (4)	C30—O6	1.292 (4)
C10—H10	0.9800	O9—H9A	0.8535
C11—C12	1.530 (5)	O9—H9B	0.8358
C11—H11A	0.9700	O10—H10B	0.8500
С11—Н11В	0.9700	O10—H10A	0.8501
C12—C13	1.507 (5)	011—H11D	0.8500
C12—C14	1.518 (5)	011—H11C	0.8499
C12—H12	0.9800	012—H12A	0.8500
C13_H13A	0.9600	012 H12R	0.8499
C13_H13B	0.9600	012 H12B	0.8500
C13 H13C	0.9600	013 H13D	0.8500
C14H14A	0.9600	014_H14D	0.865 (18)
	0.9000		0.003(10) 0.838(17)
C_{14} $H_{14}C$	0.2000	015 H15A	0.030(17)
C_{14} $-\Pi_{14}$ C_{15} O_{2}	1 229 (4)	015 U15D	0.001(19)
C15 = O2	1.228 (4)		0.8/8(18)
015-02	1.291 (4)	U10—H10A	0.8493

C16—C17	1.370 (5)	O16—H16B	0.8483
O10-Cd1-O13	173.25 (11)	C18—C17—H17	119.2
O10-Cd1-O12	82.86 (9)	C19—C18—C17	117.7 (3)
O13—Cd1—O12	92.07 (10)	С19—С18—Н18	121.1
O10—Cd1—O9	89.13 (9)	C17—C18—H18	121.1
O13—Cd1—O9	95.67 (10)	C18—C19—C20	122.6 (3)
O12—Cd1—O9	171.42 (9)	С18—С19—Н19	118.7
010—Cd1—011	89.41 (10)	C20—C19—H19	118.7
013—Cd1—011	95.55 (10)	C19-C20-C21	119.3 (3)
012—Cd1—011	95 64 (9)	$C_{19} - C_{20} - C_{22}$	117.5(3)
09—Cd1—011	87 30 (9)	C_{21} C_{20} C_{22}	1232(3)
010-Cd1-014	91.09(10)	05-021-016	1184(3)
013 - Cd1 - 014	85.05(10)	05 - C21 - C20	124.8(3)
012 - Cd1 - 014	96 66 (9)	C_{16} C_{21} C_{20}	121.0(3)
09-Cd1-014	\$0.38 (8)	N_{3} C_{22} C_{20}	1253(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	167.66 (8)	N3 C22 H22	117.3
$O1 C_{11} N2$	107.00(3)	$N_{3} = C_{22} = H_{22}$	117.3
O1 - Cu1 - N2	95 61 (11)	N3 C23 C24	117.3 110.2(3)
$N_2 = C_{11} = N_1$	95.01 (11) 84.62 (11)	N3 C23 H23A	100.6
$n_2 - c_{u1} - n_1$	05.03(10)	N_{3} C_{23} H_{23}	109.0
$N_2 = C_{11} = O_2$	93.93(10) 92.97(11)	N2 C22 H22D	109.0
$N_2 - Cu_1 - O_2$	03.07(11)	$N_{3} = C_{23} = H_{23} = H_$	109.0
NI = CuI = OZ	107.20(11) 174.48(11)	C_{24} C_{23} H_{23B}	109.0
$O_5 = Cu_2 = N_4$	1/4.40(11)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100.1
V_{3} U_{2} V_{3} V_{4} C_{2} V_{2} V_{3}	90.40 (11)	08 - 024 - 022	127.4(3)
N4 - Cu2 - N3	84.99 (11) 05.52 (10)	06 - 024 - 023	118.4(3)
05-002-06	95.55 (10)	N4 - C24 - C23	114.2(3) 115.1(2)
N4 - Cu2 - O6	35.99(10)	N4 - C25 - C20	113.1(3)
$N_3 = Cu_2 = O_6$	165.06(12)	N4-C25-C30	10/.0(3)
$C_2 = C_1 = C_0$	122.1 (3)	$C_{20} = C_{20} = C_{30}$	111.7 (3)
C2-CI-HI	119.0	N4 - C25 - H25	107.6
$C_0 - C_1 - H_1$	119.0	C26-C25-H25	107.6
C1 - C2 - C3	121.2 (3)	C30—C25—H25	107.6
C1 = C2 = H2	119.4	$C_{27} = C_{26} = C_{25}$	118.3 (3)
C3—C2—H2	119.4	$C_2/-C_{26}$ -H26A	107.7
$C_2 = C_3 = C_4$	118.8 (3)	C25—C26—H26A	107.7
C2—C3—H3	120.6	C2/—C26—H26B	107.7
C4—C3—H3	120.6	С25—С26—Н26В	107.7
C3—C4—C5	121.5 (3)	H26A—C26—H26B	107.1
C3—C4—H4	119.2	C28—C27—C26	113.9 (3)
C5—C4—H4	119.2	C28—C27—C29	110.0 (3)
C4—C5—C6	119.3 (3)	C26—C27—C29	109.2 (3)
C4—C5—C7	116.6 (3)	C28—C27—H27	107.8
C6—C5—C7	124.0 (3)	С26—С27—Н27	107.8
01	118.9 (3)	С29—С27—Н27	107.8
O1—C6—C5	124.1 (3)	C27—C28—H28A	109.5
C1—C6—C5	117.0 (3)	C27—C28—H28B	109.5
N1—C7—C5	124.7 (3)	H28A—C28—H28B	109.5

N1—C7—H7	117.7	C27—C28—H28C	109.5
С5—С7—Н7	117.7	H28A—C28—H28C	109.5
N1—C8—C9	109.9 (3)	H28B—C28—H28C	109.5
N1—C8—H8A	109.7	С27—С29—Н29А	109.5
С9—С8—Н8А	109.7	C27—C29—H29B	109.5
N1—C8—H8B	109.7	H29A—C29—H29B	109.5
C9—C8—H8B	109.7	C27—C29—H29C	109.5
H8A - C8 - H8B	108.2	H29A—C29—H29C	109.5
04-C9-N2	127.8 (3)	$H_{29B} - C_{29} - H_{29C}$	109.5
04 - 09 - 08	127.0(3) 1181(3)	07-030-06	109.5 123.1(3)
$N_2 C_9 C_8$	110.1(3) 114.1(3)	07 C30 C25	120.2(3)
$N_2 = C_3 = C_3$	114.1(3) 114.8(3)	07 - 020 - 025	120.2(3) 1167(3)
$N_2 = C_{10} = C_{11}$	114.8(3)	C7 N1 C8	110.7(3) 121.5(2)
$N_2 = C_{10} = C_{13}$	100.9(3)	C7 N1 C3	121.3(3) 125.4(2)
12 - 10 - 110	115.2 (5)	C^{2} N1 C^{2}	123.4(2)
N2-C10-H10	107.2	C_{0} N2 C_{10}	112.5(2)
CII—CI0—HI0	107.2	C9 = N2 = C10	124.3 (3)
C15—C10—H10	107.2	C9—N2—Cul	11/.8 (2)
C12—C11—C10	117.2 (3)	C10—N2—Cu1	116.3 (2)
C12—C11—H11A	108.0	C22—N3—C23	122.3 (3)
C10—C11—H11A	108.0	C22—N3—Cu2	124.5 (2)
C12—C11—H11B	108.0	C23—N3—Cu2	113.0 (2)
C10—C11—H11B	108.0	C24—N4—C25	125.3 (3)
H11A—C11—H11B	107.3	C24—N4—Cu2	117.5 (2)
C13—C12—C14	110.0 (3)	C25—N4—Cu2	116.36 (19)
C13—C12—C11	114.8 (3)	C6—O1—Cu1	125.4 (2)
C14—C12—C11	109.5 (3)	C15—O2—Cu1	114.9 (2)
C13—C12—H12	107.4	C21—O5—Cu2	125.1 (2)
C14—C12—H12	107.4	C30—O6—Cu2	115.9 (2)
C11—C12—H12	107.4	Cd1—O9—H9A	110.6
C12—C13—H13A	109.5	Cd1—O9—H9B	104.7
C12—C13—H13B	109.5	H9A—O9—H9B	110.5
H13A—C13—H13B	109.5	Cd1—O10—H10B	109.6
C12—C13—H13C	109.5	Cd1—O10—H10A	109.3
H13A—C13—H13C	109.5	H10B—O10—H10A	109.5
H13B—C13—H13C	109.5	Cd1—O11—H11D	109.9
C12—C14—H14A	109.5	Cd1—O11—H11C	108.8
C12—C14—H14B	109.5	H11D—O11—H11C	109.5
H14A—C14—H14B	109.5	Cd1—O12—H12A	109.2
C12—C14—H14C	109.5	Cd1—O12—H12B	108.4
H14A—C14—H14C	109.5	H12A—O12—H12B	109.5
H14B—C14—H14C	109.5	Cd1—013—H13E	108.7
03-C15-02	122.7(3)	Cd1—013—H13D	109.6
03-C15-C10	119.8 (3)	H13E - O13 - H13D	109.5
02 - C15 - C10	117.6 (3)	Cd1 - 014 - H14D	98 (3)
C_{17} C_{16} C_{21}	121 0 (3)	Cd1 - O14 - H14F	120 (3)
C17 - C16 - H16	110 1	$H14D_014_H14F$	120(3)
C_{1} C_{16} H_{16}	119.1	H154 - O15 - H15B	102 (3)
$C_{16} C_{17} C_{19}$	117.1		109 (3)
$U_{10} - U_{1} - U_{10}$	121.3(3)	ПІОА—010—ПІОD	100.0

С16—С17—Н17 119.2

Hydrogen-bond geometry (.	Å, '	")
---------------------------	------	----

D—H···A	D—H	H···A	D···A	D—H···A
O16—H16B…O8 ⁱ	0.85	1.94	2.783 (4)	171
O16—H16A…O4 ⁱⁱ	0.85	2.11	2.937 (4)	165
O15—H15 <i>B</i> …O5	0.88 (2)	1.91 (2)	2.769 (3)	164 (4)
O15—H15A…O14 ⁱⁱⁱ	0.86(2)	1.98 (2)	2.828 (4)	168 (4)
O14—H14 D ···O4 ^{iv}	0.87 (2)	1.86 (2)	2.714 (4)	171 (3)
O14—H14 <i>E</i> ···O3	0.84 (2)	2.07 (2)	2.911 (3)	177 (3)
O13—H13 <i>E</i> ···O4 ^{iv}	0.85	2.44	2.870 (4)	112
O12—H12 <i>B</i> ···O8 ^v	0.85	2.12	2.853 (3)	144
O12—H12A····O7 ^{vi}	0.85	2.51	2.809 (3)	102
O11—H11C…O15	0.85	2.30	2.879 (4)	125
O11—H11D····O8 ⁱ	0.85	2.20	2.779 (4)	126
O10—H10A…O6 ^{vi}	0.85	1.93	2.685 (3)	147
O10—H10 <i>B</i> …O2	0.85	2.52	3.261 (3)	147
O10—H10B…O1	0.85	2.05	2.729 (3)	136
O9—H9A…O15	0.85	1.81	2.652 (4)	167
О9—H9 <i>B</i> …О2	0.84	1.99	2.812 (3)	166

Symmetry codes: (i) -*x*+1, *y*+1/2, -*z*+1; (ii) -*x*+1, *y*+1/2, -*z*+2; (iii) *x*+1, *y*, *z*; (iv) -*x*, *y*+1/2, -*z*+2; (v) -*x*, *y*+1/2, -*z*+1; (vi) *x*-1, *y*, *z*.