organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

5-Benzylidene-2,3-diphenyl-1,2-selenaphosphole-2-selenide

Yang Li, Guoxiong Hua, Alexandra M. Z. Slawin and J. Derek Woollins*

Department of Chemistry, University of St Andrews, St Andrews KY16 9ST, Scotland Correspondence e-mail: jdw3@st-andrews.ac.uk

Received 15 November 2007; accepted 22 November 2007

Key indicators: single-crystal X-ray study; T = 93 K; mean σ (C–C) = 0.005 Å; R factor = 0.035; wR factor = 0.077; data-to-parameter ratio = 15.6.

The title compound, $C_{23}H_{19}PSe_2$, has a central five-membered twist C_3PSe ring conformation. One phenyl ring substituent, attached to an sp^2 carbon, is approximately coplanar with the C_3PSe ring whilst the other organic substituents, attached to an sp^3 -carbon and a P^V atom, lie on the same side of the ring.

Related literature

For related literature, see: Yoshifuji *et al.* (1998); Fitzmaurice *et al.* (1988); Gray, Bhattacharyya *et al.* (2005); Gray, Slawin *et al.* (2005); Hua & Woollins (2007) and literature cited therein; Hua *et al.* (2006); Mugesh *et al.* (2001); Shi *et al.* (2006, 2007); Sommen *et al.* (2005).

Experimental

Crystal data	
$C_{23}H_{19}PSe_2$	b = 14.4348 (14) Å
$M_r = 484.27$	c = 12.4433 (12) Å
Monoclinic, $C2/c$	$\beta = 94.847 \ (2)^{\circ}$
a = 22.385 (2) Å	V = 4006.4 (7) Å ³

Z = 8
Mo $K\alpha$ radiation
$\mu = 3.78 \text{ mm}^{-1}$

Data collection

Rigaku Mercury CCD
diffractometer
Absorption correction: multi-scan
(CrystalClear; Rigaku,2004)
$T_{\rm min} = 0.515, T_{\rm max} = 0.692$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.035$ 235 parameters $wR(F^2) = 0.077$ H-atom parameters constrainedS = 1.04 $\Delta \rho_{max} = 0.95$ e Å $^{-3}$ 3667 reflections $\Delta \rho_{min} = -0.41$ e Å $^{-3}$

T = 93 (2) K $0.30 \times 0.15 \times 0.10$ mm

 $R_{\rm int} = 0.043$

11508 measured reflections 3667 independent reflections

3125 reflections with $I > 2\sigma(I)$

Table 1Selected geometric parameters (Å, $^{\circ}$).

Se2-C9	1.941 (3)	P1-C7	1.862 (3)
Se2-P1	2.2523 (9)	C8-C9	1.334 (5)
Se1-P1	2.1044 (9)	C8-C7	1.500 (5)
P1-C1	1.817 (3)		
C9-Se2-P1	87.97 (10)	C7-P1-Se2	96.47 (10)
C1-P1-C7	109.16 (15)	Se1-P1-Se2	115.54 (4)
C1-P1-Se1	112.86 (11)	C9-C8-C7	123.3 (3)
C7-P1-Se1	115.65 (11)	C8-C7-P1	107.5 (2)
C1-P1-Se2	105.64 (11)	C8-C9-Se2	117.1 (2)

Data collection: *CrystalClear* (Rigaku, 2004); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: Bruker *SHELXTL* (Sheldrick, 2003); software used to prepare material for publication: Bruker *SHELXTL*.

The authors are grateful to the Engineering and Physical Science Research Council (EPSRC, UK) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2054).

References

- Fitzmaurice, J. C., Williams, J. C., Wood, P. T. & Woollins, J. D. (1988). J. Chem. Soc. Chem. Commun. pp. 741–743.
- Gray, I. P., Bhattacharyya, P., Slawin, A. M. Z. & Woollins, J. D. (2005). Chem. Eur. J. 11, 6221–6227.
- Gray, I. P., Slawin, A. M. Z. & Woollins, J. D. (2005). Dalton Trans. pp. 2188– 2194.
- Hua, G., Li, Y., Slawin, A. M. Z. & Woollins, J. D. (2006). Org. Lett. 8, 5251– 5254.
- Hua, G. & Woollins, J. D. (2007). Tetrahedron Lett. 48, 3677-3679.
- Mugesh, G., Du Mont, W.-W. & Sies, H. (2001). Chem. Rev. 101, 2125–2179.
- Rigaku (2004). CrystalClear. Version 1.36. Rigaku Corporation, Tokyo, Japan. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (2003). SHELXTL. Version 6.14. Bruker AXS Inc., Madison, Wisconsin, USA.
- Shi, W., Shafaei-Fallah, M., Anson, C. E. & Rothenberger, A. (2006). Dalton Trans. pp. 2979–2983.
- Shi, W., Shafaei-Fallah, M., Zhang, L., Anson, C. E., Matern, E. & Rothenberger, A. (2007). *Chem. Eur. J.* **13**, 598–603.
- Sommen, G. L., Linden, A. & Heimgartner, H. (2005). Helv. Chim. Acta, 88, 766–773.
- Yoshifuji, M., An, D. L., Higeta, N. & Toyota, K. (1998). Chem. Lett. pp. 17-18.

supporting information

Acta Cryst. (2008). E64, o4 [https://doi.org/10.1107/S1600536807062228] 5-Benzylidene-2,3-diphenyl-1,2-selenaphosphole-2-selenide

Yang Li, Guoxiong Hua, Alexandra M. Z. Slawin and J. Derek Woollins

S1. Comment

Organoselenium chemistry is attracting increasing attention because of chemo-, regio-, and stereoselective reactions and useful biological activity(Mugesh *et al.*, 2001). However, the synthesis of selenium-containing organic heterocycles can be problematic involving use of toxic selenium reagents which are often difficult to handle. 2,4-bis(phenyl)-1,3-diselenadiphosphetane-2,4-diselenide [PhP(Se)(μ -Se)]₂, known as Woollins reagent (WR) excels in efficiency and broad utility, capable of preparing a wide range selenium-containing heterocycles and the related compounds (Gray, Bhattacharyya *et al.* (2005); Gray, Slawin *et al.* (2005); Shi *et al.*, 2006, 2007). In our new five membered P—Se heterocycle the P = Se bond length (2.1044 (9) Å) and the P—Se distance (2.2523 (9) Å, Table 1) are consistent with the related selenides-containing P^V= Se bonds (2.081 (2) - 2.123 (3) Å) and P^V—Se single bonds (Fitzmaurice *et al.* 1988, Yoshifuji *et al.* 1998).

S2. Experimental

A mixture of dibenzoylideneacetone (0.47 g, 2 mmol) and Woollins' reagent (0.54 g, 1 mmol) in 10 ml of dry toluene was refluxed for 20 hr. The red suspension disappeared and a red solution was formed along with a small amount of elemental selenium in the bottom of flask. Upon cooling to room temperature the mixture was purified by silica gel column chromatograhy (toluene as eluent) to give the title compound in 83% yield. Colorless crystal were grown from dichloromethane with slow diffusion of n-hexane. Anal. Calcd for C₂₃H₁₉PSe₂: C, 57.04; H, 3.95. Found: C, 57.01; H, 3.99. ¹H NMR (CDCl₃): 7.63–7.47 (m, 2H, ArH), 7.37–7.30 (m, 3H, ArH), 7.21–7.12 (m, 4H, ArH), 7.11–7.04 (m, 4H, AeH), 6.96–6.93 (m, 2H, ArH), 7.05 (d, 1H, CH=CH), 6.95 (d, 1H, CH=CH), 6.66 (dd, 1H, CH=CH), 6.36 (dd, 1H, CH=CH). ³¹P NMR (CDCl₃): 69.85 (s, *J*(P,Se_{endo}) = 350 Hz, *J*(P,Se_{exo}) = 782 Hz). ⁷⁷Se NMR (CDCl₃): 354.85 (*J*(P,Se_{endo}) = 350 Hz), -169.99 (*J*(P,Se_{exo}) = 780 Hz).

S3. Refinement

All H atoms were included in calculated positions (C—H distances are 0.98 Å for methyl H atoms, 0.99 Å for methylene H atoms and 0.95 Å for aryl H atoms) and were refined as riding atoms with $U_{iso}(H) = 1.2 U_{eq}$ (parent atom, methylene and aryl H atoms) or $U_{iso}(H) = 1.5 U_{eq}$ (parent atom, methyl H atoms).

The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.

F(000) = 1920

 $\theta = 1.6 - 25.3^{\circ}$

 $\mu = 3.78 \text{ mm}^{-1}$ T = 93 K

Prism, colorless

 $0.30\times0.15\times0.10~mm$

 $D_{\rm x} = 1.606 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 8628 reflections

5-Benzylidene-2,3-diphenyl-1,2-selenaphosphole-2-selenide

Crystal data C₂₃H₁₉PSe₂ $M_r = 484.27$ Monoclinic, C2/c Hall symbol: -C 2yc a = 22.385 (2) Å b = 14.4348 (14) Å c = 12.4433 (12) Å $\beta = 94.847$ (2)° V = 4006.4 (7) Å³ Z = 8

Data collection

Rigaku Mercury CCD	11508 measured reflections
diffractometer	3667 independent reflections
Radiation source: rotating anode	3125 reflections with $I > 2\sigma(I)$
Confocal monochromator	$R_{\rm int} = 0.043$
ω and φ scans	$\theta_{\rm max} = 25.5^{\circ}, \ \theta_{\rm min} = 2.3^{\circ}$
Absorption correction: multi-scan	$h = -26 \rightarrow 17$
(CrystalClear; Rigaku,2004)	$k = -18 \longrightarrow 18$
$T_{\min} = 0.515, \ T_{\max} = 0.692$	$l = -15 \rightarrow 15$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.035$	Hydrogen site location: inferred from
$wR(F^2) = 0.077$	neighbouring sites
S = 1.04	H-atom parameters constrained
3667 reflections	$w = 1/[\sigma^2(F_o^2) + (0.032P)^2 + 14.4806P]$
235 parameters	where $P = (F_0^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.95$ e Å ⁻³
direct methods	$\Delta \rho_{\rm min} = -0.41 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

 $U_{\rm iso} * / U_{\rm eq}$ Ζ x v Se2 0.02008 (10) 0.946290 (15) -0.03631(2)0.57968 (3) 0.02484 (11) Se1 0.960236 (16) 0.21801(2)0.57205(3)P1 0.90715 (4) 0.10413 (6) 0.60975(7)0.01702 (19) C19 -0.4014(2)0.0236 (8) 0.93533 (15) 0.5818 (3) H19 0.9426 -0.37430.5145 0.028* C6 0.81730(16) 0.1775(2)0.4664(3)0.0237 (8) H6 0.4600 0.028* 0.8439 0.2281 C10 0.85050(14) 0.1485(2)0.7960(2)0.0182 (7) C2 0.79343 (16) 0.0315(2)0.5460(3)0.0254 (8) H2 0.8042 -0.01880.5931 0.030* C11 0.79206 (15) 0.1186 (3) 0.8016 (3) 0.0240 (8) H11 0.7813 0.0573 0.7800 0.029* C5 0.76207 (17) 0.1763(3)0.4063(3)0.0326 (9) H5 0.7515 0.2253 0.3573 0.039* 0.76399 (17) C13 0.2669 (3) 0.8696(3)0.0286 (9) 0.8945 0.034* H13 0.7346 0.3072 C1 0.83355 (14) 0.1048 (2) 0.5360 (3) 0.0188 (7) C15 0.86516 (16) 0.2385(2)0.8277(3)0.0245 (8) 0.029* H15 0.9050 0.2602 0.8245 C22 0.91438 (18) -0.4819(3)0.7761(3)0.0326 (9) H22 0.9070 -0.50960.8430 0.039* C18 0.92438 (14) -0.3447(2)0.6681(3)0.0201(7)C3 0.73807 (17) 0.0323(3)0.4872(3)0.0330 (9) H3 -0.0169 0.4949 0.040* 0.7106 C12 0.74889 (16) 0.1772 (3) 0.8384(3)0.0294 (8) 0.7090 0.035* H12 0.1556 0.8422 C4 0.72257 (18) 0.1045 (3) 0.4173 (3) 0.0349 (9) H4 0.6846 0.1046 0.3769 0.042* C8 0.89178 (15) -0.0157(2)0.7738(2)0.0202 (7) H8 0.8354 0.024* 0.8729 -0.0357C14 0.2971 (3) 0.8641(3)0.0299 (9) 0.82195 (17) H14 0.3586 0.8854 0.036* 0.8325 C21 0.92538 (16) -0.5374(2)0.6896(3)0.0294 (8) H21 0.9258 -0.60290.6971 0.035* C16 0.90956 (15) -0.1790(2)0.7240(3)0.0216(7)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

supporting information

H16	0.8966	-0.2003	0.7904	0.026*	
C7	0.89842 (15)	0.0864 (2)	0.7559 (3)	0.0186 (7)	
H7	0.9372	0.1052	0.7955	0.022*	
C23	0.91395 (17)	-0.3864 (3)	0.7666 (3)	0.0274 (8)	
H23	0.9066	-0.3490	0.8269	0.033*	
C17	0.92483 (14)	-0.2435 (2)	0.6540 (3)	0.0196 (7)	
H17	0.9374	-0.2214	0.5876	0.024*	
C9	0.91106 (14)	-0.0799 (2)	0.7077 (3)	0.0185 (7)	
C20	0.93580 (16)	-0.4975 (3)	0.5923 (3)	0.0292 (8)	
H20	0.9433	-0.5354	0.5325	0.035*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Se2	0.02552 (19)	0.01480 (18)	0.02139 (18)	0.00227 (13)	0.01059 (13)	0.00242 (14)
Se1	0.0290 (2)	0.01641 (18)	0.0306 (2)	-0.00455 (14)	0.01166 (15)	0.00100 (15)
P1	0.0214 (4)	0.0136 (4)	0.0169 (4)	-0.0008 (3)	0.0065 (3)	0.0003 (3)
C19	0.0256 (19)	0.0207 (18)	0.0248 (19)	-0.0015 (14)	0.0034 (14)	-0.0006 (15)
C6	0.0312 (19)	0.0211 (18)	0.0200 (18)	0.0048 (15)	0.0083 (14)	0.0030 (15)
C10	0.0246 (18)	0.0223 (18)	0.0078 (15)	0.0015 (14)	0.0013 (12)	0.0015 (14)
C2	0.032 (2)	0.0220 (18)	0.0214 (18)	-0.0023 (15)	-0.0003 (14)	0.0039 (16)
C11	0.0277 (19)	0.0263 (19)	0.0190 (18)	-0.0022 (15)	0.0076 (14)	-0.0020 (15)
C5	0.041 (2)	0.036 (2)	0.0207 (19)	0.0131 (18)	-0.0013 (16)	0.0044 (17)
C13	0.036 (2)	0.032 (2)	0.0183 (18)	0.0138 (17)	0.0096 (15)	0.0010 (16)
C1	0.0226 (17)	0.0199 (17)	0.0142 (16)	0.0005 (14)	0.0039 (13)	-0.0046 (14)
C15	0.0289 (19)	0.0238 (19)	0.0208 (18)	0.0001 (15)	0.0018 (14)	-0.0012 (15)
C22	0.048 (2)	0.023 (2)	0.026 (2)	-0.0017 (17)	-0.0025 (17)	0.0092 (17)
C18	0.0152 (16)	0.0176 (17)	0.0272 (19)	-0.0003 (13)	-0.0010 (13)	0.0009 (15)
C3	0.032 (2)	0.039 (2)	0.028 (2)	-0.0071 (18)	-0.0020 (16)	-0.0057 (19)
C12	0.0220 (18)	0.042 (2)	0.0252 (19)	-0.0006 (16)	0.0071 (14)	0.0067 (17)
C4	0.034 (2)	0.046 (3)	0.023 (2)	0.0075 (19)	-0.0058 (16)	-0.0061 (19)
C8	0.0263 (18)	0.0233 (19)	0.0114 (16)	0.0011 (14)	0.0036 (13)	0.0018 (14)
C14	0.042 (2)	0.022 (2)	0.026 (2)	0.0046 (16)	0.0036 (16)	-0.0053 (17)
C21	0.031 (2)	0.0151 (18)	0.040 (2)	-0.0019 (15)	-0.0068 (16)	0.0023 (17)
C16	0.0279 (19)	0.0191 (17)	0.0183 (17)	0.0011 (14)	0.0035 (14)	0.0067 (14)
C7	0.0214 (17)	0.0181 (17)	0.0164 (17)	-0.0001 (13)	0.0029 (13)	0.0022 (14)
C23	0.038 (2)	0.0219 (19)	0.0219 (19)	-0.0003 (16)	-0.0006 (15)	0.0008 (16)
C17	0.0195 (17)	0.0192 (17)	0.0204 (17)	-0.0013 (13)	0.0031 (13)	0.0034 (14)
C9	0.0205 (17)	0.0190 (17)	0.0159 (17)	0.0007 (13)	0.0013 (13)	0.0029 (14)
C20	0.031 (2)	0.0215 (19)	0.036 (2)	-0.0027 (15)	0.0029 (16)	-0.0058 (17)

Geometric parameters (Å, °)

Se2—C9	1.941 (3)	C15—C14	1.389 (5)	
Se2—P1	2.2523 (9)	C15—H15	0.9500	
Se1—P1	2.1044 (9)	C22—C21	1.381 (5)	
P1—C1	1.817 (3)	C22—C23	1.383 (5)	
P1—C7	1.862 (3)	C22—H22	0.9500	

C19—C18	1.389 (5)	C18—C23	1.402 (5)
C19—C20	1.393 (5)	C18—C17	1.472 (5)
С19—Н19	0.9500	C3—C4	1.383 (6)
C6—C5	1.390 (5)	С3—Н3	0.9500
C6—C1	1.390 (5)	С12—Н12	0.9500
С6—Н6	0.9500	C4—H4	0.9500
C10—C11	1 385 (5)	C8—C9	1334(5)
C10-C15	1 389 (5)	C8—C7	1.500(5)
C10-C7	1.505 (3)	C8—H8	0.9500
C_{2}	1.315(1) 1.385(5)	C14H14	0.9500
$C_2 C_1$	1.505(5)	C_{21} C_{20}	1.378(5)
$C_2 = C_1$	0.9500	$C_{21} = C_{20}$	0.0500
$C_2 = 112$	1 200 (5)	C_{21} C_{16} C_{17}	0.9300
	1.590 (5)	C16 - C1	1.339(3)
	0.9300		1.440 (3)
C5—C4	1.377 (6)	C10—H10	0.9500
CS—HS	0.9500	C/-H/	1.0000
C13—C14	1.376 (5)	С23—Н23	0.9500
C13—C12	1.385 (5)	С17—Н17	0.9500
C13—H13	0.9500	C20—H20	0.9500
C9—Se2—P1	87 97 (10)	C4—C3—C2	120 3 (4)
C1 - P1 - C7	109 16 (15)	C4—C3—H3	119.8
C1— $P1$ — $Se1$	112 86 (11)	$C_2 - C_3 - H_3$	119.8
$C7_P1_Se1$	112.00 (11)	C_{13} C_{12} C_{11}	120.0(3)
$C_1 = P_1 = S_2^2$	105 64 (11)	$C_{13}^{12} = C_{12}^{12} = C_{11}^{11}$	120.0 (3)
$C_1 = 1 = 3e_2$	105.04(11) 06.47(10)	$C_{13} - C_{12} - H_{12}$	120.0
C = 1 = 362	90.47(10)	$C_{11} = C_{12} = 1112$	120.0
$Se_1 - F_1 - Se_2$	113.34(4) 120.0(2)	C_{3}	120.1 (4)
C18 - C19 - C20	120.9 (5)	$C_3 = C_4 = H_4$	120.0
C18—C19—H19	119.5	$C_3 - C_4 - H_4$	120.0
C20—C19—H19	119.5	$C_{9} = C_{8} = C_{7}$	123.3 (3)
C5—C6—C1	120.0 (3)	C9—C8—H8	118.4
С5—С6—Н6	120.0	С/—С8—Н8	118.4
С1—С6—Н6	120.0	C13—C14—C15	120.6 (3)
C11—C10—C15	118.6 (3)	C13—C14—H14	119.7
C11—C10—C7	122.0 (3)	C15—C14—H14	119.7
C15—C10—C7	119.4 (3)	C20—C21—C22	119.7 (3)
C3—C2—C1	119.9 (3)	C20—C21—H21	120.1
C3—C2—H2	120.1	C22—C21—H21	120.1
C1—C2—H2	120.1	C17—C16—C9	125.9 (3)
C10-C11-C12	120.9 (3)	C17—C16—H16	117.1
C10-C11-H11	119.6	С9—С16—Н16	117.1
C12—C11—H11	119.6	C8—C7—C10	116.8 (3)
C4—C5—C6	120.3 (4)	C8—C7—P1	107.5 (2)
С4—С5—Н5	119.8	C10—C7—P1	112.1 (2)
С6—С5—Н5	119.8	С8—С7—Н7	106.6
C14—C13—C12	119.4 (3)	С10—С7—Н7	106.6
C14—C13—H13	120.3	Р1—С7—Н7	106.6
C12—C13—H13	120.3	C22—C23—C18	120.2 (3)

C6—C1—C2	119.4 (3)	С22—С23—Н23	119.9
C6—C1—P1	119.8 (3)	C18—C23—H23	119.9
C2—C1—P1	120.8 (3)	C16—C17—C18	127.4 (3)
C14—C15—C10	120.5 (3)	С16—С17—Н17	116.3
C14—C15—H15	119.7	C18—C17—H17	116.3
C10—C15—H15	119.7	C8—C9—C16	126.0 (3)
C21—C22—C23	120.8 (3)	C8—C9—Se2	117.1 (2)
C21—C22—H22	119.6	C16—C9—Se2	116.8 (2)
C23—C22—H22	119.6	C21—C20—C19	119.9 (3)
C19—C18—C23	118.4 (3)	С21—С20—Н20	120.0
C19—C18—C17	119.3 (3)	C19—C20—H20	120.0
C23—C18—C17	122.3 (3)		
C9—Se2—P1—C1	-90.70 (14)	C23—C22—C21—C20	-0.3 (6)
C9—Se2—P1—C7	21.31 (14)	C9—C8—C7—C10	149.3 (3)
C9—Se2—P1—Se1	143.79 (10)	C9—C8—C7—P1	22.4 (4)
C15—C10—C11—C12	-0.2 (5)	C11—C10—C7—C8	-29.5 (4)
C7—C10—C11—C12	-179.8 (3)	C15—C10—C7—C8	150.9 (3)
C1—C6—C5—C4	1.7 (5)	C11—C10—C7—P1	95.1 (3)
C5—C6—C1—C2	-1.0 (5)	C15—C10—C7—P1	-84.5 (3)
C5—C6—C1—P1	177.2 (3)	C1—P1—C7—C8	82.6 (2)
C3—C2—C1—C6	-0.3 (5)	Se1—P1—C7—C8	-148.82 (19)
C3—C2—C1—P1	-178.5 (3)	Se2—P1—C7—C8	-26.4 (2)
C7—P1—C1—C6	128.1 (3)	C1—P1—C7—C10	-47.0 (3)
Se1—P1—C1—C6	-2.0 (3)	Se1—P1—C7—C10	81.5 (2)
Se2—P1—C1—C6	-129.2 (2)	Se2—P1—C7—C10	-156.1 (2)
C7—P1—C1—C2	-53.7 (3)	C21—C22—C23—C18	0.4 (6)
Se1—P1—C1—C2	176.2 (2)	C19—C18—C23—C22	-0.3 (5)
Se2—P1—C1—C2	49.1 (3)	C17—C18—C23—C22	-179.6 (3)
C11—C10—C15—C14	-0.1 (5)	C9—C16—C17—C18	179.4 (3)
C7-C10-C15-C14	179.6 (3)	C19—C18—C17—C16	172.9 (3)
C20-C19-C18-C23	0.2 (5)	C23-C18-C17-C16	-7.9 (5)
C20-C19-C18-C17	179.4 (3)	C7—C8—C9—C16	175.7 (3)
C1—C2—C3—C4	1.0 (5)	C7—C8—C9—Se2	-2.5 (4)
C14—C13—C12—C11	-0.3 (5)	C17—C16—C9—C8	174.8 (3)
C10-C11-C12-C13	0.3 (5)	C17—C16—C9—Se2	-6.9 (5)
C6—C5—C4—C3	-1.0 (6)	P1—Se2—C9—C8	-14.4 (3)
C2—C3—C4—C5	-0.4 (6)	P1—Se2—C9—C16	167.2 (3)
C12-C13-C14-C15	0.0 (5)	C22—C21—C20—C19	0.2 (5)
C10-C15-C14-C13	0.2 (5)	C18—C19—C20—C21	-0.1 (5)