inorganic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Dy₈SnS_{13.61}O_{0.39} from single-crystal data

M. Daszkiewicz,^a* L. D. Gulay,^b V. Ya. Shemet^c and A. Pietraszko^a

^aW. Trzebiatowski Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna str. 2, PO Box 1410, 50-950 Wrocław, Poland, ^bDepartment of Ecology and Protection of the Environment, Volyn State University, Voli Ave 13, 43009 Lutsk, Ukraine, and ^cDepartment of Chemistry, Lutsk State Technical University, L'vivska str. 75, 43018 Lutsk, Ukraine Correspondence e-mail: m.daszkiewicz@int.pan.wroc.pl

Received 9 November 2007; accepted 26 November 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (Sn–S) = 0.004 Å; disorder in main residue; R factor = 0.026; wR factor = 0.038; data-to-parameter ratio = 16.2.

Crystals of the title dysprosium tin sulfide oxide, $Dy_8SnS_{13}S_{1-x}O_x$ [x = 0.39 (4)], were obtained unintentionally from the Dy–Sn–S system. A statistical mixture of sulfur and oxygen was assumed for one position in the structure. S and O atoms surround each of the eight symmetrically nonequivalent dysprosium atoms. The Sn atoms are located in tetrahedral surroundings of sulfur atoms. Trigonal prisms and tetrahedra are connected to each other by their edges. All atoms are situated in mirror planes.

Related literature

For previous structures with a statistical mixture of sulfur and oxygen, see: Besançon *et al.* (1973); Schleid (1991).

Experimental

Crystal data

 $\begin{array}{l} {\rm Dy_8SnS_{13.61}O_{0.39}}\\ M_r = 1861.27 \end{array}$

Orthorhombic, $Cmc2_1$ a = 3.7822 (8) Å b = 23.620 (5) Å c = 21.271 (4) Å $V = 1900.3 (7) \text{ Å}^3$ Z = 4

Data collection

KUMA KM-4 CCD area-detector diffractometer Absorption correction: numerical (CrysAlis; Oxford Diffraction, 2007) $T_{min} = 0.104, T_{max} = 0.716$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.026$ $wR(F^2) = 0.038$ S = 0.892287 reflections 141 parameters 1 restraint Mo $K\alpha$ radiation $\mu = 33.80 \text{ mm}^{-1}$ T = 293 (2) K $0.14 \times 0.01 \times 0.01 \text{ mm}$

11655 measured reflections
2287 independent reflections
1910 reflections with $I > 2\sigma(I)$
$R_{int} = 0.049$

 $\begin{array}{l} \Delta \rho_{\rm max} = 3.05 \mbox{ e } \mbox{ \AA}^{-3} \\ \Delta \rho_{\rm min} = -1.56 \mbox{ e } \mbox{ \AA}^{-3} \\ \mbox{ Absolute structure: Flack (1983),} \\ 1089 \mbox{ Friedel pairs} \\ \mbox{ Flack parameter: } 0.0 \mbox{ (2)} \end{array}$

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2007); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2007); data reduction: *CrysAlis RED*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *DIAMOND* (Brandenburg, 2005); software used to prepare material for publication: *publCIF* (Westrip, 2007) and *PLATON* (Spek, 2003).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2066).

References

Besançon, P., Carré, D. & Laruelle, P. (1973). Acta Cryst. B29, 1064-1066.

Brandenburg, K. (2005). *DIAMOND*. Release 3.0e. Crystal Impact GbR, Bonn, Germany.

Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Versions 1.171.32.6. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.

Schleid, T. (1991). Z. Anorg. Allg. Chem. 602, 39-47.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Westrip (2007). publCIF. In preparation.

Acta Cryst. (2008). E64, i2 [https://doi.org/10.1107/S1600536807063416]

Dy₈SnS_{13.61}O_{0.39} from single-crystal data

M. Daszkiewicz, L. D. Gulay, V. Ya. Shemet and A. Pietraszko

S1. Comment

An attempt to synthesize Dy_2SnS_5 , a compound with the La_2SnS_5 type structure was unsuccessful, resulting in a multiphase product. However, the formation of the new compound, $Dy_8SnS_{13}S_{1-x}O_x$ (x = 0.39 (4)) was achieved. The structure of this compound was investigated by means of single-crystal X-ray diffraction. In the initial stage of refinement, the composition Dy_8SnS_{14} was assumed. However, unusually short Dy_2 —S14 (2.399 (5) Å) and Dy_3 —S14 (2.508 (7) Å) distances and a large value for the displacement parameter of S14 were observed. To complete the refinement, a statistical mixture (S and O) was assumed at the site of S14. Refinement of this model reduced the unusual displacement parameter to a physically reasonable value. The final composition was $Dy_8SnS_{13}S_{1-x}O_x$ (x = 0.39 (4)). The values of the Dy_2 —S14 (2.399 (5) Å) and Dy_3 —S14 (2.508 (7) Å) distances are intermediate between the Dy_0 (2.220–2.264 Å) and Dy_-S (2.704–2.742 Å) distances in Dy_2OS_2 (Schleid, 1991). A similar substitution of S by O in one position has also been observed in the structure of the $La_{10}S_{1+x}O_x$ ($x \approx 1/2$) compound (Besançon *et al.*, 1973).

The unit cell and coordination polyhedra of the Dy and Sn atoms in the structure of the $Dy_8SnS_{14-x}O_x$ (x = 0.39 (4)) compound are shown in Fig. 1. Sulfur and oxygen atoms surround each of eight symmetrically non-equivalent dysprosium atoms. However, only one mono-capped trigonal prism is evident (Dy1) along with seven bi-capped trigonal prisms around the remaining Dy atoms. The Sn atoms are located in tetrahedral surroundings of sulfur atoms. Trigonal prisms and tetrahedra are connected to each other by edges.

S2. Experimental

Single crystals of the title compound were grown by fusion of the elemental constituents (Alfa Aesar; purity > 99.9%wt) in evacuated silica ampoules. The ampoule was heated in a tube furnace with a heating rate of 30 K/h to 1420 K and kept at this temperature for 4 h. It was then cooled down slowly (10 K/h) to 870 K and annealed at this temperature for further 240 h and finally quenched in cold water. The product was a brown-coloured compact alloy containing red crystals with a prismatic habit and maximal lengths of 0.2 mm. An EDAX PV9800 microanalyser was used for the confirmation of the composition of the Dy, Sn and S in the crystal. The content of oxygen (<2%) was out of the limit of the microanalyser.

S3. Refinement

A statistical mixture of the sulfur and oxygen was assumed in the refinement with the same anisotropic displacement parameters for the S14 and O14 atoms. The space group $Cmc2_1$ was confirmed with *PLATON* (Spek, 2003).

Figure 1

The structure of $Dy_8SnS_{13.61}O_{0.39}$ viewed down the *a* axis. Displacement ellipsoids are shown at the 50% probability level.

Dysprosium tin sulfide oxide

Crystal data

Dy₈SnS_{13.61}O_{0.39} $M_r = 1861.27$ Orthorhombic, $Cmc2_1$ Hall symbol: C 2c -2 a = 3.7822 (8) Å b = 23.620 (5) Å c = 21.271 (4) Å V = 1900.3 (7) Å³ Z = 4

Data collection

KUMA KM-4 with CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator F(000) = 3196 $D_x = 6.506 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1910 reflections $\theta = 2.6-26.7^{\circ}$ $\mu = 33.80 \text{ mm}^{-1}$ T = 293 KNeedle, red $0.14 \times 0.01 \times 0.01 \text{ mm}$

Detector resolution: 1024x1024 with blocks 2x2, 33.133pixel/mm pixels mm⁻¹ ω -scan Absorption correction: numerical (CrysAlis; Oxford Diffraction, 2007)

$T_{\min} = 0.104, \ T_{\max} = 0.716$	$\theta_{\rm max} = 26.7^{\circ}, \ \theta_{\rm min} = 2.6^{\circ}$
11655 measured reflections	$h = -4 \rightarrow 4$
2287 independent reflections	$k = -29 \rightarrow 29$
1910 reflections with $I > 2\sigma(I)$	$l = -26 \rightarrow 26$
$R_{\rm int} = 0.049$	
Refinement	

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.026$	$w = 1/[\sigma^2(F_o^2) + (0.0128P)^2]$
$wR(F^2) = 0.038$	where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 0.89	$(\Delta/\sigma)_{\rm max} = 0.001$
2287 reflections	$\Delta \rho_{\rm max} = 3.05 \text{ e} \text{ Å}^{-3}$
141 parameters	$\Delta \rho_{\rm min} = -1.56 \text{ e } \text{\AA}^{-3}$
1 restraint	Absolute structure: Flack (1983), 1089 Friedel
Primary atom site location: structure-invariant	pairs
direct methods	Absolute structure parameter: 0.0 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Dy1	0.0000	0.69122 (4)	0.08524 (3)	0.0086 (2)	
Dy2	0.0000	0.44849 (4)	0.24158 (5)	0.0242 (3)	
Dy3	0.0000	0.10373 (4)	0.23391 (4)	0.0132 (2)	
Dy4	0.0000	0.04543 (4)	0.40541 (5)	0.0125 (2)	
Dy5	0.0000	0.85422 (4)	0.07459 (5)	0.0106 (2)	
Dy6	0.0000	0.27636 (4)	0.24724 (4)	0.0100 (2)	
Dy7	0.0000	0.37415 (4)	0.41648 (5)	0.0109 (2)	
Dy8	0.5000	0.52208 (3)	0.07589 (4)	0.01244 (19)	
Sn1	0.0000	0.70904 (6)	0.40908 (8)	0.0076 (2)	
S1	0.0000	0.85740 (18)	0.2105 (2)	0.0088 (11)	
S2	0.5000	0.43628 (19)	0.3487 (2)	0.0100 (10)	
S3	0.5000	0.7734 (2)	0.1121 (2)	0.0089 (10)	
S4	0.0000	0.48205 (18)	0.4751 (2)	0.0086 (9)	
S5	0.0000	0.55462 (18)	0.3115 (2)	0.0100 (10)	
S6	0.5000	0.63430 (18)	0.0139 (2)	0.0084 (10)	
S7	0.0000	0.4362 (2)	0.1072 (2)	0.0121 (11)	
S 8	0.0000	0.58602 (18)	0.13619 (19)	0.0105 (9)	
S9	0.5000	0.7460 (2)	0.4772 (2)	0.0141 (10)	
S10	0.0000	0.1733 (2)	0.3409 (2)	0.0169 (10)	
S11	0.0000	0.69522 (18)	0.21604 (19)	0.0079 (9)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

S12	0.0000	0.6207 (2)	0.4722 (2)	0.0112 (10)	
S13	0.0000	0.80025 (18)	0.3496 (2)	0.0096 (9)	
O14	0.0000	0.0010 (3)	0.2040 (4)	0.034 (3)	0.39 (4)
S14	0.0000	0.0010 (3)	0.2040 (4)	0.034 (3)	0.61 (4)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Dy1	0.0068 (4)	0.0089 (5)	0.0101 (5)	0.000	0.000	-0.0003 (4)
Dy2	0.0243 (5)	0.0308 (6)	0.0174 (7)	0.000	0.000	-0.0128 (5)
Dy3	0.0077 (4)	0.0231 (5)	0.0089 (5)	0.000	0.000	0.0020 (4)
Dy4	0.0095 (5)	0.0173 (5)	0.0106 (5)	0.000	0.000	0.0007 (4)
Dy5	0.0062 (4)	0.0107 (4)	0.0149 (5)	0.000	0.000	0.0034 (4)
Dy6	0.0069 (4)	0.0122 (4)	0.0110 (5)	0.000	0.000	0.0010 (4)
Dy7	0.0083 (4)	0.0162 (5)	0.0083 (5)	0.000	0.000	-0.0014 (4)
Dy8	0.0062 (4)	0.0104 (4)	0.0207 (5)	0.000	0.000	-0.0021 (4)
Sn1	0.0069 (4)	0.0080 (5)	0.0079 (5)	0.000	0.000	0.0016 (4)
S1	0.012 (3)	0.010 (2)	0.005 (3)	0.000	0.000	-0.0009 (18)
S2	0.007 (2)	0.013 (2)	0.010 (2)	0.000	0.000	-0.004 (2)
S3	0.006 (2)	0.010 (2)	0.010 (3)	0.000	0.000	-0.002 (2)
S4	0.008 (2)	0.008 (2)	0.010 (2)	0.000	0.000	0.0019 (18)
S5	0.009 (2)	0.014 (2)	0.006 (2)	0.000	0.000	0.0020 (17)
S6	0.008 (2)	0.009 (2)	0.008 (2)	0.000	0.000	0.0006 (16)
S 7	0.008 (2)	0.014 (2)	0.014 (3)	0.000	0.000	-0.006 (2)
S8	0.011 (2)	0.012 (2)	0.009 (2)	0.000	0.000	-0.0014 (16)
S9	0.009 (2)	0.021 (3)	0.013 (2)	0.000	0.000	-0.0090 (18)
S10	0.009 (2)	0.029 (3)	0.012 (2)	0.000	0.000	-0.011 (2)
S11	0.010 (2)	0.007 (2)	0.007 (2)	0.000	0.000	0.0045 (17)
S12	0.013 (2)	0.012 (2)	0.009 (2)	0.000	0.000	0.001 (2)
S13	0.013 (2)	0.008 (2)	0.008 (2)	0.000	0.000	0.0007 (18)
014	0.023 (4)	0.022 (5)	0.056 (6)	0.000	0.000	-0.004 (4)
S14	0.023 (4)	0.022 (5)	0.056 (6)	0.000	0.000	-0.004 (4)

Geometric parameters (Å, °)

Dy1—S8	2.711 (4)	Dy7—S13 ^{vii}	2.940 (3)
Dy1—S9 ⁱ	2.735 (5)	Dy7—S13 ^{viii}	2.940 (3)
Dy1—S3	2.769 (3)	Dy7—Dy7 ⁱⁱ	3.7822 (8)
Dy1—S3 ⁱⁱ	2.769 (3)	Dy7—Dy7 ⁱⁱⁱ	3.7822 (8)
Dy1—S6 ⁱⁱ	2.772 (3)	Dy7—Dy1 ^{xii}	3.9078 (15)
Dy1—S6	2.772 (3)	Dy8—S8 ⁱⁱⁱ	2.739 (3)
Dy1—S11	2.784 (4)	Dy8—S8	2.739 (3)
Dy1—Dy1 ⁱⁱ	3.7822 (8)	Dy8—S14 ^v	2.770 (8)
Dy1—Dy1 ⁱⁱⁱ	3.7822 (8)	Dy8—O14 ^v	2.770 (8)
Dy1—Dy5	3.8567 (14)	Dy8—S7	2.852 (4)
Dy1—Dy7 ^{iv}	3.9078 (15)	Dy8—S7 ⁱⁱⁱ	2.852 (4)
Dy2—S14 ^v	2.399 (5)	Dy8—S4 ^{iv}	2.861 (3)
Dy2—O14 ^v	2.399 (5)	Dy8—S4 ^{xiii}	2.861 (3)

Dy2—S14 ^{vi}	2.399 (5)	Dv8—S6	2.960 (4)
Dy2—014 ^{vi}	2.399 (5)	Dy8—Dy8 ⁱⁱ	3.7822 (8)
Dy2—S7	2.873 (5)	Dy8—Dy8 ⁱⁱⁱ	3.7822 (8)
Dv2—85	2.914 (5)	Dv8—Dv3 ^v	3.8753 (14)
$Dv2$ — $S1^{vii}$	2.940 (3)	Sn1-S12	2.481 (5)
Dv2—S1 ^{viii}	2.940 (3)	Sn1—S13	2.498 (5)
Dv2—S2	2.976 (4)	$Sn1 - S10^{vi}$	2.529 (3)
Dv2—S2 ⁱⁱ	2.976 (4)	$Sn1 - S10^{v}$	2.529 (3)
Dv2—Dv2 ⁱⁱ	3.7822 (8)	Sn1—S9	2.537(3)
$Dy^2 - Dy^{2iii}$	3 7822 (8)	Sn1—S9 ⁱⁱ	2.537(3)
$Dy_{2} = 0.014$	2 508 (7)	S1—Dv6 ^{vi}	2.807(3)
Dv3—S5 ^{viii}	2,765 (3)	$S1 - Dy6^{v}$	2.802(3)
$Dy3 = 85^{vii}$	2.765 (3)	$S1 = Dy^{\circ}$	2.002(3)
Dy3 - S10	2.807 (5)	$S1 - Dy2^{vi}$	2.940(3)
$Dy3 = S8^{vii}$	2.807(3)	S_{2}^{iii}	2.910(3) 2 794(4)
$Dy3 - S8^{viii}$	2.841 (3)	$S_2 = D_y \gamma$ $S_2 = D_y 4^{v}$	2.794(4) 2 846(5)
$Dy3 = S11^{viii}$	2.847 (3)	$S_2 = D_y q^{iii}$	2.076(3)
Dy3 = S11	2.897(3)	S2 - Dy2	2.970(4)
$Dy3 = -511^{\circ}$	2.097(3)	$S_{2} = D_{2}S_{1}$	2.709(3)
$Dy_{3} - Dy_{3}$	3.7822(0)	$S_{2} = D_{y_{2}}$	2.803(4)
Dy3 - Dy3	3.7622(0) 3.9752(14)	$S_{4} = D_{y} d_{y}$	2.870(3)
	3.6735(14)	S4 Drati	2.631(3)
$Dy4 = 55^{\circ}$	2.760(3)	S4 = Dy4	2.631(3)
D_{24}	2.700(3)	$S4 - Dy8^{m}$	2.801(3)
$Dy4$ $S4^{m}$	2.831(3)	54—Dy8 […]	2.861 (3)
Dy4— $S4$ ^{vii}	2.831(3)	S5—Dy4 [*]	2.760(3)
$Dy4$ — $S2^{vii}$	2.846 (5)	55—Dy4"	2.760(3)
Dy4— $S12$ ^{viii}	2.960 (4)	S5—Dy3"	2.765 (3)
Dy4— $S12$ ^{···}	2.900 (4)	SS—Dys [*]	2.765 (3)
Dy4— $Dy4$ ⁱⁱⁱ	3.7822 (8)	S6—Dy1 ^m	2.772 (3)
Dy4—Dy4"	3./822 (8)		2.813 (3)
Dy4—Dy8 ¹	3.9612 (17)	S6—Dy/xiii	2.813 (3)
Dy5—S ⁷	2.794 (4)	S7—Dy5 ^{vii}	2.794 (4)
$Dy5 = S7^{v_1}$	2.794 (4)	S'/DyS'	2.794 (4)
Dy5—S3	2.803 (4)	$S'/Dy8^{n}$	2.852 (4)
Dy5—S3"	2.803 (4)	S8—Dy8"	2.739 (3)
Dy5—SI	2.892 (5)	S8—Dy3 ^v	2.841 (3)
Dy5—S12 ^x	2.944 (4)	S8—Dy3 ^{vi}	2.841 (3)
Dy5—S12 ¹	2.944 (4)	S9—Sn1 ^m	2.537 (3)
Dy5—S9 ¹	3.145 (5)	S9—Dyl ^{xiv}	2.735 (5)
Dy5—Dy5 ⁿ	3.7822 (8)	S9—Dy5 ^{xiv}	3.145 (5)
Dy5—Dy5 ^m	3.7822 (8)	$S10$ — $Sn1^{vm}$	2.529 (3)
Dy5—Dy8 ^{vi}	3.9649 (15)	$S10$ — $Sn1^{vn}$	2.529 (3)
Dy6—S11 ^{vii}	2.773 (3)	S11—Dy6 ^v	2.773 (3)
Dy6—S11 ^{viii}	2.773 (3)	S11—Dy6 ^{vi}	2.773 (3)
Dy6—S1 ^{viii}	2.802 (3)	S11—Dy3 ^{vi}	2.897 (3)
Dy6—S1 ^{vii}	2.802 (3)	S11—Dy3 ^v	2.897 (3)
Dy6—S3 ^{vii}	2.876 (5)	S12—Dy5 ^{xiv}	2.944 (4)
Dy6—S13 ^{viii}	2.939 (3)	S12—Dy5 ^{xv}	2.944 (4)

Dy6—S13 ^{vii}	2.939 (3)	S12—Dy4 ^{vi}	2.960 (4)
Dy6—S10	3.145 (5)	S12—Dy4 ^v	2.960 (4)
Dy6—Dy6 ⁱⁱⁱ	3.7822 (8)	S13—Dy6 ^{vi}	2.939 (3)
Dy6—Dy6 ⁱⁱ	3.7822 (8)	S13—Dy6 ^v	2.939 (3)
Dy7—S2	2.794 (4)	S13—Dy7 ^v	2.940 (3)
Dy7—S2 ⁱⁱ	2.794 (4)	S13—Dy7 ^{vi}	2.940 (3)
Dy7—S6 ^{xi}	2.813 (3)	O14—Dy2 ^{vii}	2.399 (5)
Dv7—S6 ^{xii}	2.813 (3)	O14—Dv2 ^{viii}	2.399 (5)
Dv7—S4	2.837 (5)	014—Dv8 ^{vii}	2.770 (8)
	2.057 (0)	011 290	2.770 (0)
$SS D_{\rm T} 1 SO^{\rm i}$	146 41 (14)		140.05 (14)
50 - Dy1 - 57	140.41(14) 124.06(10)	S11 - Dy0 - S1 S11 v iii Dy6 S1 v iii	149.93(14)
58—Dy1—55	124.00(10)	$S11^{\text{m}}$ Dyo $S1^{\text{m}}$	80.85 (10)
S9-Dy1-S3	/8.05 (13)	SII^{vii} Dy6 SI^{vii}	86.85 (9)
\$8—Dy1—\$3"	124.06 (10)	SII ^{viii} —Dy6—SI ^{vii}	149.95 (14)
S9 ¹ —Dy1—S3 ¹¹	78.05 (13)	$S1^{vm}$ —Dy6— $S1^{vn}$	84.89 (12)
S3—Dy1—S3 ⁱⁱ	86.14 (13)	S11 ^{vii} —Dy6—S3 ^{vii}	75.16 (11)
S8—Dy1—S6 ⁱⁱ	76.95 (11)	S11 ^{viii} —Dy6—S3 ^{vii}	75.16 (11)
S9 ⁱ —Dy1—S6 ⁱⁱ	78.66 (12)	S1 ^{viii} —Dy6—S3 ^{vii}	74.79 (12)
S3—Dy1—S6 ⁱⁱ	156.70 (14)	S1 ^{vii} —Dy6—S3 ^{vii}	74.79 (12)
S3 ⁱⁱ —Dy1—S6 ⁱⁱ	89.24 (10)	S11 ^{vii} —Dy6—S13 ^{viii}	138.49 (12)
S8—Dy1—S6	76.95 (11)	S11 ^{viii} —Dy6—S13 ^{viii}	82.60 (10)
$S9^{i}$ —Dv1—S6	78.66 (12)	$S1^{viii}$ —Dv6— $S13^{viii}$	68.99 (11)
S3—Dv1—S6	89.24 (10)	S1 ^{vii} —Dv6—S13 ^{viii}	120.66 (12)
$S3^{ii}$ _Dv1_S6	156 70 (14)	$S_{3^{\text{vii}}}$ $D_{\text{v}6}$ $S_{13^{\text{viii}}}$	138 20 (6)
S6 ⁱⁱ S6	86.02 (13)	S_{11}^{vii} D_{y6} S_{13}^{vii}	82 60 (10)
$S_{0} = D_{y1} = S_{0}$	68.38(12)	$S11^{\text{viii}}$ Dy6 $S12^{\text{vii}}$	138.40(12)
50 - Dy1 - 511	145 21 (12)	S11 - Dy0 - S13	130.49(12)
59 Dyl—511	143.21(13)	$S1^{\text{m}}$ Dyo $S13^{\text{m}}$	120.00(12)
S3—Dy1—S11	/6./2 (12)	S1 ¹¹¹ —Dy6—S13 ¹¹¹	68.99 (11)
S3 ⁿ —Dy1—S11	76.72 (12)	S3 ^{vn} —Dy6—S13 ^{vn}	138.20 (6)
S6 ⁿ —Dy1—S11	124.29 (10)	$S13^{vm}$ —Dy6— $S13^{vn}$	80.09 (11)
S6—Dy1—S11	124.29 (10)	S11 ^{vii} —Dy6—S10	67.46 (10)
S8—Dy1—Dy1 ⁱⁱ	90.0	S11 ^{viii} —Dy6—S10	67.46 (10)
S9 ⁱ —Dy1—Dy1 ⁱⁱ	90.0	S1 ^{viii} —Dy6—S10	134.86 (8)
S3—Dy1—Dy1 ⁱⁱ	133.07 (7)	S1 ^{vii} —Dy6—S10	134.86 (8)
S3 ⁱⁱ —Dy1—Dy1 ⁱⁱ	46.93 (7)	S3 ^{vii} —Dy6—S10	127.89 (13)
S6 ⁱⁱ —Dy1—Dy1 ⁱⁱ	46.99 (6)	S13 ^{viii} —Dy6—S10	71.30 (10)
S6—Dy1—Dy1 ⁱⁱ	133.01 (6)	S13 ^{vii} —Dy6—S10	71.30 (10)
S11—Dv1—Dv1 ⁱⁱ	90.0	S11 ^{vii} —Dv6—Dv6 ⁱⁱⁱ	133.00 (6)
S8—Dv1—Dv1 ⁱⁱⁱ	90.0	S11 ^{viii} —Dv6—Dv6 ⁱⁱⁱ	47.00 (6)
$S9^{i}$ —Dv1—Dv1 ⁱⁱⁱ	90.0	S1 ^{viii} —Dv6—Dv6 ⁱⁱⁱ	47.55 (6)
S_{3} D_{y1} D_{y1}	46.93 (7)	$S1^{\text{vii}}$ Dy6 Dy6	132 45 (6)
$S3^{ii}$ Dy1 Dy1	133 07 (7)	$S3^{vii}$ Dy6 Dy6	90.0
$S6^{ii}$ Dy1 Dy1 $S6^{ii}$	133.01 (6)	S_{13}^{iii} Dy6 Dy6	49.95 (5)
$\frac{56}{2} - \frac{5}{2} - 5$	155.01 (0) 16.00 (6)	S13 - Dy0 - Dy0 $S13^{vii}$ Dy6 Dy6 ⁱⁱⁱ	130.05 (5)
$S_{11} D_{y1} D_{y1}$	-0.99 (0) 00.0	S13 - Dy0 - Dy0	130.03 (3)
$SII - DyI - DyI^{**}$	50.0 190.00 (5)		90.0 47.00 (C)
Dy1 - Dy1 - Dy1	100.00 (3)		47.00 (0)
So-Dy1-Dy5	159.81 (9)		133.00 (6)
S9'—Dy1—Dy5	53.78 (10)	S1 ^{vm} —Dy6—Dy6 ⁿ	132.45 (6)

S3—Dy1—Dy5	46.56 (8)	S1 ^{vii} —Dy6—Dy6 ⁱⁱ	47.55 (6)
S3 ⁱⁱ —Dy1—Dy5	46.56 (8)	S3 ^{vii} —Dy6—Dy6 ⁱⁱ	90.0
S6 ⁱⁱ —Dy1—Dy5	116.87 (9)	S13 ^{viii} —Dy6—Dy6 ⁱⁱ	130.05 (5)
S6—Dy1—Dy5	116.87 (9)	S13 ^{vii} —Dy6—Dy6 ⁱⁱ	49.95 (5)
S11—Dy1—Dy5	91.43 (9)	S10—Dy6—Dy6 ⁱⁱ	90.0
Dy1 ⁱⁱ —Dy1—Dy5	90.0	Dy6 ⁱⁱⁱ —Dy6—Dy6 ⁱⁱ	180.00 (5)
Dy1 ⁱⁱⁱ —Dy1—Dy5	90.0	S2—Dy7—S2 ⁱⁱ	85.20 (14)
S8—Dy1—Dy7 ^{iv}	90.29 (9)	S2—Dy7—S6 ^{xi}	87.83 (11)
S9 ⁱ —Dy1—Dy7 ^{iv}	56.12 (10)	S2 ⁱⁱ —Dy7—S6 ^{xi}	150.73 (13)
S3—Dy1—Dy7 ^{iv}	117.79 (10)	S2—Dy7—S6 ^{xii}	150.73 (13)
S3 ⁱⁱ —Dy1—Dy7 ^{iv}	117.79 (10)	S2 ⁱⁱ —Dy7—S6 ^{xii}	87.83 (11)
S6 ⁱⁱ —Dy1—Dy7 ^{iv}	46.02 (7)	S6 ^{xi} —Dy7—S6 ^{xii}	84.49 (13)
S6—Dy1—Dy7 ^{iv}	46.02 (7)	S2—Dy7—S4	75.80 (11)
S11—Dy1—Dy7 ^{iv}	158.67 (9)	S2 ⁱⁱ —Dy7—S4	75.80 (11)
Dy1 ⁱⁱ —Dy1—Dy7 ^{iv}	90.0	S6 ^{xi} —Dy7—S4	74.93 (11)
$Dy1^{iii}$ — $Dy1$ — $Dy7^{iv}$	90.0	S6 ^{xii} —Dy7—S4	74.93 (11)
Dy5—Dy1—Dy7 ^{iv}	109.91 (3)	S2—Dy7—S13 ^{vii}	119.86 (13)
S14 ^v —Dy2—O14 ^v	0.0 (5)	S2 ⁱⁱ —Dy7—S13 ^{vii}	68.11 (12)
$S14^{v}$ — $Dy2$ — $S14^{vi}$	104.1 (3)	S6 ^{xi} —Dy7—S13 ^{vii}	138.30 (12)
O14 ^v —Dy2—S14 ^{vi}	104.1 (3)	S6 ^{xii} —Dy7—S13 ^{vii}	83.21 (10)
S14 ^v —Dy2—O14 ^{vi}	104.1 (3)	S4—Dy7—S13 ^{vii}	138.23 (6)
O14 ^v —Dy2—O14 ^{vi}	104.1 (3)	S2—Dy7—S13 ^{viii}	68.11 (12)
$S14^{vi}$ — $Dy2$ — $O14^{vi}$	0.0 (4)	S2 ⁱⁱ —Dy7—S13 ^{viii}	119.86 (13)
S14 ^v —Dy2—S7	73.79 (19)	S6 ^{xi} —Dy7—S13 ^{viii}	83.21 (10)
O14 ^v —Dy2—S7	73.79 (19)	S6 ^{xii} —Dy7—S13 ^{viii}	138.30 (12)
S14 ^{vi} —Dy2—S7	73.79 (19)	S4—Dy7—S13 ^{viii}	138.23 (6)
O14 ^{vi} —Dy2—S7	73.79 (19)	S13 ^{vii} —Dy7—S13 ^{viii}	80.06 (11)
S14 ^v —Dy2—S5	74.03 (17)	S2—Dy7—Dy7 ⁱⁱ	132.60 (7)
O14 ^v —Dy2—S5	74.03 (17)	S2 ⁱⁱ —Dy7—Dy7 ⁱⁱ	47.40 (7)
S14 ^{vi} —Dy2—S5	74.03 (17)	S6 ^{xi} —Dy7—Dy7 ⁱⁱ	132.25 (6)
O14 ^{vi} —Dy2—S5	74.03 (17)	S6 ^{xii} —Dy7—Dy7 ⁱⁱ	47.75 (6)
S7—Dy2—S5	126.46 (14)	S4—Dy7—Dy7 ⁱⁱ	90.0
S14 ^v —Dy2—S1 ^{vii}	144.2 (2)	S13 ^{vii} —Dy7—Dy7 ⁱⁱ	49.97 (6)
O14 ^v —Dy2—S1 ^{vii}	144.2 (2)	S13 ^{viii} —Dy7—Dy7 ⁱⁱ	130.03 (6)
$S14^{vi}$ — $Dy2$ — $S1^{vii}$	78.26 (16)	S2—Dy7—Dy7 ⁱⁱⁱ	47.40 (7)
$O14^{vi}$ — $Dy2$ — $S1^{vii}$	78.26 (16)	S2 ⁱⁱ —Dy7—Dy7 ⁱⁱⁱ	132.60 (7)
S7—Dy2—S1 ^{vii}	72.68 (12)	S6 ^{xi} —Dy7—Dy7 ⁱⁱⁱ	47.75 (6)
S5—Dy2—S1 ^{vii}	138.10 (7)	S6 ^{xii} —Dy7—Dy7 ⁱⁱⁱ	132.25 (6)
S14 ^v —Dy2—S1 ^{viii}	78.26 (16)	S4—Dy7—Dy7 ⁱⁱⁱ	90.0
$O14^{v}$ — $Dy2$ — $S1^{viii}$	78.26 (16)	S13 ^{vii} —Dy7—Dy7 ⁱⁱⁱ	130.03 (6)
$S14^{vi}$ — $Dy2$ — $S1^{viii}$	144.2 (2)	S13 ^{viii} —Dy7—Dy7 ⁱⁱⁱ	49.97 (6)
$O14^{vi}$ — $Dy2$ — $S1^{viii}$	144.2 (2)	Dy7 ⁱⁱ —Dy7—Dy7 ⁱⁱⁱ	180.00 (8)
S7—Dy2—S1 ^{viii}	72.68 (12)	S2—Dy7—Dy1 ^{xii}	132.94 (8)
S5—Dy2—S1 ^{viii}	138.10(7)	S2 ⁱⁱ —Dy7—Dy1 ^{xii}	132.94 (8)
S1 ^{vn} —Dy2—S1 ^{viii}	80.07 (11)	S6 ^{x1} —Dy7—Dy1 ^{xii}	45.18 (7)
S14 ^v —Dy2—S2	78.71 (18)	$S6^{xii}$ —Dy7—Dy1 ^{xii}	45.18 (7)
O14 ^v —Dy2—S2	78.71 (18)	S4—Dy7—Dy1 ^{xii}	87.21 (9)
$S14^{v_1}$ —Dy2—S2	143.7 (2)	$S13^{vn}$ —Dy7—Dy1 ^{xii}	102.10 (8)

O14 ^{vi} —Dy2—S2	143.7 (2)	S13 ^{viii} —Dy7—Dy1 ^{xii}	102.10 (8)
S7—Dy2—S2	138.79 (7)	Dy7 ⁱⁱ —Dy7—Dy1 ^{xii}	90.0
S5—Dy2—S2	72.10 (11)	Dy7 ⁱⁱⁱ —Dy7—Dy1 ^{xii}	90.0
S1 ^{vii} —Dy2—S2	120.68 (12)	S8 ⁱⁱⁱ —Dy8—S8	87.33 (13)
S1 ^{viii} —Dy2—S2	72.10 (11)	S8 ⁱⁱⁱ —Dy8—S14 ^v	68.79 (14)
S14 ^v —Dy2—S2 ⁱⁱ	143.7 (2)	S8—Dy8—S14 ^v	68.79 (14)
O14 ^v —Dy2—S2 ⁱⁱ	143.7 (2)	S8 ⁱⁱⁱ —Dy8—O14 ^v	68.79 (14)
S14 ^{vi} —Dy2—S2 ⁱⁱ	78.71 (18)	S8—Dy8—O14 ^v	68.79 (14)
O14 ^{vi} —Dy2—S2 ⁱⁱ	78.71 (18)	S14 ^v —Dy8—O14 ^v	0.0 (3)
S7—Dy2—S2 ⁱⁱ	138.79 (7)	S8 ⁱⁱⁱ —Dy8—S7	137.78 (12)
S5—Dy2—S2 ⁱⁱ	72.10 (11)	S8—Dy8—S7	79.92 (11)
S1 ^{vii} —Dy2—S2 ⁱⁱ	72.10 (11)	S14 ^v —Dy8—S7	69.06 (15)
S1 ^{viii} —Dy2—S2 ⁱⁱ	120.68 (12)	O14 ^v —Dy8—S7	69.06 (15)
S2—Dy2—S2 ⁱⁱ	78.91 (12)	S8 ⁱⁱⁱ —Dy8—S7 ⁱⁱⁱ	79.92 (11)
S14 ^v —Dy2—Dy2 ⁱⁱ	142.03 (14)	S8—Dy8—S7 ⁱⁱⁱ	137.78 (12)
O14 ^v —Dy2—Dy2 ⁱⁱ	142.03 (14)	S14 ^v —Dy8—S7 ⁱⁱⁱ	69.06 (15)
S14 ^{vi} —Dy2—Dy2 ⁱⁱ	37.97 (14)	O14 ^v —Dy8—S7 ⁱⁱⁱ	69.06 (15)
$O14^{vi}$ — $Dy2$ — $Dy2^{ii}$	37.97 (14)	S7—Dy8—S7 ⁱⁱⁱ	83.07 (13)
$S7-Dy2-Dy2^{ii}$	90.0	S8 ⁱⁱⁱ —Dy8—S4 ^{iv}	145.71 (13)
S5—Dy2—Dy2 ⁱⁱ	90.0	S8—Dv8—S4 ^{iv}	85.03 (10)
$S1^{vii}$ — $Dy2$ — $Dy2^{ii}$	49.97 (6)	S14 ^v —Dv8—S4 ^{iv}	136.99 (8)
S1 ^{viii} —Dy2—Dy2 ⁱⁱ	130.03 (6)	O14 ^v —Dv8—S4 ^{iv}	136.99 (8)
S2—Dy2—Dy2 ⁱⁱ	129.46 (6)	S7—Dy8—S4 ^{iv}	73.29 (12)
S2 ⁱⁱ —Dy2—Dy2 ⁱⁱ	50.54 (6)	S7 ⁱⁱⁱ —Dv8—S4 ^{iv}	126.09 (13)
S14 ^v —Dy2—Dy2 ⁱⁱⁱ	37.97 (14)	S8 ⁱⁱⁱ —Dv8—S4 ^{xiii}	85.03 (10)
O14 ^v —Dy2—Dy2 ⁱⁱⁱ	37.97 (14)	S8—Dy8—S4 ^{xiii}	145.71 (13)
S14 ^{vi} —Dy2—Dy2 ⁱⁱⁱ	142.03 (14)	S14 ^v —Dv8—S4 ^{xiii}	136.99 (8)
O14 ^{vi} —Dy2—Dy2 ⁱⁱⁱ	142.03 (14)	O14 ^v —Dy8—S4 ^{xiii}	136.99 (8)
S7—Dy2—Dy2 ⁱⁱⁱ	90.0	S7—Dy8—S4 ^{xiii}	126.09 (13)
S5—Dy2—Dy2 ⁱⁱⁱ	90.0	S7 ⁱⁱⁱ —Dy8—S4 ^{xiii}	73.29 (12)
S1 ^{vii} —Dy2—Dy2 ⁱⁱⁱ	130.03 (6)	S4 ^{iv} —Dy8—S4 ^{xiii}	82.77 (12)
S1 ^{viii} —Dy2—Dy2 ⁱⁱⁱ	49.97 (6)	S8 ⁱⁱⁱ —Dy8—S6	73.43 (10)
S2—Dy2—Dy2 ⁱⁱⁱ	50.54 (6)	S8—Dy8—S6	73.43 (10)
S2 ⁱⁱ —Dy2—Dy2 ⁱⁱⁱ	129.46 (6)	S14 ^v —Dy8—S6	126.78 (17)
Dy2 ⁱⁱ —Dy2—Dy2 ⁱⁱⁱ	180.00 (6)	O14 ^v —Dy8—S6	126.78 (17)
O14—Dy3—S5 ^{viii}	75.25 (16)	S7—Dy8—S6	137.80 (7)
O14—Dy3—S5 ^{vii}	75.25 (16)	S7 ⁱⁱⁱ —Dy8—S6	137.80 (7)
S5 ^{viii} —Dy3—S5 ^{vii}	86.32 (13)	S4 ^{iv} —Dy8—S6	72.35 (11)
O14—Dy3—S10	140.5 (2)	S4 ^{xiii} —Dy8—S6	72.35 (11)
S5 ^{viii} —Dy3—S10	76.23 (12)	S8 ⁱⁱⁱ —Dy8—Dy8 ⁱⁱ	133.66 (6)
S5 ^{vii} —Dy3—S10	76.23 (12)	S8—Dy8—Dy8 ⁱⁱ	46.34 (6)
O14—Dy3—S8 ^{vii}	70.86 (16)	S14 ^v —Dy8—Dy8 ⁱⁱ	90.0
S5 ^{viii} —Dy3—S8 ^{vii}	146.11 (13)	O14 ^v —Dy8—Dy8 ⁱⁱ	90.0
S5 ^{vii} —Dy3—S8 ^{vii}	85.38 (10)	S7—Dy8—Dy8 ⁱⁱ	48.47 (7)
S10—Dy3—S8 ^{vii}	132.79 (8)	S7 ⁱⁱⁱ —Dy8—Dy8 ⁱⁱ	131.53 (7)
O14—Dy3—S8 ^{viii}	70.86 (16)	S4 ^{iv} —Dy8—Dy8 ⁱⁱ	48.62 (6)
S5 ^{viii} —Dy3—S8 ^{viii}	85.38 (10)	S4 ^{xiii} —Dy8—Dy8 ⁱⁱ	131.38 (6)
S5 ^{vii} —Dy3—S8 ^{viii}	146.11 (13)	S6—Dy8—Dy8 ⁱⁱ	90.0

S10—Dy3—S8 ^{viii}	132.79 (8)	S8 ⁱⁱⁱ —Dy8—Dy8 ⁱⁱⁱ	46.34 (6)
S8 ^{vii} —Dy3—S8 ^{viii}	83.46 (11)	S8—Dy8—Dy8 ⁱⁱⁱ	133.66 (6)
O14—Dy3—S11 ^{viii}	133.50 (11)	S14 ^v —Dy8—Dy8 ⁱⁱⁱ	90.0
S5 ^{viii} —Dy3—S11 ^{viii}	86.83 (9)	O14 ^v —Dy8—Dy8 ⁱⁱⁱ	90.0
S5 ^{vii} —Dy3—S11 ^{viii}	146.92 (13)	S7—Dy8—Dy8 ⁱⁱⁱ	131.53 (7)
S10—Dy3—S11 ^{viii}	70.70 (11)	S7 ⁱⁱⁱ —Dy8—Dy8 ⁱⁱⁱ	48.47 (7)
S8 ^{vii} —Dy3—S11 ^{viii}	116.65 (11)	S4 ^{iv} —Dy8—Dy8 ⁱⁱⁱ	131.38 (6)
S8 ^{viii} —Dy3—S11 ^{viii}	65.12 (11)	S4 ^{xiii} —Dy8—Dy8 ⁱⁱⁱ	48.62 (6)
O14—Dy3—S11 ^{vii}	133.50 (11)	S6—Dy8—Dy8 ⁱⁱⁱ	90.0
S5 ^{viii} —Dy3—S11 ^{vii}	146.92 (13)	Dy8 ⁱⁱ —Dy8—Dy8 ⁱⁱⁱ	180.0
S5 ^{vii} —Dy3—S11 ^{vii}	86.83 (9)	S8 ⁱⁱⁱ —Dy8—Dy3 ^v	47.11 (7)
S10—Dy3—S11 ^{vii}	70.70 (11)	S8—Dy8—Dy3 ^v	47.11 (7)
S8 ^{vii} —Dy3—S11 ^{vii}	65.12 (11)	S14 ^v —Dy8—Dy3 ^v	40.19 (15)
S8 ^{viii} —Dy3—S11 ^{vii}	116.65 (11)	O14 ^v —Dy8—Dy3 ^v	40.19 (15)
S11 ^{viii} —Dy3—S11 ^{vii}	81.52 (11)	S7—Dy8—Dy3 ^v	98.71 (10)
O14—Dy3—Dy3 ⁱⁱ	90.0	S7 ⁱⁱⁱ —Dy8—Dy3 ^v	98.71 (10)
S5 ^{viii} —Dy3—Dy3 ⁱⁱ	133.16 (6)	S4 ^{iv} —Dy8—Dy3 ^v	131.84 (7)
S5 ^{vii} —Dy3—Dy3 ⁱⁱ	46.84 (6)	S4 ^{xiii} —Dy8—Dy3 ^v	131.84 (7)
S10—Dy3—Dy3 ⁱⁱ	90.0	S6—Dy8—Dy3 ^v	86.59 (9)
S8 ^{vii} —Dy3—Dy3 ⁱⁱ	48.27 (6)	Dy8 ⁱⁱ —Dy8—Dy3 ^v	90.0
S8 ^{viii} —Dy3—Dy3 ⁱⁱ	131.73 (6)	Dy8 ⁱⁱⁱ —Dy8—Dy3 ^v	90.0
S11 ^{viii} —Dy3—Dy3 ⁱⁱ	130.76 (5)	S12—Sn1—S13	177.64 (19)
S11 ^{vii} —Dy3—Dy3 ⁱⁱ	49.24 (5)	S12—Sn1—S10 ^{vi}	91.72 (15)
O14—Dy3—Dy3 ⁱⁱⁱ	90.0	S13—Sn1—S10 ^{vi}	89.85 (14)
S5 ^{viii} —Dy3—Dy3 ⁱⁱⁱ	46.84 (6)	S12—Sn1—S10 ^v	91.72 (15)
S5 ^{vii} —Dy3—Dy3 ⁱⁱⁱ	133.16 (6)	S13—Sn1—S10 ^v	89.85 (14)
S10—Dy3—Dy3 ⁱⁱⁱ	90.0	S10 ^{vi} —Sn1—S10 ^v	96.82 (16)
S8 ^{vii} —Dy3—Dy3 ⁱⁱⁱ	131.73 (6)	S12—Sn1—S9	88.85 (14)
S8 ^{viii} —Dy3—Dy3 ⁱⁱⁱ	48.27 (6)	S13—Sn1—S9	89.58 (14)
S11 ^{viii} —Dy3—Dy3 ⁱⁱⁱ	49.24 (5)	S10 ^{vi} —Sn1—S9	179.39 (19)
S11 ^{vii} —Dy3—Dy3 ⁱⁱⁱ	130.76 (5)	S10 ^v —Sn1—S9	83.40 (8)
Dy3 ⁱⁱ —Dy3—Dy3 ⁱⁱⁱ	180.00 (3)	S12—Sn1—S9 ⁱⁱ	88.85 (14)
O14—Dy3—Dy8 ^{vii}	45.47 (18)	S13—Sn1—S9 ⁱⁱ	89.58 (13)
S5 ^{viii} —Dy3—Dy8 ^{vii}	107.98 (9)	S10 ^{vi} —Sn1—S9 ⁱⁱ	83.40 (8)
S5 ^{vii} —Dy3—Dy8 ^{vii}	107.98 (9)	S10 ^v —Sn1—S9 ⁱⁱ	179.39 (19)
S10—Dy3—Dy8 ^{vii}	174.01 (11)	S9—Sn1—S9 ⁱⁱ	96.38 (16)
S8 ^{vii} —Dy3—Dy8 ^{vii}	44.94 (7)	Dy6 ^{vi} —S1—Dy6 ^v	84.89 (12)
S8 ^{viii} —Dy3—Dy8 ^{vii}	44.94 (7)	Dy6 ^{vi} —S1—Dy5	105.14 (12)
S11 ^{viii} —Dy3—Dy8 ^{vii}	104.92 (9)	Dy6 ^v —S1—Dy5	105.14 (12)
S11 ^{vii} —Dy3—Dy8 ^{vii}	104.92 (8)	$Dy6^{vi}$ — $S1$ — $Dy2^{v}$	150.61 (19)
Dy3 ⁱⁱ —Dy3—Dy8 ^{vii}	90.0	Dy6 ^v —S1—Dy2 ^v	90.17 (6)
Dy3 ⁱⁱⁱ —Dy3—Dy8 ^{vii}	90.0	$Dy5$ — $S1$ — $Dy2^{v}$	104.12 (12)
S5 ^{vii} —Dy4—S5 ^{viii}	86.51 (13)	$Dy6^{vi}$ — $S1$ — $Dy2^{vi}$	90.17 (6)
S5 ^{vii} —Dy4—S4 ^{viii}	151.45 (13)	$Dy6^v$ — $S1$ — $Dy2^{vi}$	150.61 (19)
$S5^{viii}$ —Dy4—S4 viii	87.87 (10)	Dy5—S1—Dy2 ^{vi}	104.12 (12)
S5 ^{vii} —Dy4—S4 ^{vii}	87.87 (10)	$Dy2^{v}$ —S1— $Dy2^{vi}$	80.07 (11)
$S5^{viii}$ —Dy4—S4 ^{vii}	151.45 (13)	Dy7—S2—Dy7 ⁱⁱⁱ	85.20 (14)
S4 ^{viii} —Dy4—S4 ^{vii}	83.83 (12)	$Dy7$ — $S2$ — $Dy4^{v}$	104.92 (13)

S5 ^{vii} —Dy4—S2 ^{vii}	76.38 (11)	Dy7 ⁱⁱⁱ —S2—Dy4 ^v	104.92 (13)
S5 ^{viii} —Dy4—S2 ^{vii}	76.38 (11)	Dy7—S2—Dy2	90.90 (5)
S4 ^{viii} —Dv4—S2 ^{vii}	75.09 (11)	Dy7 ⁱⁱⁱ —S2—Dy2	151.17 (18)
S4 ^{vii} —Dv4—S2 ^{vii}	75.09 (11)	Dy4 ^v —S2—Dy2	103.69 (13)
S5 ^{vii} —Dv4—S12 ^{viii}	137.58 (12)	Dv7—S2—Dv2 ⁱⁱⁱ	151.17 (18)
S5 ^{viii} —Dv4—S12 ^{viii}	82.10 (11)	Dv7 ⁱⁱⁱ —S2—Dv2 ⁱⁱⁱ	90.90 (5)
S4 ^{viii} —Dv4—S12 ^{viii}	68.88 (12)	Dv4 ^v —S2—Dv2 ⁱⁱⁱ	103.69 (13)
S4 ^{vii} —Dv4—S12 ^{viii}	119.56 (13)	Dv2—S2—Dv2 ⁱⁱⁱ	78.91 (12)
S2 ^{vii} —Dv4—S12 ^{viii}	138.40 (7)	Dv1—S3—Dv1 ⁱⁱⁱ	86.14 (13)
$S5^{vii}$ —Dv4— $S12^{vii}$	82.10 (11)	$Dv1 - S3 - Dv5^{iii}$	151.58 (19)
S5 ^{viii} —Dv4—S12 ^{vii}	137.58 (12)	$Dv1^{iii}$ —S3— $Dv5^{iii}$	87.60 (5)
S4 ^{viii} —Dv4—S12 ^{vii}	119.56 (13)	Dv1—S3—Dv5	87.60 (5)
$S4^{vii}$ Dv4 $S12^{vii}$	68.88 (12)	$Dv1^{iii}$ S3 $Dv5$	151.58 (19)
$S2^{vii}$ Dv4 $S12^{vii}$	138.40 (7)	Dv5 ⁱⁱⁱ —S3—Dv5	84.86 (13)
$S12^{viii}$ Dv4 $S12^{vii}$	79.43 (12)	$Dv1 - S3 - Dv6^{v}$	102.89 (13)
$S5^{vii}$ Dv4 Dv4 ⁱⁱⁱ	133.25 (7)	$Dv1^{iii}$ S3 $Dv6^{v}$	102.89 (13)
S5 ^{viii} —Dv4—Dv4 ⁱⁱⁱ	46.75 (7)	$Dv5^{iii}$ —S3— $Dv6^{v}$	105.53 (13)
$S4^{\text{viii}}$ Dv4 Dv4 ⁱⁱⁱ	48.09(6)	$Dv5 = S3 = Dv6^{v}$	105.53(13)
$S4^{vii}$ Dv4 Dv4 ⁱⁱⁱ	131.91 (6)	$Dy4^{v}$ S4 $Dy4^{vi}$	83.83 (12)
$S2^{vii}$ Dv4 Dv4 ⁱⁱⁱ	90.0	$Dv4^v$ —S4— $Dv7$	104.18(12)
$S12^{viii}$ Dv4 Dv4 ⁱⁱⁱ	50.28 (6)	$Dy4^{vi}$ S4 $Dy7$	104.18 (12)
$S12^{vii}$ Dv4 Dv4 ⁱⁱⁱ	129.72 (6)	$Dv4^v$ —S4— $Dv8^{xi}$	88.21 (5)
$S5^{vii}$ Dv4 Dv4 ⁱⁱ	46.75 (7)	$Dv4^{vi}$ S4 $Dv8^{xi}$	148.43 (17)
S5 ^{viii} —Dv4—Dv4 ⁱⁱ	133.25 (7)	$Dv7$ —S4— $Dv8^{xi}$	107.38 (12)
S4 ^{viii} —Dv4—Dv4 ⁱⁱ	131.91 (6)	$Dv4^v$ —S4— $Dv8^{xii}$	148.43 (17)
S4 ^{vii} —Dv4—Dv4 ⁱⁱ	48.09 (6)	$Dv4^{vi}$ S4 $Dv8^{xii}$	88.21 (5)
S2 ^{vii} —Dv4—Dv4 ⁱⁱ	90.0	Dv7—S4—Dv8 ^{xii}	107.38 (12)
S12 ^{viii} —Dv4—Dv4 ⁱⁱ	129.72 (6)	$Dv8^{xi}$ S4 $Dv8^{xii}$	82.77 (12)
S12 ^{vii} —Dv4—Dv4 ⁱⁱ	50.28 (6)	$Dv4^v$ —S5— $Dv4^{vi}$	86.51 (13)
Dv4 ⁱⁱⁱ —Dv4—Dv4 ⁱⁱ	180.00 (5)	Dv4v—S5—Dv3 ^{vi}	159.03 (18)
S5 ^{vii} —Dv4—Dv3	45.15 (7)	$Dy4^{vi}$ —S5— $Dy3^{vi}$	89.79 (4)
S5 ^{viii} —Dy4—Dy3	45.15 (7)	Dy4 ^v —S5—Dy3 ^v	89.79 (4)
S4 ^{viii} —Dv4—Dv3	132.57 (7)	$Dv4^{vi}$ —S5— $Dv3^{v}$	159.03 (18)
S4 ^{vii} —Dv4—Dv3	132.57 (7)	Dv3 ^{vi} —S5—Dv3 ^v	86.32 (13)
S2 ^{vii} —Dv4—Dv3	85.62 (10)	Dv4 ^v —S5—Dv2	107.56 (12)
S12 ^{viii} —Dv4—Dv3	103.71 (10)	$Dv4^{vi}$ —S5— $Dv2$	107.56 (12)
S12 ^{vii} —Dv4—Dv3	103.71 (10)	$Dv3^{vi}$ —S5— $Dv2$	93.24 (12)
Dv4 ⁱⁱⁱ —Dv4—Dv3	90.0	$Dv3^v$ —S5— $Dv2$	93.24 (12)
$Dv4^{ii}$ — $Dv4$ — $Dv3$	90.0	$Dv1^{iii}$ —S6—Dv1	86.02 (13)
5^{vii} V^{vii} V^{vii}	133.99 (7)	$Dv1^{iii}$ S6 $Dv7^{iv}$	153.67 (17)
$S5^{viii}$ Dv4 Dv8 ^{ix}	133.99 (7)	$Dv1 - S6 - Dv7^{iv}$	88.80 (5)
S4 ^{viii} —Dv4—Dv8 ^{ix}	46.20 (7)	$Dy1^{iii}$ S6 $Dy7^{xiii}$	88.80 (5)
$S4^{vii}$ Dv4 Dv8 ^{ix}	46.20 (7)	$Dv1 - S6 - Dv7^{xiii}$	153.67 (17)
$S2^{vii}$ Dv4 Dv8 ^{ix}	91.32 (10)	Dv7 ^{iv} —S6—Dv7 ^{xiii}	84.49 (13)
$S12^{viii}$ Dv4 Dv8 ^{ix}	78.60 (10)	$Dv1^{iii}$ S6 $Dv8$	100.99 (12)
$S12^{vii}$ Dv4 Dv8 ^{ix}	78.60 (10)	Dv1—S6—Dv8	100.99 (12)
$Dv4^{iii}$ $Dv4$ $Dv8^{ix}$	90.0	$Dv7^{iv}$ S6 $Dv8$	105.34(11)
$Dv4^{ii}$ $Dv4$ $Dv8^{ix}$	90.0	$Dv7^{xiii}$ S6 $Dv8$	105.34(11)
$\mathcal{L}_{\mathcal{J}}$, $\mathcal{L}_{\mathcal{J}}$, $\mathcal{L}_{\mathcal{J}}$	20.0	$\mathcal{L}_{\mathcal{J}}$, so $\mathcal{L}_{\mathcal{J}}$	100.01(11)

Dy3—Dy4—Dy8 ^{ix}	176.94 (3)	Dy5 ^{vii} —S7—Dy5 ^{viii}	85.19 (13)
S7v—Dy5—S7 ^{vi}	85.19 (13)	Dy5 ^{vii} —S7—Dy8 ⁱⁱ	89.21 (5)
S7 ^v —Dy5—S3	86.84 (11)	Dy5 ^{viii} —S7—Dy8 ⁱⁱ	152.1 (2)
S7 ^{vi} —Dy5—S3	149.10 (16)	Dy5 ^{vii} —S7—Dy8	152.1 (2)
S7 ^v —Dy5—S3 ⁱⁱ	149.10 (16)	Dy5 ^{viii} —S7—Dy8	89.21 (5)
S7 ^{vi} —Dv5—S3 ⁱⁱ	86.84 (11)	Dv8 ⁱⁱ —S7—Dv8	83.07 (13)
S3—Dy5—S3 ⁱⁱ	84.86 (13)	Dy5 ^{vii} —S7—Dy2	108.48 (14)
S7 ^v —Dy5—S1	74.57 (12)	Dy5 ^{viii} —S7—Dy2	108.48 (14)
S7 ^{vi} —Dy5—S1	74.57 (12)	Dy8 ⁱⁱ —S7—Dy2	99.23 (13)
S3—Dy5—S1	74.54 (12)	Dy8—S7—Dy2	99.23 (13)
S3 ⁱⁱ —Dy5—S1	74.54 (12)	Dy1—S8—Dy8 ⁱⁱ	108.55 (12)
$S7^{v}$ —Dy5—S12 ^x	118.62 (13)	Dv1—S8—Dv8	108.55 (12)
$S7^{vi}$ — $Dv5$ — $S12^{x}$	67.02 (12)	Dv8 ⁱⁱ —S8—Dv8	87.33 (13)
S3—Dv5—S12 ^x	141.31 (14)	Dv1—S8—Dv3 ^v	99.06 (12)
S3 ⁱⁱ —Dv5—S12 ^x	85.06 (11)	Dv8 ⁱⁱ —S8—Dv3 ^v	152.05 (17)
S1—Dv5—S12 ^x	137.24 (8)	Dv8—S8—Dv3 ^v	87.95 (5)
$S7^{v}$ —Dv5—S12 ⁱ	67.02 (12)	$Dv1 - S8 - Dv3^{vi}$	99.06 (12)
$S7^{vi}$ Dy5 $S12^{i}$	118 62 (13)	$Dv8^{ii}$ $S8$ $Dv3^{vi}$	87.95 (5)
S_{3} Dy5 S_{12}^{i}	85.06 (11)	$Dv8$ — $S8$ — $Dv3^{vi}$	152.05(17)
$S3^{ii}$ Dy5 $S12^{i}$	141 31 (14)	$Dy^{3v} = 88 = Dy^{3vi}$	83 46 (11)
\$1-Dv5-\$12 ⁱ	137.24 (8)	$Sn1 - S9 - Sn1^{iii}$	96.38 (16)
\$12 ^x —Dv5—\$12 ⁱ	79.93 (13)	$Sn1 - S9 - Dv1^{xiv}$	131 79 (8)
S7 ^v —Dv5—S9 ⁱ	133.23 (9)	$Sn1^{iii}$ $S9$ $Dy1^{xiv}$	131.79 (8)
$S7^{vi}$ Dy5 $S9^{i}$	133,23 (9)	Sn1 = S9 = Dy1 $Sn1 = S9 = Dy5^{xiv}$	96 74 (13)
S_{3} $D_{y}5$ S_{y}^{i}	71.02 (11)	$Sn1^{iii}$ $S9$ $Dy5^{xiv}$	96 74 (13)
S3 ⁱⁱ —Dv5—S9 ⁱ	71.02 (11)	$Dy1^{xiv}$ $S9 Dy5^{xiv}$	81.66 (13)
S1-Dy5-S9 ⁱ	132 68 (13)	$Sn1^{viii}$ $S10$ $Sn1^{vii}$	96.82 (16)
S1 ² ×—Dv5—S9 ⁱ	70 38 (11)	$sn1^{viii}$ $s10^{viii}$ $Dv3$	131 34 (8)
S12 ⁱ —Dv5—S9 ⁱ	70.38 (11)	$Sn1^{vii}$ $S10^{vii}$ $Dy3^{vii}$	131.34(8)
$S_{12} = D_y S_{12} = S_y S_{12}$	132 60 (7)	$Sn1^{viii}$ $S10^{-}Dy6$	96.03 (14)
S^{vi} Dy5 Dy5	47.40(7)	$Sn1^{vii}$ $S10^{vii}$ $Dy6^{vii}$	96.03 (14)
$S_{1} = D_{y}S_{2} = D_{y}S_{3}$	132 43 (7)	D_{y}^{3} S_{10}^{10} D_{y}^{6}	86 55 (13)
S_{3i}^{ii} Dy5 Dy5	132.43(7) 47.57(7)	$D_y S^v = S_{11} = D_y S^v$	85.99 (12)
$S_{1} = D_{y}S_{2} = D_{y}S_{3}$	90.0	Dy0 = 511 = Dy0	105 23 (11)
S1 - Dy5 - Dy5 $S12^x - Dy5 - Dy5^{ii}$	50.03 (6)	Dy0 - S11 - Dy1	105.23(11) 105.23(11)
S12 - Dy5 - Dy5 $S12^i - Dy5 - Dy5^{ii}$	120.07 (6)	Dy0 = S11 = Dy1 $Dy6^{v} = S11 = Dy3^{vi}$	158 35 (16)
$S_{12} - D_{y5} - D_{y5}$	90.0	Dy0 - S11 - Dy3	92 23 (4)
$S^{y} - D^{y}S - D^{y}S$	47.40(7)	Dy0 = 311 = Dy3	92.23(4)
S7 - Dy5 - Dy5 $S7^{vi}$ Dy5 Dy5 ⁱⁱⁱ	132.60(7)	Dy1 = 311 = Dy3	90.07(11) 92.23(4)
$S_{1} = D_{y} S_{2} = D_{y} S_{1}$	132.00(7)	Dy0 - S11 - Dy3	92.23 (4) 158 35 (16)
S ² ii Dy5 Dy5 ⁱⁱⁱ	47.37(7)	Dy0 = 311 = Dy3	158.55(10)
$S_{3} = Dy_{3} = Dy_{3}$	132.43 (7)	$Dy_1 = S_1 = Dy_3$	90.07 (11)
S1 - Dy - Dy - Dy - Siii	90.0	Dy3 - S11 - Dy5 Sm1 S12 Dy5xiv	61.32(11) 102.28(14)
S12 ⁱ —Dy5—Dy5 ⁱⁱⁱ	129.97(0)	$S_{\text{III}} = S_{\text{III}} = S_{\text{III}} = D_{\text{III}} S_{\text{III}}$	103.38(14) 102.28(14)
$S_{12} - Dy_{3} - Dy_{3} $	50.05 (0) 00.0	$SIII \longrightarrow SI2 \longrightarrow Si2$	103.36(14)
$S_{2} - D_{2} S_{2} - D_{2} - D_{2} S_{2} - D_{2} - D_$	90.0 180.0	$Dy3^{m} - S12 - Dy3^{m}$	19.93 (13)
Dy_{3} Dy_{3} Dy_{3} Dy_{3}	100.0	$SIII \longrightarrow SI2 \longrightarrow Uy4''$	104.21(14)
S / - DyS - DyI	$152.05(\delta)$	$Dy3^{m} - S12 - Dy4^{m}$	132.42(18)
S/"—Dy5—Dy1	132.03 (8)	Dy5 ^{**} —512—Dy4 ^{**}	93.73 (3)

S3—Dy5—Dy1	45.84 (7)	Sn1—S12—Dy4 ^v	104.21 (14)
S3 ⁱⁱ —Dy5—Dy1	45.84 (7)	$Dy5^{xiv}$ —S12—Dy4 v	93.75 (5)
S1—Dy5—Dy1	88.12 (9)	$Dy5^{xv}$ — $S12$ — $Dy4^{v}$	152.42 (18)
S12 ^x —Dy5—Dy1	104.13 (10)	Dy4 ^{vi} —S12—Dy4 ^v	79.43 (12)
S12 ⁱ —Dy5—Dy1	104.13 (10)	Sn1—S13—Dy6 ^{vi}	102.09 (12)
S9 ⁱ —Dy5—Dy1	44.56 (9)	Sn1—S13—Dy6 ^v	102.09 (12)
Dy5 ⁱⁱ —Dy5—Dy1	90.0	Dy6 ^{vi} —S13—Dy6 ^v	80.09 (11)
Dy5 ⁱⁱⁱ —Dy5—Dy1	90.0	$Sn1$ — $S13$ — $Dy7^{v}$	105.50 (12)
S7 ^v —Dy5—Dy8 ^{vi}	45.99 (8)	Dy6 ^{vi} —S13—Dy7 ^v	152.39 (16)
S7 ^{vi} —Dy5—Dy8 ^{vi}	45.99 (8)	Dy6 ^v —S13—Dy7 ^v	93.35 (5)
S3—Dy5—Dy8 ^{vi}	132.78 (8)	Sn1—S13—Dy7 ^{vi}	105.50 (12)
S3 ⁱⁱ —Dy5—Dy8 ^{vi}	132.78 (8)	Dy6 ^{vi} —S13—Dy7 ^{vi}	93.35 (5)
S1—Dy5—Dy8 ^{vi}	88.11 (9)	Dy6 ^v —S13—Dy7 ^{vi}	152.39 (16)
S12 ^x —Dy5—Dy8 ^{vi}	78.71 (9)	Dy7 ^v —S13—Dy7 ^{vi}	80.06 (11)
S12 ⁱ —Dy5—Dy8 ^{vi}	78.71 (9)	Dy2 ^{vii} —O14—Dy2 ^{viii}	104.1 (3)
S9 ⁱ —Dy5—Dy8 ^{vi}	139.21 (9)	Dy2 ^{vii} —O14—Dy3	114.6 (2)
Dy5 ⁱⁱ —Dy5—Dy8 ^{vi}	90.0	Dy2 ^{viii} —O14—Dy3	114.6 (2)
Dy5 ⁱⁱⁱ —Dy5—Dy8 ^{vi}	90.0	Dy2 ^{vii} —O14—Dy8 ^{vii}	114.9 (2)
Dy1—Dy5—Dy8 ^{vi}	176.23 (4)	Dy2 ^{viii} —O14—Dy8 ^{vii}	114.9 (2)
S11 ^{vii} —Dy6—S11 ^{viii}	85.99 (12)	Dy3—O14—Dy8 ^{vii}	94.3 (2)

Symmetry codes: (i) -x+1/2, -y+3/2, z-1/2; (ii) x-1, y, z; (iii) x+1, y, z; (iv) -x, -y+1, z-1/2; (v) x+1/2, y+1/2, z; (vi) x-1/2, y+1/2, z; (vii) x-1/2, y-1/2, z; (viii) x+1/2, y-1/2, z; (viii) x-1/2, z;