Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Poly[μ_3 -aqua- μ_2 -2,4-dinitrophenolatorubidium(I)]

Zhangqin Yang, Mancheng Hu* and Xiuhang Wang

School of Chemistry and Materials Science, ShaanXi Normal University, Xi'an 710062, People's Republic of China Correspondence e-mail: hmch@snnu.edu.cn

Received 16 November 2007; accepted 13 December 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.006 Å; R factor = 0.037; wR factor = 0.101; data-to-parameter ratio = 11.2.

The title asymmetric unit of the compound, $[Rb(C_6H_3N_2O_5)(H_2O)]_n$, comprises a rubidium cation, a 2,4dinitrophenoxide anion and a water molecule. The Rb⁺ cation is 11-coordinated by O atoms from 2,4-dinitrophenolate anions and water molecules. The metal centre is firstly coordinated by two μ_3 -H₂O to form a one-dimensional ladder-shaped unit, $[Rb_2(\mu_3-H_2O)_2]$, which is further linked by 2,4-dinitrophenolate to give the three-dimensional framework of the title compound. The crystal structure involves O- $H \cdots O$ hydrogen bonds.

Related literature

For related literature, see: Abrahams *et al.* (1998); Brill *et al.* (2000); Cametti *et al.* (2005); Cole & Holt (1986); Devi & Vidyasagar (2000); Harrowfield *et al.* (1995); Hu *et al.* (2005); Klaui *et al.* (1987); Shannon (1976); von Prondzinski *et al.* (2007); Weinert *et al.* (2003).

 Rb^+ NO_2 NO_2 H_2O

Experimental

Crystal data [Rb(C₆H₃N₂O₅)(H₂O)] $M_r = 286.59$ Monoclinic, $P2_1/c$ a = 5.8519 (18) Å b = 20.846 (7) Å c = 7.412 (2) Å $\beta = 93.148$ (5)°

 $V = 902.8 (5) \text{ Å}^{3}$ Z = 4Mo K\alpha radiation $\mu = 5.50 \text{ mm}^{-1}$ T = 293 (2) K $0.40 \times 0.35 \times 0.30 \text{ mm}$ $R_{\rm int} = 0.063$

4449 measured reflections

1599 independent reflections

1214 reflections with $I > 2\sigma(I)$

Data collection

Bruker APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T_{min} = 0.125, T_{max} = 0.202

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.037$	H atoms treated by a mixture of
$vR(F^2) = 0.101$	independent and constrained
S = 1.00	refinement
599 reflections	$\Delta \rho_{\rm max} = 0.50 \ {\rm e} \ {\rm \AA}^{-3}$
43 parameters	$\Delta \rho_{\rm min} = -0.71 \text{ e } \text{\AA}^{-3}$
3 restraints	

Table 1

Hydrogen-bond geometry (Å, °).

$D-H\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$D6-H6B\cdots O1^{i}$ $D6-H6A\cdots O4^{ii}$	0.820 (10) 0.818 (10)	2.03 (2) 2.27 (4)	2.822 (5) 2.919 (5)	161 (6) 137 (5)
····· ()		1	. 1	

Symmetry codes: (i) -x, -y + 2, -z; (ii) $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2006); cell refinement: *APEX2*; data reduction: *SAINT* (Bruker, 2005); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997*a*); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997*a*); molecular graphics: *SHELXTL* (Sheldrick, 1997*b*) and *DIAMOND* (Brandenburg & Brendt, 2001); software used to prepare material for publication: *SHELXTL*.

Financial support from the National Natural Science Foundation of China (grant No. 20471035) is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2074).

References

- Abrahams, I., Lazell, M., Motevalli, M., Shah, S. A. A. & Sullivan, A. C. (1998). J. Organomet. Chem. 553, 23–29.
- Brandenburg, K. & Brendt, M. (2001). *DIAMOND*. Version 2.1. Crystal Impact GmbH, Bonn, Germany.
- Brill, T. B., Zhang, T. L. & Tappan, B. C. (2000). Combust. Flame, 121, 662–670. Bruker (2005). SAINT. Version 7.34A. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2006). APEX2. Version 2.1-0. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cametti, M., Nissinen, M., Cort, A. D., Mandolini, L. & Rissanen, K. (2005). J. Am. Chem. Soc. 127, 3831–3837.

Cole, L. B. & Holt, E. M. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 1997–2002. Devi, R. N. & Vidyasagar, K. (2000). Inorg. Chem. **39**, 2391–2396.

Harrowfield, J. M., Skelton, B. W. & White, A. H. (1995). Aust. J. Chem. 48, 1333-1347.

- Hu, M. C., Geng, C. Y., Li, S. N., Du, Y. P., Jiang, Y. C. & Liu, Z. H. (2005). J. Organomet. Chem. 690, 3118–3124.
- Klaui, W., Müller, A., Eberspach, W., Boese, R. & Goldberg, I. (1987). J. Am. Chem. Soc. 109, 164–169.
- Prondzinski, N. von, Winter, M. & Merz, K. (2007). Acta Cryst. E63, m1687. Shannon, R. D. (1976). Acta Cryst. A32, 751–767.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Weinert, C. S., Fanwick, P. E. & Rothwell, I. P. (2003). Inorg. Chem. 42, 6089– 6094.

supporting information

Acta Cryst. (2008). E64, m225 [https://doi.org/10.1107/S1600536807066792]

Poly[μ_3 -aqua- μ_2 -2,4-dinitrophenolato-rubidium(I)]

Zhangqin Yang, Mancheng Hu and Xiuhang Wang

S1. Comment

Research on nitrogen-rich compounds is the focus of attention for their usage as energetic materials. Much work has concentrated on their alkaline or alkali-earth metal salts (Harrowfield *et al.*, 1995; Cole and Holt, 1986; von Prondzinski *et al.*, 2007), among which some polynitro-substituted phenoxide was found to be environment-friendly (Brill *et al.*, 2000). Our group has already demonstrated the structure of caesium 2,4-dinitrophenolate (Mancheng Hu *et al.*, 2005). Herein, we report its rubidium analogue [Rb(OC₆H₃N₂O₄).H₂O].

The asymmetric unit of the title compound comprises a rubidium cation, a 2,4-dinitrophenoxide anion and a water molecule. The central cation is coordinated to eleven O atoms (Fig. 1) with the Rb—O distances ranging from 2.914 (3) Å to 3.474 (4) Å, which are well within the range reported in the literature (Cametti *et al.*, 2005; Shannon, 1976; Devi and Vidyasagar, 2000).

The metal center is firstly coordinated by two μ_3 -H₂O to form a one-dimensional ladder-shape unit, $[Rb_2(\mu_3-H_2O)_2]$, which is further linked by 2,4-dinitrophenoxide to give the three-dimensional framework of the title compound. In the structure of $[Rb_2(\mu_3-H_2O)_2]$ fragment (Fig.2), each rubidium ion is connected to three oxygen atoms of the water, and each water molecule is connected to three rubidium ions. The Rb—O—Rb angle along the sides of the ladder is 134.09 (13) °. It should be noted that the triply bridging water has been found in several lighter group I metal complexes (Klaui *et al.*, 1987; Abrahams *et al.*, 1998). A similar extended ladder-like structure motif was also found in the structure of $[Rb(OC_6H_3Ph_2-2,6)]_x$ (1) (Weinert *et al.*, 2003), however, each Rb atom in 1 is not connected to three water molecules but three O atoms from phenoxide. The corresponding Rb—O—Rb angle in 1 is about 155.5 (1) °, which is markedly larger than in the title compound.

The $[Rb_2(\mu_3-H_2O)_2]$ fragments are connected to each other to form a two-dimensional netlike layer structure by the oxygen atoms from the nitro group and phenolate. Further, the two-dimensional layers are assembled *via* the 2,4-dinitro-phenoxide into a three-dimensional framework in an ABAB fashion.

S2. Experimental

To a solution of 10 mmol 2,4-dinitrophenol in 60 ml bidistilled water, a solution of an equimolar amount of rubidium hydroxide in 40 ml bidistilled water was added dropwise at room temperature. After vigorous stirring for 4 h, the resulting solution was then evaporated to a volume of about 20 ml in vacuum and filtered hot. The filtrate was then set aside for crystallization at room temperature. Three weeks later, yellow crystals of the title compound suitable for X-ray determination were isolated.

S3. Refinement

The aromatic H atoms were placed at calculated positions ($d(C - H = 0.93 \text{ Å and } U_{iso}(H) = 1.2 U_{eq}(C)$). Water H atoms were located and refined with distance restraints of d(O - H) = 0.82 (1) Å, their displacement parameters were set to 1.5

Figure 1

Coordination sphere of Rb in [Rb(OC₆H₃N₂O₄).H₂O]. Atoms marked with an A, B, C, D, E and F are at the symmetry positions (-x, 2 - y, 1 - z), (1 - x, 2 - y, 1 - z), (x, 3/2 - y, -1/2 + z), (-x, 1/2 + y, 1/2 - z), (-x, 2 - y, -z), (1 - x, 2 - y, -z), respectively.

Figure 2

The two-dimensional layer structure containing ladder-shape unit, $[Rb_2(\mu_3-H_2O)_2]$. All C atoms and N atoms were omitted for clarity.

Poly[μ_3 -aqua- μ_2 -2,4-dinitrophenolato-rubidium(I)]

Crystal data	
$[Rb(C_6H_3N_2O_5)(H_2O)] \qquad \beta = 9$	3.148 (5)°
$M_r = 286.59$ $V = 9$	002.8 (5) Å ³
Monoclinic, $P2_1/c$ $Z = 4$	
Hall symbol: -P 2ybc F(00	0) = 560
$a = 5.8519 (18) \text{ Å}$ $D_{x} =$	2.109 Mg m^{-3}
b = 20.846 (7) Å Mo k	Ka radiation, $\lambda = 0.71073$ Å
c = 7.412 (2) Å Cell J	parameters from 1599 reflections

 $\theta = 2.0-25.1^{\circ}$ $\mu = 5.50 \text{ mm}^{-1}$ T = 293 K

Data collection

Bruker APEXII CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.125, T_{\max} = 0.202$

Refinement

Refinement on F^2 Hydrogen site location: inferred from Least-squares matrix: full neighbouring sites $R[F^2 > 2\sigma(F^2)] = 0.037$ H atoms treated by a mixture of independent $wR(F^2) = 0.101$ and constrained refinement *S* = 1.00 $w = 1/[\sigma^2(F_o^2) + (0.0556P)^2 + 0.12P]$ 1599 reflections where $P = (F_0^2 + 2F_c^2)/3$ 143 parameters $(\Delta/\sigma)_{\rm max} = 0.002$ $\Delta \rho_{\rm max} = 0.50 \text{ e } \text{\AA}^{-3}$ 3 restraints Primary atom site location: structure-invariant $\Delta \rho_{\rm min} = -0.71 \ {\rm e} \ {\rm \AA}^{-3}$ direct methods Extinction correction: SHELXL97 (Sheldrick, Secondary atom site location: difference Fourier 1997a), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ Extinction coefficient: 0.0120 (18) map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Block, yellow

 $R_{\rm int} = 0.063$

 $h = -6 \rightarrow 6$

 $l = -7 \rightarrow 8$

 $k = -20 \rightarrow 24$

 $0.40 \times 0.35 \times 0.30$ mm

4449 measured reflections

 $\theta_{\rm max} = 25.1^{\circ}, \ \theta_{\rm min} = 2.0^{\circ}$

1599 independent reflections

1214 reflections with $I > 2\sigma(I)$

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Rb1	0.18947 (8)	1.00955 (2)	0.24241 (6)	0.0381 (2)	
01	-0.0671 (5)	0.91314 (15)	0.4428 (4)	0.0404 (8)	
O2	0.3775 (6)	0.93503 (16)	0.5483 (5)	0.0580 (11)	
03	0.5150 (5)	0.86504 (16)	0.7365 (4)	0.0456 (9)	
04	0.3512 (6)	0.64498 (16)	0.6287 (5)	0.0537 (10)	
05	0.0559 (6)	0.61696 (16)	0.4603 (5)	0.0562 (10)	
06	0.3268 (7)	1.03788 (18)	-0.1415 (5)	0.0526 (9)	
H6A	0.382 (10)	1.0686 (17)	-0.086 (6)	0.079*	
H6B	0.281 (10)	1.053 (2)	-0.239 (4)	0.079*	
N1	0.3753 (6)	0.88137 (18)	0.6150 (5)	0.0331 (9)	
N2	0.1790 (7)	0.65827 (18)	0.5345 (5)	0.0373 (9)	
C1	-0.0063 (7)	0.8557 (2)	0.4619 (5)	0.0290 (10)	

supporting information

C2	0.2080 (7)	0.8349 (2)	0.5482 (5)	0.0261 (10)
C3	0.2641 (7)	0.7709 (2)	0.5735 (5)	0.0269 (10)
H3	0.4019	0.7594	0.6333	0.032*
C4	0.1145 (7)	0.7246 (2)	0.5096 (5)	0.0289 (10)
C5	-0.0968 (7)	0.7407 (2)	0.4243 (6)	0.0346 (11)
H5	-0.1973	0.7088	0.3830	0.042*
C6	-0.1537 (7)	0.8033 (2)	0.4023 (6)	0.0357 (11)
H6	-0.2952	0.8131	0.3458	0.043*

Atomic displacement parameters (\AA^2))
--	---

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Rb1	0.0429 (3)	0.0320 (4)	0.0387 (3)	-0.0036 (2)	-0.0061 (2)	0.00384 (19)
01	0.0411 (18)	0.029 (2)	0.050(2)	0.0061 (15)	-0.0026 (16)	0.0050 (15)
O2	0.069 (2)	0.030 (2)	0.071 (3)	-0.0178 (18)	-0.032 (2)	0.0149 (18)
O3	0.0428 (19)	0.038 (2)	0.054 (2)	-0.0031 (15)	-0.0188 (17)	0.0056 (16)
O4	0.067 (2)	0.031 (2)	0.061 (3)	0.0131 (17)	-0.016 (2)	0.0011 (17)
05	0.067 (2)	0.028 (2)	0.073 (3)	-0.0102 (18)	-0.003 (2)	-0.0112 (18)
O6	0.054 (2)	0.050(2)	0.053 (2)	-0.005 (2)	-0.0014 (19)	0.0058 (19)
N1	0.032 (2)	0.031 (2)	0.036 (2)	-0.0009 (17)	-0.0042 (17)	0.0016 (17)
N2	0.049 (2)	0.026 (2)	0.038 (2)	-0.0007 (18)	0.0042 (19)	-0.0026 (17)
C1	0.029 (2)	0.030 (3)	0.028 (3)	0.0015 (19)	0.0013 (19)	0.0044 (19)
C2	0.026 (2)	0.023 (2)	0.029 (2)	-0.0053 (17)	-0.0047 (18)	-0.0001 (17)
C3	0.027 (2)	0.031 (3)	0.022 (2)	0.0001 (19)	-0.0010 (18)	0.0022 (18)
C4	0.036 (2)	0.023 (2)	0.027 (2)	0.000 (2)	0.0044 (18)	-0.0015 (18)
C5	0.035 (2)	0.035 (3)	0.034 (3)	-0.006(2)	-0.001 (2)	-0.003 (2)
C6	0.027 (2)	0.045 (3)	0.035 (3)	0.001 (2)	-0.0053 (19)	-0.005 (2)

Geometric parameters (Å, °)

Rb1—O2	2.914 (3)	O4—Rb1 ^{vii}	3.474 (4)
Rb1—O1 ⁱ	2.956 (3)	O5—N2	1.232 (5)
Rb1—O1	2.957 (3)	O5—Rb1 ^{viii}	3.016 (3)
Rb1—O5 ⁱⁱ	3.016 (3)	O5—Rb1 ^{vii}	3.429 (4)
Rb1—O6	3.057 (4)	O6—Rb1 ^{iv}	3.127 (4)
Rb1—O2 ⁱⁱⁱ	3.119 (3)	O6—Rb1 ^v	3.228 (4)
Rb1—O6 ^{iv}	3.127 (4)	O6—H6A	0.818 (10)
Rb1—O3 ⁱⁱⁱ	3.134 (3)	O6—H6B	0.820 (10)
Rb1—O6 ^v	3.228 (4)	N1—C2	1.446 (5)
Rb1—O5 ^{vi}	3.429 (4)	N1—Rb1 ⁱⁱⁱ	3.533 (4)
Rb1—O4 ^{vi}	3.474 (4)	N2—C4	1.443 (5)
Rb1—N1 ⁱⁱⁱ	3.533 (4)	C1—C2	1.443 (5)
Rb1—H6A	3.00 (5)	C1—C6	1.446 (6)
01—C1	1.255 (5)	C2—C3	1.384 (6)
O1—Rb1 ⁱ	2.956 (3)	C3—C4	1.369 (6)
O2—N1	1.223 (5)	С3—Н3	0.9300
O2—Rb1 ⁱⁱⁱ	3.119 (3)	C4—C5	1.398 (6)
O3—N1	1.231 (4)	C5—C6	1.353 (6)

supporting information

O3—Rb1 ⁱⁱⁱ	3.134 (3)	C5—H5	0.9300
O4—N2	1.226 (5)	C6—H6	0.9300
O2—Rb1—O1 ⁱ	76.94 (10)	O6 ^v —Rb1—N1 ⁱⁱⁱ	156.48 (9)
O2—Rb1—O1	55.06 (9)	O5 ^{vi} —Rb1—N1 ⁱⁱⁱ	144.49 (9)
O1 ⁱ —Rb1—O1	79.77 (10)	O4 ^{vi} —Rb1—N1 ⁱⁱⁱ	117.89 (9)
O2—Rb1—O5 ⁱⁱ	158.84 (11)	O2—Rb1—H6A	135.0 (11)
$O1^{i}$ —Rb1— $O5^{ii}$	81.90 (10)	O1 ⁱ —Rb1—H6A	122.3 (6)
$O1$ —Rb1— $O5^{ii}$	120.93 (10)	O1—Rb1—H6A	155.4(2)
Ω^2 —Rb1— Ω^6	136.06 (12)	$O5^{ii}$ —Rb1—H6A	58.7 (11)
$O1^{i}$ Rb1 $O6$	135 80 (9)	O6—Rb1—H6A	155(2)
01 - Rb1 - 06	139.00(9)	$O2^{ii}$ Rb1 H6A	85 5 (6)
$O5^{ii}$ _Rb1_O6	62 29 (11)	$O6^{iv}$ _Rb1_H6A	63.4(11)
$\Omega^2 = Rb1 = \Omega^2^{11}$	63 18 (11)	$O3^{iii}$ _Rb1_H6A	57.8 (2)
$O_2 = R b_1 = O_2$	68 35 (10)	$O6^{v}$ Bb1 H6A	1000(2)
01 - R01 - 02	115 03 (0)	$O5^{vi}$ Bb1 H6A	84.5 (3)
01 - R01 - 02	115.05(9) 108.02(10)	O_{4}^{vi} Pb1 H6A	04.3(3)
$O_{1} = O_{2}$	106.92(10)	O4 - K01 - HOA	95.7 (6) 71.5 (4)
O_{0} Rb1 O_{2}	98.24 (10) 72.11 (11)	$NI^{m} - KDI - H0A$	/1.5 (4)
O_2 — ROI — O_6	/3.11 (11)	$CI = OI = RDI^{-1}$	120.7(3)
$OI - RbI - O6^{iv}$	128.52 (9)		123.8 (3)
$OI - RbI - O6^{iv}$	113.35 (9)		100.23 (10)
$O5^{\mu}$ Rb1 $O6^{\nu}$	121.87 (11)	NI—O2—Rbl	142.2 (3)
$O6$ —Rb1— $O6^{iv}$	63.31 (11)	NI—O2—RbI ^m	99.5 (2)
O2 ⁱⁿ —Rb1—O6 ^{iv}	60.97 (10)	Rb1—O2—Rb1 ^m	116.82 (11)
O2—Rb1—O3 ⁱⁱⁱ	102.84 (9)	N1—O3—Rb1 ⁱⁱⁱ	98.5 (2)
$O1^{i}$ —Rb1— $O3^{iii}$	70.30 (9)	$N2-O4-Rb1^{vii}$	97.0 (3)
O1—Rb1—O3 ⁱⁱⁱ	146.73 (9)	N2—O5—Rb1 ^{viii}	172.5 (3)
O5 ⁱⁱ —Rb1—O3 ⁱⁱⁱ	69.62 (9)	N2—O5—Rb1 ^{vii}	99.1 (3)
O6—Rb1—O3 ⁱⁱⁱ	73.29 (9)	Rb1 ^{viii} —O5—Rb1 ^{vii}	79.58 (8)
O2 ⁱⁱⁱ —Rb1—O3 ⁱⁱⁱ	40.11 (8)	Rb1—O6—Rb1 ^{iv}	116.69 (11)
O6 ^{iv} —Rb1—O3 ⁱⁱⁱ	76.78 (9)	Rb1—O6—Rb1 ^v	82.29 (9)
O2—Rb1—O6 ^v	109.00 (9)	$Rb1^{iv}$ —O6— $Rb1^{v}$	134.09 (13)
$O1^{i}$ —Rb1— $O6^{v}$	94.91 (10)	Rb1—O6—H6A	78 (4)
O1—Rb1—O6 ^v	54.09 (9)	Rb1 ^{iv} —O6—H6A	92 (4)
O5 ⁱⁱ —Rb1—O6 ^v	72.43 (10)	Rb1 ^v —O6—H6A	134 (4)
O6—Rb1—O6 ^v	97.71 (9)	Rb1—O6—H6B	144 (4)
O2 ⁱⁱⁱ —Rb1—O6 ^v	162.41 (11)	Rb1 ^{iv} —O6—H6B	100 (4)
O6 ^{iv} —Rb1—O6 ^v	134.09 (13)	Rb1 ^v —O6—H6B	70 (4)
O3 ⁱⁱⁱ —Rb1—O6 ^v	140.73 (9)	H6A—O6—H6B	104.1 (17)
O2—Rb1—O5 ^{vi}	97.36 (9)	O2—N1—O3	121.8 (4)
O1 ⁱ —Rb1—O5 ^{vi}	147.52 (9)	O2—N1—C2	119.8 (3)
O1—Rb1—O5 ^{vi}	71.24 (9)	O3—N1—C2	118.4 (4)
O5 ⁱⁱ —Rb1—O5 ^{vi}	100.42 (8)	O2—N1—Rb1 ⁱⁱⁱ	60.6 (2)
$O6$ —Rb1— $O5^{vi}$	69.13 (9)	O3-N1-Rb1 ⁱⁱⁱ	61.3 (2)
$O2^{iii}$ —Rb1— $O5^{vi}$	137.72 (10)	C2-N1-Rb1 ⁱⁱⁱ	176.1 (3)
$O6^{iv}$ —Rb1— $O5^{vi}$	77.88 (10)	04—N2—05	122.6 (4)
$O3^{iii}$ —Rb1— $O5^{vi}$	141.14 (9)	04 - N2 - C4	1194(4)
$O6^v$ —Rb1— $O5^{vi}$	56.22 (10)	05—N2—C4	118.1 (4)
	(********

O2—Rb1—O4 ^{vi}	66.31 (9)	01—C1—C2	124.8 (4)
O1 ⁱ —Rb1—O4 ^{vi}	141.08 (9)	O1—C1—C6	121.7 (4)
$O1$ — $Rb1$ — $O4^{vi}$	69.16 (9)	C2C1C6	113.4 (4)
O5 ⁱⁱ —Rb1—O4 ^{vi}	134.11 (9)	C3—C2—C1	123.0 (4)
$O6$ — $Rb1$ — $O4^{vi}$	82.20 (10)	C3—C2—N1	116.7 (3)
O2 ⁱⁱⁱ —Rb1—O4 ^{vi}	103.85 (9)	C1—C2—N1	120.4 (4)
$O6^{iv}$ —Rb1—O4 ^{vi}	52.17 (9)	C4—C3—C2	119.3 (4)
O3 ⁱⁱⁱ —Rb1—O4 ^{vi}	128.95 (9)	С4—С3—Н3	120.3
$O6^v$ —Rb1— $O4^{vi}$	85.63 (9)	С2—С3—Н3	120.3
$O5^{vi}$ —Rb1— $O4^{vi}$	36.39 (8)	C3—C4—C5	121.3 (4)
Ω^2 —Rb1—N1 ⁱⁱⁱ	82, 82, (9)	C3—C4—N2	1182(4)
$O1^{i}$ Rb1 N1 ⁱⁱⁱ	67 35 (9)	$C_{5} - C_{4} - N_{2}^{2}$	120.5(4)
Ω_1 Rb1 N_1	131 67 (9)	C6-C5-C4	120.5(1) 1195(4)
$O5^{ii}$ Rb1 N1 ⁱⁱⁱ	89 25 (10)	C6-C5-H5	120.3
06 Rb1 N1 ⁱⁱⁱ	86 10 (9)	C4-C5-H5	120.3
O^{2ii} Pb1 N1 ⁱⁱⁱ	10.07(8)	$C_{1}^{2} = C_{1}^{2} = C_{1}^{2}$	120.5 123.5(4)
$O_{2} = RO_{1} = RO_{1}$	68 15 (0)	$C_5 = C_6 = U_6$	118.2
O_{2} H_{1} H_{1} H_{1}	20.15(9)	C_{1} C_{6} H_{6}	110.2
03 —K01—IN1	20.10 (8)	С1—С0—по	118.2
Ω^2 —Rb1— Ω^1 —C1	-571(3)	$O6^{v}$ —Rb1— $O6$ —Rb1 ^{iv}	-135 87 (16)
$O1^{i}$ Rb1 $O1$ $O1$	-1382(4)	$O5^{vi}$ Rb1 $O6$ Rb1	-8657(13)
05^{ii} Rb1 -01 C1	147.8(3)	$O4^{vi}$ Rb1 $O6$ Rb1	-51.39(12)
06-Rh1-01-C1	65 2 (4)	$N1^{iii}$ _Rb1_O6_Rb1 ^{iv}	67 47 (12)
O^{2ii} Rb1 O1 C1	-781(3)	Ω^2 Rb1 Ω^6 Rb1 ^v	127.80(11)
$O_2 = RO_1 = O_1 = C_1$	-10.5(3)	O_2 R01 O_6 R01	-105 25 (12)
00 - R01 - 01 - C1	-1122(2)	O1 = Rb1 = O6 = Rb1	105.25(12)
$O_{3} = KO_{1} = O_{1} = C_{1}$	-112.3(3)	$O_1 = KO_1 = O_0 = KO_1$	40.04(17)
OO^{-} KDI $-OI$ CI	118.0(4)	O^{2} Rol O^{2} Rol O^{2} Rol O^{2} Rol O^{2}	-65.46(10)
O_{3} RBI O_{1} CI	50.7(3)	O_2^{m} RD1 O_6^{m} RD1 V_6^{m} RD1 V_6^{m}	-1/2.56(9)
$O4^{\text{v}}$ Rb1 $O1$ $C1$	18.0 (3)	$O6^{17}$ $Rb1$ $O6$ $Rb1^{17}$	135.87 (16)
NI ^{III} —RbI—OI—CI	-91.4 (3)	O_3^{m} —Rb1—O6—Rb1	-140.81 (10)
O2—Rb1—O1—Rb1 ¹	81.14 (12)	$O6^{\circ}$ Rb1 $O6$ Rb1 $^{\circ}$	0.0
Ol ¹ —Rbl—Ol—Rbl ¹	0.0	$O5^{v_1}$ —Rb1—O6—Rb1v	49.30 (8)
$O5^{n}$ —Rb1—O1—Rb1 ¹	-74.03 (13)	$O4^{v_1}$ —Rb1—O6—Rb1 ^v	84.48 (8)
O6—Rb1—O1—Rb1 ¹	-156.60 (12)	$N1^{m}$ —Rb1—O6—Rb1 ^v	-156.66 (9)
$O2^{iii}$ —Rb1—O1—Rb1 ⁱ	60.13 (12)	Rb1—O2—N1—O3	167.0 (4)
$O6^{iv}$ —Rb1—O1—Rb1 ⁱ	127.69 (9)	Rb1 ^m —O2—N1—O3	3.2 (5)
$O3^{iii}$ —Rb1—O1—Rb1 ⁱ	25.93 (19)	Rb1—O2—N1—C2	-11.7 (7)
$O6^{v}$ —Rb1—O1—Rb1 ⁱ	-103.77 (13)	Rb1 ⁱⁱⁱ —O2—N1—C2	-175.5 (3)
$O5^{vi}$ —Rb1—O1—Rb1 ⁱ	-165.14 (11)	Rb1—O2—N1—Rb1 ⁱⁱⁱ	163.8 (6)
O4 ^{vi} —Rb1—O1—Rb1 ⁱ	156.16 (11)	Rb1 ⁱⁱⁱ —O3—N1—O2	-3.2 (5)
N1 ⁱⁱⁱ —Rb1—O1—Rb1 ⁱ	46.81 (14)	Rb1 ⁱⁱⁱ —O3—N1—C2	175.5 (3)
O1 ⁱ —Rb1—O2—N1	125.8 (5)	Rb1 ^{vii} —O4—N2—O5	-23.8 (5)
O1—Rb1—O2—N1	39.3 (5)	Rb1 ^{vii} —O4—N2—C4	155.5 (3)
O5 ⁱⁱ —Rb1—O2—N1	125.4 (5)	Rb1 ^{vii} —O5—N2—O4	24.3 (5)
O6—Rb1—O2—N1	-89.1 (5)	Rb1 ^{vii} —O5—N2—C4	-155.1 (3)
O2 ⁱⁱⁱ —Rb1—O2—N1	-162.0 (6)	Rb1 ⁱ O1C2	-70.6 (5)
O6 ^{iv} —Rb1—O2—N1	-96.5 (5)	Rb1—O1—C1—C2	59.7 (5)
O3 ⁱⁱⁱ —Rb1—O2—N1	-168.2 (5)	Rb1 ⁱ O1C6	107.4 (4)

$\begin{array}{llllllllllllllllllllllllllllllllllll$	O6 ^v —Rb1—O2—N1	35.1 (5)	Rb1—O1—C1—C6	-122.3 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O5 ^{vi} —Rb1—O2—N1	-21.6 (5)	O1—C1—C2—C3	177.1 (4)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O4 ^{vi} —Rb1—O2—N1	-41.1 (5)	C6—C1—C2—C3	-1.0 (6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1 ⁱⁱⁱ —Rb1—O2—N1	-165.8 (5)	O1-C1-C2-N1	-2.2 (7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O1 ⁱ —Rb1—O2—Rb1 ⁱⁱⁱ	-72.12 (14)	C6-C1-C2-N1	179.7 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O1—Rb1—O2—Rb1 ⁱⁱⁱ	-158.66 (19)	O2—N1—C2—C3	155.4 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O5 ⁱⁱ —Rb1—O2—Rb1 ⁱⁱⁱ	-72.6 (3)	O3—N1—C2—C3	-23.3 (6)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O6—Rb1—O2—Rb1 ⁱⁱⁱ	72.95 (19)	O2—N1—C2—C1	-25.2 (6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O2 ⁱⁱⁱ —Rb1—O2—Rb1 ⁱⁱⁱ	0.0	O3—N1—C2—C1	156.0 (4)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O6 ^{iv} —Rb1—O2—Rb1 ⁱⁱⁱ	65.50 (14)	C1—C2—C3—C4	2.1 (7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O3 ⁱⁱⁱ —Rb1—O2—Rb1 ⁱⁱⁱ	-6.18 (17)	N1—C2—C3—C4	-178.6 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O6 ^v —Rb1—O2—Rb1 ⁱⁱⁱ	-162.86 (13)	C2—C3—C4—C5	-2.0 (6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O5 ^{vi} —Rb1—O2—Rb1 ⁱⁱⁱ	140.40 (14)	C2-C3-C4-N2	178.8 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O4 ^{vi} —Rb1—O2—Rb1 ⁱⁱⁱ	120.98 (17)	O4—N2—C4—C3	8.2 (6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1 ⁱⁱⁱ —Rb1—O2—Rb1 ⁱⁱⁱ	-3.78 (13)	O5—N2—C4—C3	-172.4 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O2-Rb1-O6-Rb1 ^{iv}	-8.0 (2)	O4—N2—C4—C5	-171.0 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O1 ⁱ —Rb1—O6—Rb1 ^{iv}	118.88 (14)	O5—N2—C4—C5	8.3 (7)
$O5^{ii}$ —Rb1—O6—Rb1 ^{iv} 158.67 (17)N2—C4—C5—C6-180.0 (4) $O2^{iii}$ —Rb1—O6—Rb1 ^{iv} 51.57 (14)C4—C5—C6—C10.3 (7) $O6^{iv}$ —Rb1—O6—Rb1 ^{iv} 0.0O1—C1—C6—C5-178.4 (4) $O3^{iii}$ —Rb1—O6—Rb1 ^{iv} 83.33 (12)C2—C1—C6—C5-0.2 (6)	O1—Rb1—O6—Rb1 ^{iv}	-95.23 (16)	C3—C4—C5—C6	0.8 (7)
$O2^{iii}$ —Rb1—O6—Rb1 ^{iv} 51.57 (14)C4—C5—C6—C10.3 (7) $O6^{iv}$ —Rb1—O6—Rb1 ^{iv} 0.0O1—C1—C6—C5-178.4 (4) $O3^{iii}$ —Rb1—O6—Rb1 ^{iv} 83.33 (12)C2—C1—C6—C5-0.2 (6)	$O5^{ii}$ —Rb1—O6—Rb1 ^{iv}	158.67 (17)	N2-C4-C5-C6	-180.0 (4)
$O6^{iv}$ —Rb1—O6—Rb1 ^{iv} 0.0O1—C1—C6—C5-178.4 (4) $O3^{iii}$ —Rb1—O6—Rb1 ^{iv} 83.33 (12)C2—C1—C6—C5-0.2 (6)	O2 ⁱⁱⁱ —Rb1—O6—Rb1 ^{iv}	51.57 (14)	C4C5C1	0.3 (7)
$O3^{iii}$ —Rb1—O6—Rb1 ^{iv} 83.33 (12) C2—C1—C6—C5 -0.2 (6)	O6 ^{iv} —Rb1—O6—Rb1 ^{iv}	0.0	O1—C1—C6—C5	-178.4 (4)
	$O3^{iii}$ —Rb1—O6—Rb1 ^{iv}	83.33 (12)	C2—C1—C6—C5	-0.2 (6)

Symmetry codes: (i) -x, -y+2, -z+1; (ii) -x, y+1/2, -z+1/2; (iii) -x+1, -y+2, -z+1; (iv) -x+1, -y+2, -z; (v) -x, -y+2, -z; (vi) x, -y+3/2, z-1/2; (vii) x, -y+3/2, z+1/2; (viii) -x, y-1/2, -z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	<i>D</i> —H··· <i>A</i>
$O6-H6B\cdotsO1^{\vee}$	0.82 (1)	2.03 (2)	2.822 (5)	161 (6)
O6—H6A····O4 ^{ix}	0.82 (1)	2.27 (4)	2.919 (5)	137 (5)

Symmetry codes: (v) -x, -y+2, -z; (ix) -x+1, y+1/2, -z+1/2.