metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis(acetato- $\kappa^2 O, O'$)bis(2-aminopyridine- κN)nickel(II)

Qiang Wang and Da-Qi Wang*

College of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China Correspondence e-mail: wdq4899@163.com

Received 13 November 2007; accepted 8 December 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.005 Å; R factor = 0.031; wR factor = 0.093; data-to-parameter ratio = 14.2.

The title complex, $[Ni(C_2H_3O_2)_2(C_5H_6N_2)_2]$, has a distorted octahedral geometry around the Ni atom. Intermolecular and intramolecular N-H···O hydrogen bonds exist in the crystal structure.

Related literature

For general background, see: Roman et al. (1995).

Experimental

Crystal data

[Ni(C ₂ H ₃ O ₂) ₂ (C ₅ H ₆ N ₂) ₂]
$M_r = 365.01$
Orthorhombic, Pbca
a = 14.281 (4) Å

b = 14.989 (5) Å c = 15.241 (5) Å $V = 3262.5 (18) \text{ Å}^3$ Z = 8 Mo $K\alpha$ radiation $\mu = 1.21 \text{ mm}^{-1}$

Data collection

Siemens SMART CCD areadetector diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\rm min} = 0.593, T_{\rm max} = 0.712$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.031$ $wR(F^2) = 0.093$ S = 0.952875 reflections 202 parameters

 Table 1

 Hydrogen-bond geometry (Å, °).

 $D-H\cdots A$ D-H $H\cdots A$

$D - \mathbf{H} \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N2-H2B\cdots O2^{i}$	0.86	2.13	2.988 (3)	179
$N2-H2A\cdots O1$	0.86	2.20	2.967 (3)	149
$N4-H4A\cdots O4$	0.86	2.03	2.848 (4)	158

T = 298 (2) K

 $R_{\rm int} = 0.039$

1 restraint

 $\Delta \rho_{\rm max} = 0.38 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.25 \text{ e} \text{ Å}^{-3}$

 $0.48 \times 0.36 \times 0.30 \text{ mm}$

15953 measured reflections

2875 independent reflections

2173 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

Symmetry code: (i) $x + \frac{1}{2}, y, -z + \frac{1}{2}$.

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997*a*); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997*a*); molecular graphics: *SHELXTL* (Sheldrick, 1997*b*); software used to prepare material for publication: *SHELXTL*.

The authors acknowledge the financial support of the Shandong Province Science Foundation and the State Key Laboratory of Crystalline Materials, Shandong University, People's Republic of China.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2064).

References

Roman, P., Luque, A., Guzman-Miralles, C. & Beitia, J. I. (1995). *Polyhedron*, **14**, 2863–2869.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.

- Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Siemens (1996). *SMART* and *SAINT*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

supporting information

Acta Cryst. (2008). E64, m194 [https://doi.org/10.1107/S1600536807066226] Bis(acetato-κ²O,O')bis(2-aminopyridine-κN)nickel(II)

Qiang Wang and Da-Qi Wang

S1. Comment

A lot of work has been devoted to the study of mixed–ligand complexes because of their key role in biological progress and their properties in areas such as analytical chemistry, catalysis and magnetochemistry (Roman *et al.*, 1995). In this paper, we report the synthesis and crystal structure of the new title nickel complex.

The molecular structure of the title complex, (I), is shown on Fig.1. The Ni atom is in a distorted octahedral geometry [Ni-N = 2.069 (2)-2.079 (2) Å, Ni-O = 2.092 (2)-2.164 (2) Å], coordinated by two N atoms from two 2-amino-pyridine ligands and four O atoms from two acetate groups. The intermolecular and intramolecular N-H···O hydrogen bonds are exist in the crystal structure.

S2. Experimental

Nickel acetate tetrahydrate (2 mmol, 497.7 mg) in absolute ethanol (20 ml) was added dropwise to a absolute ethanol solution (20 ml) of 2–aminopyridine (4 mmol, 376.5 mg). The mixture was heated under reflux with stirring for 4 h. The solution was kept at room temperature for 20 days, after which large green block–shaped crystals of the title complex suitable for *X*–ray diffraction analysis were obtained.

S3. Refinement

All H-atoms were positioned geometrically and refined using a riding model, with C—H (methyl) 0.96 Å, C—H (aromatic) 0.93 Å, *N*—*H*(amino) 0.86 Å, with $U_{iso}(H) = 1.2U_{eq}(C, N)$ and $U_{iso}(H) = 1.5U_{eq}(C)$ for CH₃.

Figure 1

The molecular structure of the title complex with the atom numbering scheme. Displacement ellipsoids are shown at 30% probability level. H atoms are presented as a spheres of arbitrary radius.

Bis(acetato- $\kappa^2 O, O'$)bis(2-aminopyridine- κN)nickel(II)

Crystal data

$[Ni(C_2H_3O_2)_2(C_5H_6N_2)_2]$
$M_r = 365.01$
Orthorhombic, Pbca
Hall symbol: -P 2ac 2ab
a = 14.281 (4) Å
<i>b</i> = 14.989 (5) Å
c = 15.241 (5) Å
$V = 3262.5 (18) \text{ Å}^3$
Z = 8

Data collection

Siemens SMART CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ - and ω -scans F(000) = 1520 $D_x = 1.486 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4718 reflections $\theta = 2.4-27.7^{\circ}$ $\mu = 1.21 \text{ mm}^{-1}$ T = 298 KBlock, green $0.48 \times 0.36 \times 0.30 \text{ mm}$

Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{min} = 0.593$, $T_{max} = 0.712$ 15953 measured reflections 2875 independent reflections 2173 reflections with $I > 2\sigma(I)$

$R_{\rm int} = 0.039$	$k = -17 \rightarrow 17$
$\theta_{\rm max} = 25.0^\circ, \theta_{\rm min} = 2.4^\circ$	$l = -14 \rightarrow 18$
$h = -16 \rightarrow 16$	

Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.031$	Hydrogen site location: inferred from
$wR(F^2) = 0.093$	neighbouring sites
<i>S</i> = 0.95	H-atom parameters constrained
2875 reflections	$w = 1/[\sigma^2(F_o^2) + (0.039P)^2 + 4.6901P]$
202 parameters	where $P = (F_o^2 + 2F_c^2)/3$
1 restraint	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.38 \text{ e} \text{ Å}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.25 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Nil	0.65501 (2)	0.18431 (2)	0.30692 (2)	0.03492 (14)
N1	0.74523 (16)	0.17626 (15)	0.41287 (15)	0.0353 (6)
N2	0.88178 (18)	0.17679 (18)	0.33118 (18)	0.0475 (7)
H2A	0.8485	0.1789	0.2842	0.057*
H2B	0.9419	0.1759	0.3277	0.057*
N3	0.58868 (17)	0.06682 (16)	0.34427 (17)	0.0405 (6)
N4	0.44625 (19)	0.1315 (2)	0.3738 (2)	0.0654 (9)
H4A	0.4703	0.1828	0.3626	0.079*
H4B	0.3884	0.1274	0.3889	0.079*
01	0.73266 (14)	0.12566 (15)	0.20530 (14)	0.0469 (5)
O2	0.59071 (15)	0.17241 (14)	0.17892 (14)	0.0470 (5)
O3	0.68659 (16)	0.32137 (14)	0.28166 (15)	0.0484 (6)
O4	0.56826 (15)	0.28132 (14)	0.36282 (15)	0.0472 (5)
C1	0.6643 (2)	0.1341 (2)	0.1533 (2)	0.0470 (5)
C2	0.6716 (3)	0.0967 (3)	0.0625 (3)	0.0723 (12)
H2C	0.6547	0.0348	0.0632	0.108*
H2D	0.7348	0.1029	0.0418	0.108*
H2E	0.6301	0.1286	0.0241	0.108*
C3	0.6159 (2)	0.3419 (2)	0.3261 (2)	0.0445 (8)
C4	0.5880 (3)	0.4383 (2)	0.3375 (3)	0.0667 (11)
H4C	0.6084	0.4591	0.3939	0.100*
H4D	0.5212	0.4435	0.3334	0.100*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H4E	0.6167	0.4736	0.2924	0.100*
C5	0.83976 (19)	0.17483 (18)	0.4102 (2)	0.0364 (7)
C6	0.8921 (2)	0.1720 (2)	0.4878 (2)	0.0500 (8)
H6	0.9572	0.1724	0.4854	0.060*
C7	0.8480 (3)	0.1687 (2)	0.5667 (2)	0.0541 (9)
H7	0.8826	0.1663	0.6184	0.065*
C8	0.7511 (3)	0.1690 (2)	0.5695 (2)	0.0526 (9)
H8	0.7193	0.1665	0.6227	0.063*
С9	0.7040 (2)	0.1731 (2)	0.4926 (2)	0.0458 (8)
H9	0.6389	0.1738	0.4947	0.055*
C10	0.4988 (2)	0.0580 (2)	0.3679 (2)	0.0416 (7)
C11	0.4604 (3)	-0.0261 (2)	0.3863 (3)	0.0609 (10)
H11	0.3981	-0.0312	0.4033	0.073*
C12	0.5143 (3)	-0.0994 (3)	0.3793 (3)	0.0698 (11)
H12	0.4891	-0.1553	0.3910	0.084*
C13	0.6068 (3)	-0.0916 (3)	0.3546 (3)	0.0719 (12)
H13	0.6451	-0.1415	0.3497	0.086*
C14	0.6401 (2)	-0.0087(2)	0.3377 (3)	0.0608 (10)
H14	0.7023	-0.0034	0.3206	0.073*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	0.0245 (2)	0.0418 (2)	0.0384 (2)	-0.00038 (16)	0.00112 (16)	-0.00062 (17)
N1	0.0281 (12)	0.0422 (14)	0.0355 (13)	-0.0029 (10)	0.0029 (10)	-0.0001 (11)
N2	0.0247 (13)	0.0668 (19)	0.0508 (17)	-0.0029 (12)	0.0040 (12)	-0.0038 (14)
N3	0.0295 (13)	0.0412 (14)	0.0508 (15)	-0.0025 (11)	0.0000 (12)	0.0003 (12)
N4	0.0373 (16)	0.0581 (18)	0.101 (3)	0.0006 (14)	0.0157 (17)	0.0063 (18)
01	0.0317 (11)	0.0616 (14)	0.0475 (13)	0.0035 (10)	-0.0040 (10)	-0.0073 (11)
02	0.0348 (10)	0.0558 (11)	0.0503 (11)	0.0000 (8)	-0.0056 (8)	-0.0050 (9)
03	0.0461 (13)	0.0532 (13)	0.0457 (13)	-0.0089 (11)	0.0034 (11)	0.0038 (10)
04	0.0402 (12)	0.0437 (12)	0.0577 (14)	0.0018 (10)	0.0092 (11)	0.0022 (11)
C1	0.0348 (10)	0.0558 (11)	0.0503 (11)	0.0000 (8)	-0.0056 (8)	-0.0050 (9)
C2	0.078 (3)	0.086 (3)	0.053 (2)	0.013 (2)	-0.012 (2)	-0.023 (2)
C3	0.0465 (19)	0.0452 (18)	0.0419 (18)	0.0012 (15)	-0.0081 (16)	0.0012 (15)
C4	0.091 (3)	0.0416 (19)	0.067 (2)	0.008 (2)	-0.005 (2)	0.0021 (18)
C5	0.0308 (15)	0.0315 (15)	0.0468 (18)	-0.0041 (12)	0.0014 (14)	-0.0025 (13)
C6	0.0346 (18)	0.056 (2)	0.059 (2)	-0.0048 (15)	-0.0110 (16)	-0.0002 (17)
C7	0.059 (2)	0.056 (2)	0.047 (2)	-0.0094 (17)	-0.0172 (18)	0.0030 (16)
C8	0.061 (2)	0.059 (2)	0.0378 (18)	-0.0087 (17)	0.0031 (17)	0.0000 (16)
C9	0.0367 (17)	0.059 (2)	0.0412 (18)	-0.0040 (15)	0.0053 (15)	-0.0003 (15)
C10	0.0330 (16)	0.0505 (18)	0.0414 (17)	-0.0034 (14)	0.0036 (14)	-0.0015 (15)
C11	0.045 (2)	0.063 (2)	0.075 (3)	-0.0148 (18)	0.0148 (19)	0.003 (2)
C12	0.076 (3)	0.048 (2)	0.085 (3)	-0.014 (2)	0.014 (2)	0.005 (2)
C13	0.071 (3)	0.044 (2)	0.101 (3)	0.0033 (19)	0.013 (2)	0.008 (2)
C14	0.043 (2)	0.048 (2)	0.092 (3)	0.0030 (16)	0.0131 (19)	0.011 (2)

Geometric parameters (Å, °)

Nil—Nl	2.069 (2)	C2—H2D	0.9600
Ni1—N3	2.079 (2)	C2—H2E	0.9600
Ni1—O4	2.092 (2)	C3—C4	1.509 (5)
Ni1—O1	2.098 (2)	C4—H4C	0.9600
Ni1—O3	2.138 (2)	C4—H4D	0.9600
Ni1—O2	2.164 (2)	C4—H4E	0.9600
N1—C9	1.351 (4)	C5—C6	1.400 (4)
N1—C5	1.351 (4)	C6—C7	1.358 (5)
N2—C5	1.346 (4)	С6—Н6	0.9300
N2—H2A	0.8600	C7—C8	1.384 (5)
N2—H2B	0.8600	C7—H7	0.9300
N3—C10	1.339 (4)	C8—C9	1.354 (5)
N3—C14	1.353 (4)	C8—H8	0.9300
N4—C10	1.336 (4)	С9—Н9	0.9300
N4—H4A	0.8600	C10—C11	1.403 (5)
N4—H4B	0.8600	C11—C12	1.345 (5)
O1—C1	1.264 (4)	C11—H11	0.9300
O2—C1	1.259 (4)	C12—C13	1.379 (6)
O3—C3	1.254 (4)	C12—H12	0.9300
O4—C3	1.264 (4)	C13—C14	1.354 (5)
C1—C2	1.497 (5)	C13—H13	0.9300
C2—H2C	0.9600	C14—H14	0.9300
N1—Ni1—N3	91.18 (10)	O3—C3—O4	119.7 (3)
N1—Ni1—O4	95.25 (9)	O3—C3—C4	120.6 (3)
N3—Ni1—O4	101.98 (9)	O4—C3—C4	119.7 (3)
N1—Ni1—O1	102.86 (9)	C3—C4—H4C	109.5
N3—Ni1—O1	95.05 (10)	C3—C4—H4D	109.5
O4—Ni1—O1	154.83 (9)	H4C—C4—H4D	109.5
N1—Ni1—O3	93.74 (9)	C3—C4—H4E	109.5
N3—Ni1—O3	163.58 (9)	H4C—C4—H4E	109.5
O4—Ni1—O3	61.99 (9)	H4D—C4—H4E	109.5
O1—Ni1—O3	99.10 (9)	N2—C5—N1	118.2 (3)
N1—Ni1—O2	164.38 (9)	N2—C5—C6	121.3 (3)
N3—Ni1—O2	89.06 (9)	N1—C5—C6	120.6 (3)
O4—Ni1—O2	99.98 (9)	C7—C6—C5	120.1 (3)
O1—Ni1—O2	61.58 (8)	С7—С6—Н6	119.9
O3—Ni1—O2	90.37 (8)	С5—С6—Н6	119.9
C9—N1—C5	117.5 (3)	C6—C7—C8	119.4 (3)
C9—N1—Ni1	115.6 (2)	С6—С7—Н7	120.3
C5—N1—Ni1	126.8 (2)	C8—C7—H7	120.3
C5—N2—H2A	120.0	C9—C8—C7	118.1 (3)
C5—N2—H2B	120.0	С9—С8—Н8	121.0
H2A—N2—H2B	120.0	С7—С8—Н8	121.0
C10—N3—C14	117.2 (3)	N1—C9—C8	124.3 (3)
C10—N3—Ni1	126.4 (2)	N1—C9—H9	117.8

C14—N3—Ni1	116.2 (2)	С8—С9—Н9	117.8
C10—N4—H4A	120.0	N4—C10—N3	118.4 (3)
C10—N4—H4B	120.0	N4-C10-C11	120.5 (3)
H4A—N4—H4B	120.0	N3—C10—C11	121.1 (3)
C1	90.71 (19)	C12—C11—C10	119.6 (3)
C1O2Ni1	87.88 (19)	C12—C11—H11	120.2
C3—O3—Ni1	88.18 (19)	C10-C11-H11	120.2
C3—O4—Ni1	90.01 (19)	C11—C12—C13	120.0 (4)
O2—C1—O1	119.7 (3)	C11—C12—H12	120.0
O2—C1—C2	121.1 (3)	C13—C12—H12	120.0
O1—C1—C2	119.2 (3)	C14—C13—C12	117.8 (4)
C1—C2—H2C	109.5	C14—C13—H13	121.1
C1—C2—H2D	109.5	С12—С13—Н13	121.1
H2C—C2—H2D	109.5	C13—C14—N3	124.3 (3)
C1—C2—H2E	109.5	C13—C14—H14	117.9
H2C—C2—H2E	109.5	N3—C14—H14	117.9
H2D—C2—H2E	109.5		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D··· A	D—H··· A	
N2—H2 B ···O2 ⁱ	0.86	2.13	2.988 (3)	179	
N2—H2A…O1	0.86	2.20	2.967 (3)	149	
N4—H4 <i>A</i> …O4	0.86	2.03	2.848 (4)	158	

Symmetry code: (i) x+1/2, y, -z+1/2.