Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

catena-Poly[[[bis(4-aminobenzoato- κ O)copper(II)]- μ -1,1'-(pentane-1,5-diyl)diimidazole] trihydrate]

Wen-Li Zhang, Lai-Ping Zhang and Jian-Fang Ma*

Department of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China Correspondence e-mail: majf247nenu@yahoo.com.cn

correspondence e-mail: maji24/hend@yanoo.com.cn

Received 19 November 2007; accepted 29 November 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.033; wR factor = 0.095; data-to-parameter ratio = 17.0.

In the title compound, $\{[Cu(C_7H_6NO_2)_2(C_{11}H_{16}N_4)]\cdot 3H_2O\}_n$, each Cu^{II} atom is coordinated by two O atoms from two 4aminobenzoate anions, and two N atoms from two different 1,1'-(pentane-1,5-diyl)diimidazole (biim-5) ligands, to furnish a distorted square-planar geometry. The biim-5 ligand coordinates to two copper(II) cations, acting as a bridging ligand; as a result the copper(II) cations are connected to form an infinite chain structure. The polymeric chains are linked through a variety of hydrogen bonds to form a threedimensional structure.

Related literature

For related literature, see: Batten & Robson (1998); Chen & Gao (2002); Ma *et al.* (2000); Moulton & Zaworotko (2001); Tong *et al.* (2002); Yang *et al.* (2005, 2006).

Crystal data

 $[Cu(C_7H_6NO_2)_2(C_{11}H_{16}N_4)]\cdot 3H_2O$ $M_r = 594.12$ Monoclinic, $P2_1/n$ a = 13.082 (9) Å b = 11.151 (1) Å c = 19.505 (2) Å $\beta = 93.725$ (1)°

Data collection

Bruker APEX CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\rm min} = 0.635, T_{\rm max} = 0.746$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.033$
$wR(F^2) = 0.095$
S = 1.03
6488 reflections
382 parameters
12 restraints

 $V = 2839.3 \text{ (4) } \text{\AA}^3$ Z = 4Mo K\alpha radiation $\mu = 0.82 \text{ mm}^{-1}$ T = 293 (2) K0.68 \times 0.45 \times 0.38 mm

16576 measured reflections 6488 independent reflections 4988 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.028$

H atoms treated by a mixture of independent and constrained refinement
$$\begin{split} &\Delta\rho_{max}=0.41\ e\ \mathring{A}^{-3}\\ &\Delta\rho_{min}=-0.34\ e\ \mathring{A}^{-3} \end{split}$$

Table 1		
Hydrogen-bond geom	etry (Å	, °).

$\overline{D = H \dots A}$	D-H	HA	$D \cdots A$	$D = H \cdots A$
	DII	11 71	DI	
$O2W-H2A\cdots O4^{i}$	0.86 (3)	2.09 (3)	2.954 (3)	174 (4)
$N5-H5A\cdotsO1W^{ii}$	0.79 (3)	2.32 (3)	3.100 (3)	172 (5)
$N6 - H6B \cdot \cdot \cdot O1W^{iii}$	0.88 (4)	2.18 (4)	3.046 (3)	170 (5)
$O1W - H1A \cdots O2W$	0.86 (3)	1.95 (3)	2.805 (3)	172 (5)
$O1W-H1B\cdots O4$	0.87 (3)	1.96 (3)	2.802 (2)	163 (4)
$O2W - H2B \cdots O1$	0.94 (3)	2.01 (3)	2.889 (3)	155 (4)
$O3W-H3A\cdots O2$	0.89 (3)	1.87 (3)	2.734 (3)	164 (4)
Symmetry codes: (i) $-x + \frac{3}{2}, y + \frac{1}{2}, -z + \frac{1}{2}.$	-x+1, -y	z, -z + 1; (ii)	$-x + \frac{3}{2}, y + \frac{1}{2}$	$, -z + \frac{3}{2};$ (iii)

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1999); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL-Plus* (Sheldrick, 1990); software used to prepare material for publication: *SHELXL97*.

The authors thank the National Natural Science Foundation of China (grant No. 20471014), the Program for New Century Excellent Talents in Chinese Universities (grant No. NCET-05-0320), the Fok Ying Tung Education Foundation, and the Analysis and Testing Foundation of Northeast Normal University for support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SF2009).

References

- Batten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460-1491.
- Bruker (1997). SMART. Version 5.622. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (1999). SAINT. Version 6.02. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chen, X. M. & Gao, F. L. (2002). Chem. Eur. J. 8, 4811-4817.

- Ma, J. F., Liu, J. F., Xing, Y., Jia, H. Q. & Lin, Y. H. (2000). J. Chem. Soc. Dalton Trans. pp. 2403–2407.
- Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629-1658.
- Sheldrick, G. M. (1990). SHELXTL-Plus. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Tong, M. L., Wu, Y. M., Ru, J., Chen, X. M., Chang, H. C. & Kitagawa, S. (2002). Inorg. Chem. 41, 4846–4848.
- Yang, J., Ma, J. F., Liu, Y. Y., Li, S. L. & Zheng, G. L. (2005). Eur. J. Inorg. Chem. pp. 2174–2180.
- Yang, J., Ma, J. F., Liu, Y. Y., Ma, J. C., Jia, H. Q. & Hu, N. H. (2006). *Eur. J. Inorg. Chem.* pp. 1208–1215.

supporting information

Acta Cryst. (2008). E64, m156–m157 [https://doi.org/10.1107/S1600536807064586] catena-Poly[[[bis(4-aminobenzoato-κO)copper(II)]-μ-1,1'-(pentane-1,5-diyl)diimidazole] trihydrate]

Wen-Li Zhang, Lai-Ping Zhang and Jian-Fang Ma

S1. Comment

In recent years, research into coordination polymers has been expanding rapidly because of their fascinating structural diversity and potential application as functional materials (Batten & Robson, 1998; Moulton & Zaworotko, 2001). To date, a number of one-, two- and three-dimensional infinite frameworks have been generated with linear N,N'-bidentate spacers (Tong *et al.*, 2002). Much of the work has been focused on coordination polymers with rigid ligands, such as 4,4'- bipyridine, pyrazine and their analogues. In our previous work, we have synthsis some compounds contaning 1,1'-(1,4-butanediyl)bis(imidazole) (Ma *et al.*, 2000; Yang *et al.*, 2006). However, flexible ligands such as 1,1'-(1,5-pentanediyl) bis(imidazole) have not been well explored to date. In the present paper, we report the preparation and crystal structure of three-dimensional supermolecule coordination polymer of compound, (I).

As shown in Fig. 1, each Cu^{II} atom is primarily coordinated by two oxygen atoms from two *para*-aminobenzoate anions, and two nitrogen atoms from two different biim-5 ligands, to furnish a distorted square-planar geometry. The Cu —N distances range from 1.967 (2) to 1.975 (2) Å, which are similar to reported Cu—N distances. The Cu1—O distances of 1.970 (1) and 1.976 (1) Å are also similar to reported Cu—O distances (Yang *et al.*, 2006). The pendant carboxy oxygen atoms have weak bonding interactions with the Cu^{II} atom at the axial sites due to the Jahn-Teller effect. The Cu—O distances range from 2.712 to 2.727 Å, which indicated the weak bonding interactions. Each biim-5 ligand coordinates to two Cu^{II} atoms, acting as a bridging ligand and as a result, an one-dimensional chain structure is formed.

The hydrogen bonds in this study have been considered with liberal distance cut-off criteria of 2.5 < D - A < 3.0 Å and 120 < D - H - A < 180°. The selected hydrogen-bond distances and angles are listed in Table 2. It can be seen that there are three H atoms involved in hydrogen bonding in the asymmetric unit, two of which are from amino group and one of which from water molecules. The uncoordinated carboxylate O atoms are also involved in hydrogen bonds and play the role of acceptors. The polymeric chains are connected through various hydrogen bonds to form a three-dimensional structure (Fig. 2).

S2. Experimental

A mixture of $CuCl_2.2H_2O$ (0.171 g, 1 mmol), NaOH (0.08 g, 2 mmol) in water was stirring for 10 min at room temperature, then the $Cu(OH)_2$ solid was filtered. *P*-aminobenzoic acid was added to the $Cu(OH)_2$ suspension in water with stirring. Then biim-5 (0.204 g, 1 mmol) in ethanol was added with stirring for 1 h and blue precipitate was obtained. And then a minimum amount of ammonia (14 *M*) was added to get the blue solution. Suitable blue crystals were obtained from the filtrate after standing at room temperature for several days.

S3. Refinement

All H-atoms bound to carbon were refined using a riding model with d(C-H) = 0.93 Å, $U_{iso}=1.2U_{eq}$ (C) for aromatic and 0.96 Å, $U_{iso} = 1.2U_{eq}$ (C) for CH₂ group. The amino and aqua hydrogen atoms were located in a difference Fourier map and refined isotropically with $U_{iso}(H) = 1.5 U_{eq}(N, O)$.

Figure 1

View of the compound (I). Displacement ellipsoids are drawn at the 30% probability level.

Figure 2

View of the three-dimensional superamolecular structure of (I). The hydrogen bonds are shown as dotted lines. H atoms on the C atoms have been omiited for clarity.

catena-poly[[[bis(4-aminobenzoato-κO)copper(II)]-μ- 1,1'-(pentane-1,5-diyl)diimidazole] trihydrate]

Crystal data

$[C_{11}(C_{7}H_{4}NO_{2})_{2}(C_{11}H_{14}N_{4})]$:3H ₂ O	$\beta = 93.725(1)^{\circ}$
$M_r = 594.12$	$V = 2839.3 (4) Å^3$
Monoclinic, $P2_1/n$	Z = 4
Hall symbol: -P 2yn	F(000) = 1244
a = 13.082 (9) Å	$D_{\rm x} = 1.390 {\rm Mg} {\rm m}^{-3}$
b = 11.151 (1) Å	Mo K α radiation, $\lambda = 0.71069$ Å
c = 19.505 (2) Å	Cell parameters from 6488 reflections

 $\theta = 1.8-28.5^{\circ}$ $\mu = 0.82 \text{ mm}^{-1}$ T = 293 K

Data collection

Bruker APEX CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.635, T_{\max} = 0.746$

Refinement

nojmenten	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.033$	Hydrogen site location: inferred from
$wR(F^2) = 0.095$	neighbouring sites
S = 1.03	H atoms treated by a mixture of independent
6488 reflections	and constrained refinement
382 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0448P)^2 + 0.6476P]$
12 restraints	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.002$
direct methods	$\Delta ho_{ m max} = 0.41 \ m e \ m \AA^{-3}$
	$\Delta \rho_{\rm min} = -0.34 \text{ e} \text{ Å}^{-3}$

Block, blue

 $R_{\rm int} = 0.028$

 $h = -17 \rightarrow 9$

 $k = -14 \rightarrow 13$

 $l = -25 \rightarrow 26$

 $0.68 \times 0.45 \times 0.38 \text{ mm}$

16576 measured reflections

 $\theta_{\text{max}} = 28.5^{\circ}, \ \theta_{\text{min}} = 1.8^{\circ}$

6488 independent reflections

4988 reflections with $I > 2\sigma(I)$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cul	0.724906 (17)	0.20985 (2)	0.494309 (9)	0.03977 (9)	
C1	0.69874 (15)	0.25416 (18)	0.70179 (8)	0.0414 (4)	
C2	0.63431 (17)	0.1687 (2)	0.72737 (9)	0.0515 (5)	
H2	0.5989	0.1165	0.6971	0.062*	
C3	0.62168 (18)	0.1595 (2)	0.79711 (10)	0.0578 (5)	
H3	0.5772	0.1024	0.8131	0.069*	
C4	0.67506 (17)	0.2352 (2)	0.84349 (9)	0.0503 (5)	
C5	0.74098 (18)	0.32010 (19)	0.81822 (10)	0.0521 (5)	
Н5	0.7778	0.3708	0.8485	0.063*	
C6	0.75202 (17)	0.32954 (18)	0.74842 (10)	0.0480 (4)	
H6	0.7958	0.3873	0.7323	0.058*	
C7	0.71394 (15)	0.26575 (18)	0.62690 (9)	0.0437 (4)	

C 0	0 700 (15)	0 12276 (17)	0.00045 (0)	0.0427 (4)
C8	0.72368 (15)	0.132/6(17)	0.28845 (8)	0.0437 (4)
C9	0.66706 (18)	0.05414 (19)	0.24653 (10)	0.0543 (5)
H9	0.6230	0.0002	0.2659	0.065*
C10	0.6/49 (2)	0.0543 (2)	0.17607 (10)	0.0605 (6)
HIO	0.6364	0.0002	0.1488	0.073*
CII	0.73957 (18)	0.1343 (2)	0.14575 (9)	0.0531 (5)
C12	0.79721 (18)	0.21209 (19)	0.18774 (10)	0.0531 (5)
H12	0.8418	0.2653	0.1684	0.064*
C13	0.78948 (16)	0.21189 (18)	0.25818 (9)	0.0483 (5)
H13	0.8287	0.2652	0.2855	0.058*
C14	0.71565 (16)	0.1321 (2)	0.36461 (9)	0.0487 (5)
C15	0.88170 (14)	0.07802 (17)	0.58180 (9)	0.0418 (4)
H15	0.8333	0.0438	0.6087	0.050*
C16	0.95172 (16)	0.17479 (19)	0.50186 (10)	0.0484 (5)
H16	0.9602	0.2202	0.4626	0.058*
C17	1.02826 (16)	0.1299 (2)	0.54402 (10)	0.0536 (5)
H17	1.0982	0.1392	0.5396	0.064*
C18	1.03590 (17)	0.0044 (2)	0.65268 (10)	0.0568 (6)
H18A	1.0945	-0.0381	0.6367	0.068*
H18B	0.9898	-0.0544	0.6704	0.068*
C19	1.07186 (15)	0.0899 (2)	0.71027 (10)	0.0565 (5)
H19A	1.1139	0.0454	0.7443	0.068*
H19B	1.1148	0.1509	0.6914	0.068*
C20	0.98658 (16)	0.15138 (19)	0.74596 (10)	0.0529 (5)
H20A	1.0170	0.2083	0.7789	0.063*
H20B	0.9449	0.1964	0.7120	0.063*
C21	0.91748 (15)	0.0677 (2)	0.78300 (10)	0.0549 (5)
H21A	0.8871	0.0110	0.7499	0.066*
H21B	0.8622	0.1146	0.8003	0.066*
C22	0.96906 (17)	-0.00216(19)	0.84230 (10)	0.0541 (5)
H22A	0.9211	-0.0603	0.8585	0.065*
H22B	1.0269	-0.0458	0.8261	0.065*
C23	1 09798 (15)	0 12327 (18)	0.90985 (9)	0.0438(4)
H23	1 1518	0 1089	0.8820	0.053*
C24	1 00978 (16)	0 18889 (19)	0.99050(10)	0.0501 (5)
H24	0.9912	0.2289	1 0296	0.060*
C25	0.99779 (16)	0.220) 0.1173(2)	0.95058 (10)	0.0546(5)
H25	0.8794	0.0999	0.9566	0.065*
N1	0.8794 0.85934 (12)	0.0777 0.14264 (14)	0.52616 (7)	0.003
N2	0.03734(12) 0.08308(12)	0.14204(14) 0.06823(15)	0.52010(7)	0.0413(3)
N2	1.00482(12)	0.00823(13) 0.07550(14)	0.39449(7)	0.0443(4)
NJ NJ	1.00462(12) 1.10421(12)	0.07539(14) 0.10342(14)	0.89900(7)	0.0429(4)
IN4	1.10431(12)	0.19343(14)	0.90448(7)	0.0422(4)
N5	0.0017(2)	0.2274(2) 0.1242(2)	0.91329(9)	0.0714(6)
	0.7484(2)	0.1342(2)	0.07524(9)	0.0/43(7)
	0.0/388(10)	0.18549 (13)	0.58642 (6)	0.0401(3)
02	0.76375(14)	0.35143 (14)	0.00610(/)	0.0639 (4)
UIW	0.69005 (16)	-0.12845 (16)	0.48742 (9)	0.0730(5)
03	0.76716 (11)	0.21141 (14)	0.39921 (6)	0.0529 (4)

O2W	0.55952 (17)	-0.03625 (18)	0.58310 (12)	0.0875 (6)	
O4	0.65989 (14)	0.05708 (15)	0.39138 (7)	0.0671 (4)	
O3W	0.8944 (2)	0.4784 (2)	0.52971 (15)	0.1152 (9)	
H5A	0.704 (3)	0.261 (4)	0.937 (2)	0.173*	
H5B	0.638 (4)	0.161 (3)	0.927 (2)	0.173*	
H6A	0.698 (3)	0.091 (4)	0.051 (2)	0.173*	
H6B	0.774 (4)	0.199 (4)	0.058 (2)	0.173*	
H1A	0.645 (3)	-0.104 (4)	0.5145 (18)	0.173*	
H1B	0.691 (3)	-0.078(4)	0.4530 (17)	0.173*	
H2A	0.496 (2)	-0.038 (4)	0.593 (2)	0.173*	
H2B	0.577 (3)	0.045 (3)	0.584 (2)	0.173*	
H3A	0.845 (2)	0.436 (4)	0.547 (2)	0.173*	
H3B	0.952 (2)	0.449 (4)	0.558 (2)	0.173*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U ²²	<i>U</i> ³³	U^{12}	U^{13}	U^{23}
Cu1	0.04202 (14)	0.05555 (15)	0.02164 (11)	0.00707 (10)	0.00120 (8)	0.00176 (9)
C1	0.0499 (11)	0.0473 (10)	0.0272 (8)	0.0124 (9)	0.0031 (8)	0.0012 (7)
C2	0.0583 (12)	0.0659 (13)	0.0305 (9)	-0.0015 (10)	0.0036 (9)	-0.0037 (9)
C3	0.0654 (14)	0.0754 (14)	0.0333 (9)	-0.0059 (12)	0.0091 (9)	0.0021 (10)
C4	0.0611 (13)	0.0621 (13)	0.0282 (8)	0.0174 (10)	0.0062 (9)	-0.0008 (8)
C5	0.0675 (13)	0.0528 (12)	0.0353 (9)	0.0119 (10)	-0.0025 (9)	-0.0088(8)
C6	0.0589 (12)	0.0454 (10)	0.0397 (9)	0.0064 (9)	0.0047 (9)	-0.0004 (8)
C7	0.0484 (11)	0.0519 (11)	0.0313 (9)	0.0139 (9)	0.0055 (8)	0.0052 (8)
C8	0.0519 (11)	0.0521 (11)	0.0274 (8)	0.0174 (9)	0.0044 (8)	0.0053 (8)
С9	0.0648 (13)	0.0584 (12)	0.0400 (10)	0.0036 (11)	0.0061 (10)	0.0058 (9)
C10	0.0808 (16)	0.0640 (14)	0.0361 (10)	0.0039 (12)	-0.0013 (10)	-0.0023 (10)
C11	0.0728 (14)	0.0586 (12)	0.0281 (8)	0.0209 (11)	0.0048 (9)	0.0041 (8)
C12	0.0677 (14)	0.0582 (12)	0.0346 (9)	0.0090 (10)	0.0111 (9)	0.0085 (9)
C13	0.0572 (12)	0.0550 (12)	0.0327 (9)	0.0100 (10)	0.0038 (8)	0.0013 (8)
C14	0.0523 (11)	0.0641 (13)	0.0302 (9)	0.0259 (10)	0.0063 (8)	0.0084 (9)
C15	0.0431 (10)	0.0515 (10)	0.0308 (8)	0.0052 (8)	0.0017 (7)	0.0023 (8)
C16	0.0497 (11)	0.0607 (12)	0.0354 (9)	0.0012 (10)	0.0068 (8)	0.0043 (9)
C17	0.0410 (10)	0.0758 (14)	0.0446 (10)	0.0005 (10)	0.0069 (9)	-0.0010 (10)
C18	0.0539 (12)	0.0754 (14)	0.0403 (10)	0.0257 (11)	-0.0038 (9)	0.0039 (10)
C19	0.0414 (10)	0.0871 (16)	0.0398 (10)	-0.0031 (11)	-0.0065 (8)	0.0059 (10)
C20	0.0565 (12)	0.0582 (12)	0.0419 (10)	0.0009 (10)	-0.0120 (9)	-0.0039 (9)
C21	0.0413 (10)	0.0783 (14)	0.0442 (10)	-0.0032 (10)	-0.0038 (9)	-0.0154 (10)
C22	0.0603 (13)	0.0522 (12)	0.0496 (11)	-0.0180 (10)	0.0012 (10)	-0.0102 (9)
C23	0.0428 (10)	0.0544 (11)	0.0343 (9)	-0.0051 (9)	0.0036 (8)	-0.0047 (8)
C24	0.0476 (11)	0.0656 (13)	0.0379 (10)	-0.0019 (10)	0.0077 (8)	-0.0067 (9)
C25	0.0414 (10)	0.0752 (14)	0.0479 (11)	-0.0067 (10)	0.0086 (9)	-0.0042 (10)
N1	0.0418 (8)	0.0544 (9)	0.0276 (7)	0.0055 (7)	0.0024 (6)	0.0011 (6)
N2	0.0422 (8)	0.0580 (10)	0.0321 (7)	0.0108 (7)	-0.0011 (6)	0.0000 (7)
N3	0.0445 (8)	0.0481 (9)	0.0358 (7)	-0.0073 (7)	0.0003 (7)	-0.0021 (7)
N4	0.0422 (8)	0.0558 (9)	0.0285 (7)	-0.0049 (7)	0.0018 (6)	-0.0013 (6)
N5	0.0936 (17)	0.0929 (17)	0.0282 (8)	0.0059 (13)	0.0091 (9)	-0.0018 (9)

supporting information

N6	0.1137 (19)	0.0827 (15)	0.0279 (8)	0.0114 (13)	0.0109 (10)	0.0024 (9)
01	0.0482 (7)	0.0655 (9)	0.0245 (6)	0.0049 (6)	0.0022 (5)	0.0000 (6)
O2	0.0887 (12)	0.0600 (9)	0.0449 (8)	-0.0038 (9)	0.0186 (8)	0.0064 (7)
O1W	0.0865 (12)	0.0683 (11)	0.0655 (11)	0.0060 (9)	0.0135 (9)	0.0146 (9)
O3	0.0486 (8)	0.0851 (11)	0.0250 (6)	0.0149 (7)	0.0024 (6)	0.0009 (6)
O2W	0.0846 (13)	0.0803 (13)	0.0985 (15)	-0.0034 (11)	0.0133 (12)	-0.0157 (11)
O4	0.0865 (12)	0.0744 (10)	0.0425 (8)	0.0088 (9)	0.0203 (8)	0.0176 (7)
O3W	0.130 (2)	0.0837 (15)	0.140 (2)	0.0016 (14)	0.0703 (18)	0.0213 (14)

Geometric parameters (Å, °)

Cu1—N4 ⁱ	1.9677 (15)	C17—N2	1.367 (3)
Cu1—O3	1.9698 (12)	С17—Н17	0.9300
Cu1—N1	1.9745 (15)	C18—N2	1.473 (2)
Cu1—O1	1.9757 (12)	C18—C19	1.524 (3)
C1—C2	1.387 (3)	C18—H18A	0.9700
C1—C6	1.392 (3)	C18—H18B	0.9700
C1—C7	1.493 (2)	C19—C20	1.517 (3)
C2—C3	1.385 (2)	С19—Н19А	0.9700
С2—Н2	0.9300	C19—H19B	0.9700
C3—C4	1.391 (3)	C20—C21	1.515 (3)
С3—Н3	0.9300	C20—H20A	0.9700
C4—N5	1.387 (2)	C20—H20B	0.9700
C4—C5	1.392 (3)	C21—C22	1.516 (3)
C5—C6	1.382 (3)	C21—H21A	0.9700
С5—Н5	0.9300	C21—H21B	0.9700
С6—Н6	0.9300	C22—N3	1.467 (2)
C7—O2	1.239 (2)	C22—H22A	0.9700
C7—O1	1.283 (2)	С22—Н22В	0.9700
C8—C9	1.381 (3)	C23—N4	1.320 (2)
C8—C13	1.391 (3)	C23—N3	1.333 (2)
C8—C14	1.496 (2)	С23—Н23	0.9300
C9—C10	1.385 (3)	C24—C25	1.349 (3)
С9—Н9	0.9300	C24—N4	1.368 (2)
C10—C11	1.389 (3)	C24—H24	0.9300
C10—H10	0.9300	C25—N3	1.363 (2)
C11—C12	1.383 (3)	С25—Н25	0.9300
C11—N6	1.387 (2)	N4—Cu1 ⁱⁱ	1.9677 (15)
C12—C13	1.384 (3)	N5—H5A	0.79 (3)
C12—H12	0.9300	N5—H5B	0.86 (3)
С13—Н13	0.9300	N6—H6A	0.92 (3)
C14—O4	1.247 (3)	N6—H6B	0.88 (4)
C14—O3	1.278 (3)	O1W—H1A	0.86 (3)
C15—N1	1.320 (2)	O1W—H1B	0.87 (3)
C15—N2	1.338 (2)	O2W—H2A	0.86 (3)
С15—Н15	0.9300	O2W—H2B	0.94 (3)
C16—C17	1.350 (3)	O3W—H3A	0.89 (3)
C16—N1	1.374 (2)	O3W—H3B	0.97 (3)

C16—H16	0.9300		
			100.0
N4 ⁱ —Cu1—O3	89.16 (6)	N2—C18—H18B	109.2
N4 ⁴ —Cu1—N1	169.04 (7)	C19—C18—H18B	109.2
O3—Cu1—N1	90.06 (6)	H18A—C18—H18B	107.9
N4 ⁱ —Cu1—O1	91.86 (6)	C20—C19—C18	114.84 (17)
O3—Cu1—O1	171.77 (6)	С20—С19—Н19А	108.6
N1—Cu1—O1	90.48 (6)	C18—C19—H19A	108.6
C2—C1—C6	118.06 (16)	C20—C19—H19B	108.6
C2—C1—C7	122.31 (17)	C18—C19—H19B	108.6
C6—C1—C7	119.62 (18)	H19A—C19—H19B	107.5
C3—C2—C1	121.22 (19)	C21—C20—C19	114.83 (18)
C3—C2—H2	119.4	C21—C20—H20A	108.6
C1—C2—H2	119.4	C19—C20—H20A	108.6
C2—C3—C4	120.5 (2)	C21—C20—H20B	108.6
С2—С3—Н3	119.8	C19—C20—H20B	108.6
С4—С3—Н3	119.8	H20A-C20-H20B	107.5
N5—C4—C3	120.7 (2)	C20—C21—C22	115.50 (17)
N5-C4-C5	120.7(2)	C20—C21—H21A	108.4
$C_{3}-C_{4}-C_{5}$	118.60(17)	$C_{22} = C_{21} = H_{21A}$	108.4
C6-C5-C4	120.47(19)	C_{20} C_{21} H_{21R}	108.4
С6—С5—Н5	119.8	$C_{22} = C_{21} = H_{21B}$	108.4
C4 - C5 - H5	119.8	$H_{21} = C_{21} = H_{21} = H_{21}$	107.5
C_{1}	117.0	N3 C22 C21	107.5 112.43(17)
C5 C6 H6	121.2(2)	N3-C22-C21	112.43(17)
$C_{1} C_{6} U_{6}$	119.4	$N_{3} = C_{22} = H_{22} A$	109.1
C1 = C0 = H0	119.4	C21—C22—H22A	109.1
02 - 07 - 01	122.01(10)	$N_3 = C_{22} = H_{22}B$	109.1
	119.56 (18)	C21—C22—H22B	109.1
	117.83 (17)	H22A—C22—H22B	107.8
C9—C8—C13	118.32 (17)	N4—C23—N3	111.48 (16)
C9—C8—C14	121.02 (19)	N4—C23—H23	124.3
C13—C8—C14	120.66 (19)	N3—C23—H23	124.3
C8—C9—C10	121.0 (2)	C25—C24—N4	109.38 (17)
С8—С9—Н9	119.5	C25—C24—H24	125.3
С10—С9—Н9	119.5	N4—C24—H24	125.3
C9—C10—C11	120.6 (2)	C24—C25—N3	106.62 (17)
C9—C10—H10	119.7	C24—C25—H25	126.7
C11—C10—H10	119.7	N3—C25—H25	126.7
C12—C11—N6	120.7 (2)	C15—N1—C16	105.85 (16)
C12—C11—C10	118.36 (17)	C15—N1—Cu1	127.69 (13)
N6-C11-C10	120.9 (2)	C16—N1—Cu1	125.30 (13)
C11—C12—C13	121.0 (2)	C15—N2—C17	107.20 (15)
C11—C12—H12	119.5	C15—N2—C18	126.28 (17)
C13—C12—H12	119.5	C17—N2—C18	126.52 (17)
C12—C13—C8	120.6 (2)	C23—N3—C25	107.03 (16)
C12—C13—H13	119.7	C23—N3—C22	126.39 (16)
C8—C13—H13	119.7	C25—N3—C22	126.51 (17)
O4—C14—O3	123.10 (17)	C23—N4—C24	105.47 (16)

O4—C14—C8	120.0 (2)	C23—N4—Cu1 ⁱⁱ	124.79 (13)
O3—C14—C8	116.91 (18)	C24—N4—Cu1 ⁱⁱ	129.60 (13)
N1—C15—N2	111.15 (16)	C4—N5—H5A	114 (4)
N1—C15—H15	124.4	C4—N5—H5B	116 (3)
N2—C15—H15	124.4	H5A—N5—H5B	119 (4)
C17 - C16 - N1	109 12 (17)	C11—N6—H6A	114 (3)
C17 - C16 - H16	125.4	C11 N6—H6B	116(3)
N1_C16_H16	125.4	H6A_N6_H6B	110(3) 122(4)
C_{16} C_{17} N2	106 67 (17)	C7 - 01 - Cu1	122(4) 108 37 (12)
$C_{10} = C_{17} = N_2$	100.07 (17)		108.37(12)
$N_{2} = C_{17} = H_{17}$	120.7	111A - 01W - 111B	108(3) 10870(12)
$N_2 = C_1^2 = C_1^2$	120.7		106.70(12)
$N_2 = C_{18} = U_{184}$	111.85 (18)	$H_2A = O_2W = H_2B$	103(3)
N_2 — C_{18} — H_{18A}	109.2	H3A—03W—H3B	99 (3)
C19—C18—H18A	109.2		
C6—C1—C2—C3	1.1 (3)	N2-C15-N1-C16	0.5 (2)
C7—C1—C2—C3	179.84 (19)	N2—C15—N1—Cu1	-167.55 (13)
C1—C2—C3—C4	-1.1 (3)	C17—C16—N1—C15	-0.8(2)
C2-C3-C4-N5	179.2 (2)	C17—C16—N1—Cu1	167.69 (14)
$C_{2}-C_{3}-C_{4}-C_{5}$	0.2(3)	$N4^{i}$ —Cu1—N1—C15	119.0 (3)
$N_{5}-C_{4}-C_{5}-C_{6}$	-1783(2)	O3-Cu1-N1-C15	-155 13 (17)
C_{3} C_{4} C_{5} C_{6}	0.7(3)	01 - Cu1 - N1 - C15	16.65(17)
C4-C5-C6-C1	-0.6(3)	$N4^{i}$ Cu1 N1 C16	-469(4)
$C_1 C_2 C_1 C_6 C_5$	-0.2(3)	$O_3 C_{11} N_1 C_{16}$	38.96 (16)
$C_2 - C_1 - C_6 - C_5$	-170.02(18)	$O_{1} = C_{11} = N_{1} = C_{10}$	-140.25(16)
$C_{1} = C_{1} = C_{0} = C_{3}$	-179.02(18)	VI = CII = NI = CIO	-149.23(10) -0.1(2)
$C_2 = C_1 = C_7 = O_2$	1/2.4(2)	NI = C15 = N2 = C17	-0.1(2)
$C_{0} - C_{1} - C_{7} - O_{2}$	-8.8(3)	NI = C15 = N2 = C18	1/9.02 (18)
	-7.3(3)	C16-C17-N2-C15	-0.4 (2)
	1/1.39(18)	C16-C1/-N2-C18	-1/9.49 (19)
C13—C8—C9—C10	-0.4 (3)	C19—C18—N2—C15	-99.2 (2)
C14—C8—C9—C10	-179.67 (19)	C19—C18—N2—C17	79.8 (2)
C8—C9—C10—C11	-0.4 (3)	N4—C23—N3—C25	0.0 (2)
C9—C10—C11—C12	1.2 (3)	N4—C23—N3—C22	177.13 (18)
C9—C10—C11—N6	179.4 (2)	C24—C25—N3—C23	-0.5(2)
N6-C11-C12-C13	-179.4 (2)	C24—C25—N3—C22	-177.63 (19)
C10-C11-C12-C13	-1.1 (3)	C21—C22—N3—C23	-93.1 (2)
C11—C12—C13—C8	0.3 (3)	C21—C22—N3—C25	83.5 (2)
C9—C8—C13—C12	0.5 (3)	N3—C23—N4—C24	0.5 (2)
C14—C8—C13—C12	179.72 (17)	N3—C23—N4—Cu1 ⁱⁱ	-175.54 (12)
C9—C8—C14—O4	2.5 (3)	C25-C24-N4-C23	-0.8 (2)
C13—C8—C14—O4	-176.73 (18)	C25-C24-N4-Cu1 ⁱⁱ	174.99 (15)
C9—C8—C14—O3	-176.92 (18)	O2—C7—O1—Cu1	9.2 (2)
C13—C8—C14—O3	3.8 (3)	C1C7	-171.10 (13)
N1-C16-C17-N2	0.7 (2)	N4 ⁱ —Cu1—O1—C7	-94.66 (13)
N2-C18-C19-C20	65.9 (2)	N1—Cu1—O1—C7	74.64 (13)
C18—C19—C20—C21	62.9 (2)	O4—C14—O3—Cu1	-9.3 (2)
C19—C20—C21—C22	63.4 (2)	C8—C14—O3—Cu1	170.13 (12)

supporting information

C20—C21—C22—N3	66.3 (2)	N4 ⁱ —Cu1—O3—C14	-80.43 (13)
N4—C24—C25—N3	0.8 (2)	N1—Cu1—O3—C14	110.50 (13)

Symmetry codes: (i) x-1/2, -y+1/2, z-1/2; (ii) x+1/2, -y+1/2, z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D··· A	D—H···A
O2W—H2 A ···O4 ⁱⁱⁱ	0.86 (3)	2.09 (3)	2.954 (3)	174 (4)
N5—H5 A ···O1 W^{iv}	0.79 (3)	2.32 (3)	3.100 (3)	172 (5)
N6—H6 B ···O1 W^{\vee}	0.88 (4)	2.18 (4)	3.046 (3)	170 (5)
O1 <i>W</i> —H1 <i>A</i> ···O2 <i>W</i>	0.86 (3)	1.95 (3)	2.805 (3)	172 (5)
O1 <i>W</i> —H1 <i>B</i> ···O4	0.87 (3)	1.96 (3)	2.802 (2)	163 (4)
O2 <i>W</i> —H2 <i>B</i> …O1	0.94 (3)	2.01 (3)	2.889 (3)	155 (4)
O3 <i>W</i> —H3 <i>A</i> ···O2	0.89 (3)	1.87 (3)	2.734 (3)	164 (4)

Symmetry codes: (iii) -x+1, -y, -z+1; (iv) -x+3/2, y+1/2, -z+3/2; (v) -x+3/2, y+1/2, -z+1/2.