Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

3-Ethyl-2-methyl-5-methylene-6,7-di-hydroindol-4(5H)-one

Vijayakumar N. Sonar, ${ }^{\text {a }}$ Sean Parkin ${ }^{\text {b }}$ and Peter A. Crooks ${ }^{\text {a* }}$

${ }^{\text {a }}$ Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington KY 40536, USA, and ${ }^{\text {b }}$ Department of Chemistry, University of Kentucky, Lexington KY 40536, USA
Correspondence e-mail: pcrooks@email.uky.edu
Received 19 November 2007; accepted 25 November 2007
Key indicators: single-crystal X-ray study; $T=90 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA ; R$ factor $=$ $0.038 ; w R$ factor $=0.097$; data-to-parameter ratio $=15.3$.

The title compound, $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}$, a degradation product of molindone hydrochloride, was prepared by the reaction of molindone with methyl iodide and subsequent reaction of the resulting quaternary ammonium salt with $2 N$ aqueous sodium hydroxide. The newly formed double bond is exocyclic in nature and the carbonyl group is conjugated with the π electrons of the pyrrole ring. The six-membered ring is in the half-chair conformation. The H atom attached to the N atom is involved in an intermolecular hydrogen bond with the O atom of a screw-related molecule, thus forming a continuous chain.

Related literature

For related literature, see: Dudzinski et al. (1973).

Experimental

Crystal data
$\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}$
$V=1063.88(6) \AA^{3}$
$M_{r}=189.25$
Monoclinic, $P 2_{\mathrm{b}} / n$
$Z=4$
$a=9.0451$ (3) A
$b=8.5840(3) \AA$
$c=14.3557(5) \AA$
$\mathrm{Cu} K \alpha$ radiation
$\mu=0.59 \mathrm{~mm}^{-}$
$\beta=107.355(1)^{\circ}$
$T=90.0$ (2) K
$0.15 \times 0.12 \times 0.10 \mathrm{~mm}$

Data collection

Bruker X8 Proteum diffractometer Absorption correction: multi-scan
(SADABS in APEX2;
Bruker, 2006)
$T_{\text {min }}=0.837, T_{\text {max }}=0.944$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.097$
$S=1.05$
1972 reflections

15160 measured reflections 1972 independent reflections 1893 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.039$

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{i}}$	0.88	1.91	$2.7749(12)$	169

Symmetry code: (i) $x-\frac{1}{2},-y+\frac{1}{2}, z-\frac{1}{2}$.
Data collection: APEX2 (Bruker, 2006); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL (Sheldrick, 1995); software used to prepare material for publication: SHELX97 and local procedures.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2194).

References

Bruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconcin, USA.
Dudzinski, J., Lachman, L., Shami, E. \& Tingstad, J. (1973). J. Pharm. Sci. 62, 622-624.
Sheldrick, G. M. (1995). XP in SHELXTL/PC. Siemens Analytical Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

supporting information

Acta Cryst. (2008). E64, o158 [https://doi.org/10.1107/S1600536807063076]

3-Ethyl-2-methyl-5-methylene-6,7-dihydroindol-4(5H)-one

Vijayakumar N. Sonar, Sean Parkin and Peter A. Crooks

S1. Comment

The Mannich condensation reaction is frequently used in the synthesis of pharmaceutical compounds. One such example is the synthesis of molindone, an antipsychotic agent. During stability studies and development of an assay for molindone hydrochloride, a degradation product was identified as 3-ethyl-2-methyl-5-methylene-6,7-dihydro-5 H -indol-4-one (Dudzinski et al., 1973). Molindone has UV absorption peaks at 255 nm and 299 nm ; these UV wavelengths can be used quantitatively for quantifying the drug substance. However, preliminary studies indicated that chemical degradation (as evidenced by color and precipitate formation) was not accompanied by a decrease in UV absorption, suggesting that the degradation product had a similar chromophore to molindone. The title compound was prepared by the reaction of molindone free base with methyl iodide and subsequent reaction of the resulting quaternary ammonium salt with 2 N aqueous sodium hydroxide. The structure of the resulting compound, 3-ethyl-2-methyl-5-methylene-6,7-dihydro-5 H -indol-4-one, was initially characterized by NMR spectroscopy and shown to be identical to the degradation product of molindone hydrochloride. To confirm the exocyclic nature of newly formed double bond and to identify chromophoric group in the molecule responsible for its UV absorption profile, its crystal structure was determined by X-ray analysis.
The molecular structure and the atom-numbering scheme are shown in Fig. 1. The bond length C4-C5 [1.5115 (16) \AA] indicates that the newly formed double bond is exocyclic in nature. Further, it is evident from the bond lengths of C5C6 and C6-C7 [1.5058 (15) and 1.4327 (15) \AA, respectively] that the carbonyl group is conjugated with the π-electrons of pyrrole ring and not π-electrons of the exocyclic double. This explains why molindone and its degradation product, the title compound exhibit similar UV absorption. The mode of packing along the b direction is illustrated in Fig. 2. The H atom attached to atom N 1 is involved in an intermolecular hydrogen bond [2.7749 (12) \AA] with atom O 1 of an inversionrelated molecule, thus forming a continuous chain.

S2. Experimental

A mixture of molindone $(0.276 \mathrm{~g}, 1 \mathrm{mmol})$ and excess methyl iodide (2 ml) was stirred at ambient temperature. After completion of the reaction, unreacted methyl iodide was evaporated, and the crude quaternary ammonium salt was then mixed with 2 N aqueous sodium hydroxide $(10 \mathrm{ml})$ and stirred for 1 h at ambient temperature. The resulting precipitate was collected by filtration and washed with water. Recrystallization from ethanol afforded the title compound as colorless crystalline product, which was suitable for X-ray analysis. Compound I: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, p.p.m): $\delta 1.15(\mathrm{t}, \mathrm{J}$ $=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 2.70(\mathrm{q}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.83(\mathrm{~s}, 4 \mathrm{H}), 5.29(\mathrm{~d}, \mathrm{~J}=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.03(\mathrm{~d}, \mathrm{~J}=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.43$ (sb, 1 H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$, p.p.m.): $\delta 10.68,15.83,18.41,23.65,32.13,118.66,119.16,121.58,124.74$, 142.28, 144.84, 184.13.

S3. Refinement

All H atoms were found in difference Fourier maps and but were subsequently placed in idealized positions with constrained distances of $0.98 \AA\left(\mathrm{RCH}_{3}\right), 0.99 \AA\left(R_{2} \mathrm{CH}_{2}\right), 0.95 \AA\left(\mathrm{RC}_{\text {sp } 2} \mathrm{H}_{2}\right)$ and $0.88 \AA(\mathrm{NH}) . U_{\text {iso }}(\mathrm{H})$ values were set to either $1.2 U_{\mathrm{eq}}$ or $1.5 U_{\mathrm{eq}}\left(\mathrm{RCH}_{3}\right.$ only) of the attached atom.

Figure 1
A view of the title compound I showing atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2
A packing diagram viewed down the b axis, showing hydrogen bonding interactions (dashed lines). For clarity, only those H atoms involved in hydrogen bonding are shown.

(I)

(II)

Figure 3
Compounds (I) and (II).

3-Ethyl-2-methyl-5-methylene-6,7-dihydroindol-4(5H)-one

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}$
$M_{r}=189.25$
Monoclinic, $P 2_{1} / n$
Hall symbol: -P 2yn
$a=9.0451$ (3) A
$b=8.5840(3) \AA$
$c=14.3557(5) \AA$
$\beta=107.355(1)^{\circ}$
$V=1063.88(6) \AA^{3}$
$Z=4$

Data collection

Bruker X8 Proteum

diffractometer
Radiation source: fine-focus rotating anode
Graded multilayer optics monochromator
Detector resolution: 18 pixels mm^{-1}
φ and ω scans
Absorption correction: multi-scan
(SADABS in APEX2; Bruker, 2006)
$T_{\min }=0.837, T_{\text {max }}=0.944$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.097$
$S=1.05$
1972 reflections
129 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
$F(000)=408$
$D_{\mathrm{x}}=1.182 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation, $\lambda=1.54178 \AA$
Cell parameters from 9990 reflections
$\theta=3.2-69.4^{\circ}$
$\mu=0.59 \mathrm{~mm}^{-1}$
$T=90 \mathrm{~K}$
Block, colourless
$0.15 \times 0.12 \times 0.10 \mathrm{~mm}$

15160 measured reflections
1972 independent reflections
1893 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.039$
$\theta_{\text {max }}=69.4^{\circ}, \theta_{\text {min }}=5.2^{\circ}$
$h=-10 \rightarrow 10$
$k=-10 \rightarrow 10$
$l=-17 \rightarrow 17$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0464 P)^{2}+0.432 P\right]$ where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.24 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.20$ e \AA^{-3}

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
O1	$0.68573(9)$	$0.20035(10)$	$0.42456(6)$	$0.0247(2)$
N1	$0.35484(10)$	$0.23361(11)$	$0.11591(6)$	$0.0186(2)$
H1	0.3128	0.2575	0.0540	0.022^{*}
C2	$0.49707(13)$	$0.27649(13)$	$0.17035(8)$	$0.0181(2)$

C3	$0.60968(13)$	$0.37109(14)$	$0.13708(8)$	$0.0232(3)$
H3A	0.5914	0.4835	0.1445	0.028^{*}
H3B	0.5977	0.3499	0.0674	0.028^{*}
C4	$0.77279(13)$	$0.32599(14)$	$0.20002(8)$	$0.0239(3)$
H4A	0.7983	0.2212	0.1805	0.029^{*}
H4B	0.8484	0.4006	0.1879	0.029^{*}
C5	$0.78799(13)$	$0.32500(13)$	$0.30777(8)$	$0.0212(3)$
C6	$0.66379(13)$	$0.24233(12)$	$0.33901(8)$	$0.0184(2)$
C7	$0.52110(12)$	$0.21662(12)$	$0.26362(8)$	$0.0168(2)$
C8	$0.38323(12)$	$0.13283(12)$	$0.26393(8)$	$0.0179(3)$
C9	$0.28372(13)$	$0.14590(12)$	$0.17184(8)$	$0.0190(3)$
C10	$0.12335(13)$	$0.08583(15)$	$0.12770(9)$	$0.0270(3)$
H10A	0.1004	0.0069	0.1708	0.041^{*}
H10B	0.1149	0.0391	0.0640	0.041^{*}
H10C	0.0494	0.1719	0.1193	0.041^{*}
C11	$0.35382(13)$	$0.04614(13)$	$0.34712(8)$	$0.0224(3)$
H11A	0.4509	-0.0057	0.3850	0.027^{*}
H11B	0.2761	-0.0362	0.3205	0.027^{*}
C12	$0.29655(17)$	$0.14824(17)$	$0.41558(10)$	$0.0342(3)$
H12A	0.3746	0.2276	0.4444	0.051^{*}
H12B	0.2784	0.0839	0.4675	0.051^{*}
H12C	0.1996	0.1991	0.3790	0.051^{*}
C13	$0.90486(14)$	$0.39164(15)$	$0.37417(9)$	$0.0283(3)$
H13A	0.9101	0.3872	0.4412	0.034^{*}
H13B	0.9835	0.4439	0.3548	0.034^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0246(4)$	$0.0296(5)$	$0.0160(4)$	$-0.0050(3)$	$0.0003(3)$	$0.0018(3)$
N1	$0.0188(5)$	$0.0208(5)$	$0.0137(4)$	$0.0021(4)$	$0.0010(4)$	$-0.0001(3)$
C2	$0.0186(5)$	$0.0177(5)$	$0.0177(5)$	$0.0014(4)$	$0.0046(4)$	$-0.0012(4)$
C3	$0.0249(6)$	$0.0265(6)$	$0.0184(5)$	$-0.0025(5)$	$0.0070(5)$	$0.0024(4)$
C4	$0.0204(6)$	$0.0266(6)$	$0.0260(6)$	$-0.0032(5)$	$0.0091(5)$	$0.0003(5)$
C5	$0.0180(5)$	$0.0193(5)$	$0.0245(6)$	$0.0003(4)$	$0.0040(4)$	$0.0025(4)$
C6	$0.0198(6)$	$0.0166(5)$	$0.0174(5)$	$0.0004(4)$	$0.0033(4)$	$-0.0008(4)$
C7	$0.0172(5)$	$0.0165(5)$	$0.0158(5)$	$0.0003(4)$	$0.0037(4)$	$-0.0009(4)$
C8	$0.0176(5)$	$0.0163(5)$	$0.0194(5)$	$0.0001(4)$	$0.0049(4)$	$-0.0012(4)$
C9	$0.0178(5)$	$0.0169(5)$	$0.0212(6)$	$0.0005(4)$	$0.0043(4)$	$-0.0018(4)$
C10	$0.0189(6)$	$0.0272(6)$	$0.0304(6)$	$-0.0025(5)$	$0.0002(5)$	$-0.0010(5)$
C11	$0.0221(6)$	$0.0218(6)$	$0.0233(6)$	$-0.0024(4)$	$0.0067(4)$	$0.0028(4)$
C12	$0.0415(8)$	$0.0368(7)$	$0.0303(7)$	$0.0054(6)$	$0.0200(6)$	$0.0059(5)$
C13	$0.0245(6)$	$0.0282(6)$	$0.0280(6)$	$-0.0066(5)$	$0.0011(5)$	$0.0058(5)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{O} 1-\mathrm{C} 6$	$1.2377(14)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.4407(15)$
$\mathrm{N} 1-\mathrm{C} 2$	$1.3423(14)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.3640(15)$

N1-C9	1.3905 (14)
N1-H1	0.8800
C2-C7	1.3894 (15)
C2-C3	1.4883 (15)
C3-C4	1.5322 (16)
C3-H3A	0.9900
C3-H3B	0.9900
$\mathrm{C} 4-\mathrm{C} 5$	1.5115 (16)
C4-H4A	0.9900
C4-H4B	0.9900
C5-C13	1.3237 (17)
C5-C6	1.5058 (15)
C6-C7	1.4327 (15)
C2-N1-C9	109.90 (9)
C2-N1-H1	125.1
C9-N1-H1	125.1
N1-C2-C7	107.88 (10)
N1-C2-C3	126.27 (10)
C7-C2-C3	125.85 (10)
C2-C3-C4	107.68 (9)
C2-C3-H3A	110.2
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	110.2
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	110.2
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	110.2
H3A-C3-H3B	108.5
C5-C4-C3	112.49 (9)
C5-C4-H4A	109.1
C3-C4-H4A	109.1
C5-C4-H4B	109.1
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	109.1
H4A-C4-H4B	107.8
C13-C5-C6	119.71 (11)
C13-C5-C4	122.95 (11)
C6-C5-C4	117.34 (10)
O1-C6-C7	123.12 (10)
O1-C6-C5	121.31 (10)
C7-C6- 55	115.57 (9)
C2-C7-C6	121.18 (10)
C2-C7-C8	107.51 (9)
C6-C7-C8	131.31 (10)
C9-N1-C2-C7	0.04 (12)
C9-N1-C2-C3	179.92 (10)
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	-152.52 (11)
C7-C2-C3-C4	27.34 (15)
C2-C3-C4-C5	-48.30 (13)
C3-C4-C5-C13	-133.03 (12)

$$
179.92 \text { (10) }
$$

$$
-152.52(11)
$$

$$
-48.30(13)
$$

$$
-133.03(12)
$$

$\mathrm{C} 8-\mathrm{C} 11$	$1.4968(15)$
$\mathrm{C} 9-\mathrm{C} 10$	$1.4911(15)$
$\mathrm{C} 10-\mathrm{H} 10 \mathrm{~A}$	0.9800
$\mathrm{C} 10-\mathrm{H} 10 \mathrm{~B}$	0.9800
$\mathrm{C} 10-\mathrm{H} 10 \mathrm{C}$	0.9800
$\mathrm{C} 11-\mathrm{C} 12$	$1.5185(17)$
$\mathrm{C} 11-\mathrm{H} 11 \mathrm{~A}$	0.9900
$\mathrm{C} 11-\mathrm{H} 11 \mathrm{~B}$	0.9900
$\mathrm{C} 12-\mathrm{H} 12 \mathrm{~A}$	0.9800
$\mathrm{C} 12-\mathrm{H} 12 \mathrm{~B}$	0.9800
$\mathrm{C} 12-\mathrm{H} 12 \mathrm{C}$	0.9800
$\mathrm{C} 13-\mathrm{H} 13 \mathrm{~A}$	0.9500
$\mathrm{C} 13-\mathrm{H} 13 \mathrm{~B}$	0.9500

106.11 (9)
126.25 (10)
127.64 (10)
108.61 (9)
131.34 (11)
120.05 (10)
109.5
109.5
109.5
109.5
109.5
109.5
113.92 (10)
108.8
108.8
108.8
108.8
107.7
109.5
109.5
109.5
109.5
109.5
109.5
120.0
120.0
120.0
-5.13 (15)
-5.42 (19)
174.62 (10)
0.04 (12)
-179.74 (11)
179.14 (10)

$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$47.57(14)$
$\mathrm{C} 13-\mathrm{C} 5-\mathrm{C} 6-\mathrm{O} 1$	$-18.54(17)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{O} 1$	$160.88(10)$
$\mathrm{C} 13-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$161.42(11)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$-19.16(14)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 7-\mathrm{C} 6$	$179.76(9)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 7-\mathrm{C} 6$	$-0.13(17)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 7-\mathrm{C} 8$	$-0.05(12)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 7-\mathrm{C} 8$	$-179.93(10)$
$\mathrm{O} 1-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 2$	$174.83(10)$

$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 11$	$-0.63(19)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{N} 1$	$-0.02(12)$
$\mathrm{C} 11-\mathrm{C} 8-\mathrm{C} 9-\mathrm{N} 1$	$-179.14(10)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$-179.29(11)$
$\mathrm{C} 11-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$1.6(2)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 9-\mathrm{C} 8$	$-0.01(12)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 9-\mathrm{C} 10$	$179.35(10)$
$\mathrm{C} 9-\mathrm{C} 8-\mathrm{C} 11-\mathrm{C} 12$	$-96.71(14)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 11-\mathrm{C} 12$	$84.36(14)$

Hydrogen-bond geometry ($\hat{A},{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{i}}$	0.88	1.91	$2.7749(12)$	169

Symmetry code: (i) $x-1 / 2,-y+1 / 2, z-1 / 2$.

