Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

## Diaquabis(1H-1,2,4-triazole-3-carboxylato)cadmium(II)

Jie Zhu, ${ }^{\text {a,b }}$ Xian-Hong Yin, ${ }^{\text {a,b }}{ }^{*}$ Yu Feng, ${ }^{\text {a }}$ Fei-Long Hu, ${ }^{\text {a }}$ Yue Zhuang ${ }^{\text {a }}$ and Cui-Wu Lin ${ }^{\text {b }}$<br>${ }^{\text {a }}$ College of Chemistry and Ecological Engineering, Guangxi University for Nationalities, Nanning 530006, People's Republic of China, and ${ }^{\text {b }}$ College of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China<br>Correspondence e-mail: yxhphd@163.com<br>Received 10 November 2007; accepted 28 November 2007<br>Key indicators: single-crystal X-ray study; $T=298 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$; $R$ factor $=0.027 ; w R$ factor $=0.077$; data-to-parameter ratio $=11.4$.

In the title complex, $\left[\mathrm{Cd}\left(\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{O}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$, the $\mathrm{Cd}^{\mathrm{II}}$ atom is coordinated by two N and two O atoms from two deprotonated $1 \mathrm{H}-1,2,4$-triazole-3-carboxylic acid ligands (TRIA) and two water molecules. The Cd atom is located on an inversion centre. In the crystal structure, molecules are linked together via $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming a three-dimensional network.

## Related literature

For related literature, see: Guo \& Wang (2005), Zhu et al. (2007a,b).


## Experimental

## Crystal data

$\left[\mathrm{Cd}\left(\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{O}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$
$V=570.46(19) \AA^{3}$
$M_{r}=372.58$
Monoclinic, $P 2_{1} / c$
$Z=2$
Mo $K \alpha$ radiation
$a=9.2722$ (16) A
$\mu=1.95 \mathrm{~mm}^{-1}$
$b=8.8318$ (14) A
$T=298$ (1) K
$0.32 \times 0.23 \times 0.11 \mathrm{~mm}$

## Data collection

Bruker SMART CCD
diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.574, T_{\text {max }}=0.814$

2791 measured reflections 1002 independent reflections 843 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.023$

## Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.027$
88 parameters
$w R\left(F^{2}\right)=0.077$
H -atom parameters constrained
$S=1.09$
$\Delta \rho_{\text {max }}=1.21 \mathrm{e} \AA^{-3}$
1002 reflections
$\Delta \rho_{\text {min }}=-0.60 \mathrm{e}^{\AA^{-3}}$

Table 1
Hydrogen-bond geometry ( $\AA,{ }^{\circ}$ ).

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{O}^{2}-\mathrm{H} 3 C \cdots \mathrm{O}^{\mathrm{i}}$ | 0.85 | 1.90 | $2.715(3)$ | 159 |
| O3-H3 $^{\mathrm{i}} \cdots \mathrm{O}^{\text {ii }}$ | 0.85 | 1.91 | $2.736(3)$ | 162 |
| N3-H3 $\cdots \mathrm{O}^{\text {iii }}$ | 0.86 | 1.89 | $2.728(4)$ | 164 |

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

The authors thank the National Natural Science Foundation of China (20761002) for support. This research was sponsored by the Fund of the Talent Highland Research Program of Guangxi University (205121), the Science Foundation of the State Ethnic Affairs Commission (07GX05), the Development Foundation of Guangxi Research Institute of Chemical Industry and the Science Foundation of Guangxi University for Nationalities (0409032, 0409012, 0509ZD047).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2190).

## References

Guo, X.-H. \& Wang, Q.-X. (2005). Acta Cryst. E61, o3217-o3218.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997a). SHELXL97 andSHELXS97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS, Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Zhu, J., Yin, X.-H., Feng, Y., Zhao, K. \& Su, Z.-X. (2007a). Acta Cryst. E63, m3167.
Zhu, J., Yin, X. H., Feng, Y., Zhao, K. \& Zhang, S. S. (2007b). Acta Cryst. E63, m71.

## supporting information

Acta Cryst. (2008). E64, m119 [https://doi.org/10.1107/S1600536807063994]

## Diaquabis(1H-1,2,4-triazole-3-carboxylato)cadmium(II)

Jie Zhu, Xian-Hong Yin, Yu Feng, Fei-Long Hu, Yue Zhuang and Cui-Wu Lin

## S1. Comment

Recently, although the crystal structure of methyl $1 H-1,2,4$-triazole-3-carboxylate has been reported (Guo \& Wang, 2005), metal complexes with triazole ligands have been rarely of interest for decades despite the biological importance of the triazole group. We have reported the crystal structures of two new copper(II) complexes diaquobis( $1 \mathrm{H}-1,2,4-$ triazole-3-carboxylato)copper(II) and (1H-1,2,4-triazole-3-carboxylato)(1,10-phen)copper(II)chloride (Zhu, et al., 2007, 2008). As a further investigation, we report in this paper the crystal structure of a new cadmium(II) complex, diaquobis( 1 H - 1,2,4-triazole-3-carboxylato)cadmium(II).

As shown in Fig. 1, the title compound consists of a centrosymmetric mononuclear cadmium(II) complex cation. In the cation the Cd atom is six-coordinated by two N and two O atoms from two TRIA ligands and two O atoms from two water molecules. The $\mathrm{Cd}^{\mathrm{II}}$ atom is in a slightly distorted octahedral environment. The $\mathrm{Cd}-\mathrm{O}$ distances range from 2.315 (2) to 2.321 (3) $\AA$, and the $\mathrm{Cd}-\mathrm{N}$ bond length is 2.293 (3) $\AA$, i.e. normal values. The $\mathrm{C} 1-\mathrm{C} 2$ bond length is 1.495 (5) $\AA$, being in the normal $\mathrm{C}-\mathrm{C}$ ranges in cadmium carboxylate complexes. The angles around $\mathrm{Cd}^{\mathrm{II}}$ atom are from 73.57 (9) to linear. The TRIA molecule acts as a bidentate ligand.

In the title compound, the water molecules contribute to the formation of intermolecular hydrogen bonds involving carboxylate O atoms. Additional hydrogen bonds exist between the $\mathrm{N}-\mathrm{H}$ groups of the triazole and carboxylate O atoms.

## S2. Experimental

1 H -1,2,4-triazole-3-carboxylic acid and $\mathrm{CdCl}_{2} \cdot 2.5 \mathrm{H}_{2} \mathrm{O}$ were available commercially and were used without further purification. $1 H-1,2,4$-triazole-3-carboxylic acid ( $1 \mathrm{mmol}, 113 \mathrm{mg}$ ) was dissolved in distilled water ( 15 ml ) and $\mathrm{CdCl}_{2} .2 .5 \mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{mmol}, 114.2 \mathrm{mg})$ was added in distilled water $(5 \mathrm{ml})$ with stirring at 323 K . The resulting colorless solution was allowed to react for 5 h and was then filtered. Colorless crystals suitable for X-ray analysis were obtained by slow evaporation of a water solution over a period of one month (yield 75\%). Anal. Calcd (\%) for $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{CdN}_{6} \mathrm{O}_{6}(\mathrm{Mr}=$ 372.58): C, 19.34; H, 2.16; N, 22.56. Found (\%): C, 19.28; H, 2.22; N, 22.49.

## S3. Refinement

All the H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with O $\mathrm{H}, \mathrm{N}-\mathrm{H}$ and $\mathrm{C}-\mathrm{H}$ distances of $0.85 \AA, 0.86 \AA$ and $0.93 \AA$, respectively, and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{O}), U_{\mathrm{iso}}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{N})$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.
H atoms of the water molecules were located in a difference Fourier map and refined using a riding method. The highest peak in the difference map is 1.21 (1) $\AA$ from Cd1 and the largest hole is 0.60 (2) $\AA$ from Cd1.


Figure 1
The structure of the title compound showing $50 \%$ probability displacement ellipsoids and the atom-numbering scheme. Symmetry code: (i) $-x,-y,-z$.

## Diaquabis(1H-1,2,4-triazole-3-carboxylato)cadmium(II)

## Crystal data

$\left[\mathrm{Cd}\left(\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{O}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$
$M_{r}=372.58$
Monoclinic, $P 2{ }_{1} / c$
Hall symbol: -P 2ybc
$a=9.2722$ (16) $\AA$
$b=8.8318(14) \AA$
$c=6.9714$ (17) $\AA$
$\beta=92.230(1)^{\circ}$
$V=570.46(19) \AA^{3}$
$Z=2$

## Data collection

## Bruker SMART CCD

diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
$\varphi$ and $\omega$ scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.574, T_{\text {max }}=0.814$
$F(000)=364$
$D_{\mathrm{x}}=2.169 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 2042 reflections
$\theta=2.2-28.2^{\circ}$
$\mu=1.95 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
Prism, colorless
$0.32 \times 0.23 \times 0.11 \mathrm{~mm}$

2791 measured reflections
1002 independent reflections
843 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.023$
$\theta_{\text {max }}=25.0^{\circ}, \theta_{\text {min }}=2.2^{\circ}$
$h=-9 \rightarrow 11$
$k=-10 \rightarrow 10$
$l=-8 \rightarrow 7$

## Refinement

Refinement on $F^{2}$
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.027$
$w R\left(F^{2}\right)=0.077$
$S=1.09$
1002 reflections
88 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0445 P)^{2}+0.5043 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=1.21 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.60$ e $\AA^{-3}$

## Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of $F^{2}$ against ALL reflections. The weighted $R$-factor $w R$ and goodness of fit $S$ are based on $F^{2}$, conventional $R$-factors $R$ are based on $F$, with $F$ set to zero for negative $F^{2}$. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating $R$-factors(gt) etc. and is not relevant to the choice of reflections for refinement. $R$-factors based on $F^{2}$ are statistically about twice as large as those based on $F$, and $R$ - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters ( $\AA^{2}$ )

|  | $x$ | $y$ | $z$ | $U_{\text {iso }} * / U_{\text {eq }}$ |
| :--- | :--- | :--- | :--- | :--- |
| Cd1 | 0.0000 | 0.0000 | 0.0000 | $0.02817(18)$ |
| N1 | $0.2289(4)$ | $-0.0228(3)$ | $0.1335(5)$ | $0.0311(8)$ |
| N2 | $0.4348(3)$ | $0.1039(3)$ | $0.2024(4)$ | $0.0311(7)$ |
| N3 | $0.4480(3)$ | $-0.0451(4)$ | $0.2456(5)$ | $0.0323(7)$ |
| H3 | 0.5255 | -0.0865 | 0.2927 | $0.039^{*}$ |
| O1 | $0.1027(2)$ | $0.2387(2)$ | $-0.0103(3)$ | $0.0293(6)$ |
| O2 | $0.2867(2)$ | $0.3785(2)$ | $0.1013(4)$ | $0.0313(6)$ |
| O3 | $-0.0921(3)$ | $0.0865(3)$ | $0.2849(4)$ | $0.0409(7)$ |
| H3B | -0.0262 | 0.1228 | 0.3596 | $0.049^{*}$ |
| H3C | -0.1369 | 0.0171 | 0.3426 | $0.049^{*}$ |
| C1 | $0.2259(3)$ | $0.2549(4)$ | $0.0702(5)$ | $0.0242(7)$ |
| C2 | $0.2995(4)$ | $0.1123(4)$ | $0.1356(5)$ | $0.0253(7)$ |
| C3 | $0.3259(4)$ | $-0.1186(4)$ | $0.2057(6)$ | $0.0364(9)$ |
| H3A | 0.3110 | -0.2215 | 0.2255 | $0.044^{*}$ |

Atomic displacement parameters $\left(\hat{A}^{2}\right)$

|  | $U^{11}$ | $U^{22}$ | $U^{33}$ | $U^{12}$ | $U^{13}$ | $U^{23}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Cd1 | $0.0187(2)$ | $0.0234(2)$ | $0.0416(3)$ | $-0.00318(12)$ | $-0.00840(16)$ | $-0.00195(14)$ |
| N1 | $0.0245(18)$ | $0.0259(16)$ | $0.042(2)$ | $0.0022(12)$ | $-0.0097(14)$ | $-0.0001(13)$ |
| N2 | $0.0212(15)$ | $0.0333(16)$ | $0.0384(17)$ | $0.0024(13)$ | $-0.0050(13)$ | $-0.0017(14)$ |
| N3 | $0.0253(17)$ | $0.0296(15)$ | $0.0415(19)$ | $0.0079(14)$ | $-0.0077(14)$ | $0.0029(14)$ |
| O1 | $0.0226(12)$ | $0.0230(12)$ | $0.0414(15)$ | $-0.0009(9)$ | $-0.0103(10)$ | $0.0046(10)$ |
| O2 | $0.0237(13)$ | $0.0225(12)$ | $0.0474(15)$ | $-0.0025(10)$ | $-0.0034(11)$ | $0.0009(10)$ |
| O3 | $0.0377(15)$ | $0.0390(15)$ | $0.0458(16)$ | $-0.0120(12)$ | $-0.0014(12)$ | $-0.0053(12)$ |
| C1 | $0.0204(17)$ | $0.0246(17)$ | $0.0275(18)$ | $-0.0005(14)$ | $0.0001(13)$ | $-0.0012(14)$ |
| C2 | $0.0225(18)$ | $0.0259(17)$ | $0.0274(18)$ | $-0.0006(14)$ | $-0.0006(13)$ | $-0.0017(14)$ |
| C3 | $0.032(2)$ | $0.0286(19)$ | $0.048(2)$ | $0.0017(17)$ | $-0.0058(17)$ | $0.0011(17)$ |
|  |  |  |  |  |  |  |

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

| $\mathrm{Cd} 1-\mathrm{N} 1$ | $2.293(3)$ | $\mathrm{N} 2-\mathrm{N} 3$ | $1.355(4)$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{Cd} 1-\mathrm{N} 1^{\mathrm{i}}$ | $2.293(3)$ | $\mathrm{N} 3-\mathrm{C} 3$ | $1.325(5)$ |
| $\mathrm{Cd} 1-\mathrm{O} 1^{\mathrm{i}}$ | $2.315(2)$ | $\mathrm{N} 3-\mathrm{H} 3$ | 0.8600 |
| $\mathrm{Cd} 1-\mathrm{O} 1$ | $2.315(2)$ | $\mathrm{O} 1-\mathrm{C} 1$ | $1.261(4)$ |
| $\mathrm{Cd} 1-\mathrm{O} 3^{\mathrm{i}}$ | $2.321(3)$ | $\mathrm{O} 2-\mathrm{C} 1$ | $1.244(4)$ |


| Cd1-O3 | 2.321 (3) |
| :---: | :---: |
| N1-C3 | 1.321 (5) |
| N1-C2 | 1.361 (4) |
| N2-C2 | 1.323 (4) |
| $\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{N} 1^{\text {i }}$ | 180.00 (17) |
| $\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{Ol}^{1}$ | 106.43 (9) |
| $\mathrm{N} 1{ }^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{O} 1^{\mathrm{i}}$ | 73.57 (9) |
| N1-Cd1-O1 | 73.57 (9) |
| $\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{O} 1$ | 106.43 (9) |
| $\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{O} 1$ | 180.0 |
| $\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{O}^{3}$ | 87.30 (11) |
| $\mathrm{N} 1^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{O} 3^{\text {i }}$ | 92.70 (11) |
| $\mathrm{O} 1^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{O}^{\text {i }}$ | 83.82 (9) |
| O1-Cd1-O3 ${ }^{\text {i }}$ | 96.18 (9) |
| N1-Cd1-O3 | 92.70 (11) |
| $\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{O} 3$ | 87.30 (11) |
| $\mathrm{O1}{ }^{\mathrm{i}}$ - $\mathrm{Cd} 1-\mathrm{O} 3$ | 96.18 (9) |
| $\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{O} 3$ | 83.82 (9) |
| O3 ${ }^{\text {- }} \mathrm{Cd} 1-\mathrm{O} 3$ | 180.00 (12) |
| $\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 2$ | 103.7 (3) |
| $\mathrm{C} 3-\mathrm{N} 1-\mathrm{Cd} 1$ | 144.8 (3) |
| $\mathrm{C} 2-\mathrm{N} 1-\mathrm{Cd} 1$ | 111.4 (2) |
| $\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{N} 1-\mathrm{C} 3$ | 4.2 (5) |
| $\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{N} 1-\mathrm{C} 3$ | -175.8 (5) |
| $\mathrm{O} 3-\mathrm{Cd} 1-\mathrm{N} 1-\mathrm{C} 3$ | -78.6 (5) |
| $\mathrm{O} 3-\mathrm{Cd} 1-\mathrm{N} 1-\mathrm{C} 3$ | 101.4 (5) |
| $\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{N} 1-\mathrm{C} 2$ | -179.7 (2) |
| $\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{N} 1-\mathrm{C} 2$ | 0.3 (2) |
| $\mathrm{O} 3-\mathrm{Cd} 1-\mathrm{N} 1-\mathrm{C} 2$ | 97.5 (3) |
| $\mathrm{O} 3-\mathrm{Cd} 1-\mathrm{N} 1-\mathrm{C} 2$ | -82.5 (3) |
| C2-N2-N3-C3 | -0.1 (4) |
| $\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{O} 1-\mathrm{C} 1$ | -5.4 (2) |
| $\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{O} 1-\mathrm{C} 1$ | 174.6 (2) |
| O3-- $\mathrm{Cd} 1-\mathrm{O} 1-\mathrm{C} 1$ | -90.8 (2) |
| $\mathrm{O} 3-\mathrm{Cd} 1-\mathrm{O} 1-\mathrm{Cl}$ | 89.2 (2) |
| $\mathrm{Cd1}-\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 2$ | -169.3 (3) |


| $\mathrm{O} 3-\mathrm{H} 3 \mathrm{~B}$ | 0.8500 |
| :--- | :--- |
| $\mathrm{O} 3-\mathrm{H} 3 \mathrm{C}$ | 0.8500 |
| $\mathrm{C} 1-\mathrm{C} 2$ | $1.495(5)$ |
| $\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$ | 0.9300 |
|  |  |
| $\mathrm{C} 2-\mathrm{N} 2-\mathrm{N} 3$ | $102.0(3)$ |
| $\mathrm{C} 3-\mathrm{N} 3-\mathrm{N} 2$ | $111.2(3)$ |
| $\mathrm{C} 3-\mathrm{N} 3-\mathrm{H} 3$ | 124.4 |
| $\mathrm{~N} 2-\mathrm{N} 3-\mathrm{H} 3$ | 124.4 |
| $\mathrm{C} 1-\mathrm{O} 1-\mathrm{Cd} 1$ | $117.1(2)$ |
| $\mathrm{Cd} 1-\mathrm{O} 3-\mathrm{H} 3 \mathrm{~B}$ | 111.7 |
| $\mathrm{Cd} 1-\mathrm{O} 3-\mathrm{H} 3 \mathrm{C}$ | 111.8 |
| $\mathrm{H} 3 \mathrm{~B}-\mathrm{O} 3-\mathrm{H} 3 \mathrm{C}$ | 109.5 |
| $\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 1$ | $125.0(3)$ |
| $\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$ | $119.2(3)$ |
| $\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$ | $115.8(3)$ |
| $\mathrm{N} 2-\mathrm{C} 2-\mathrm{N} 1$ | $113.8(3)$ |
| $\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 1$ | $124.7(3)$ |
| $\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 1$ | $121.4(3)$ |
| $\mathrm{N} 1-\mathrm{C} 3-\mathrm{N} 3$ | $109.2(3)$ |
| $\mathrm{N} 1-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$ | 125.4 |
| $\mathrm{~N} 3-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$ | 125.4 |


| $\mathrm{Cd} 1-\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$ | $9.1(4)$ |
| :--- | :--- |
| $\mathrm{N} 3-\mathrm{N} 2-\mathrm{C} 2-\mathrm{N} 1$ | $-0.5(4)$ |
| $\mathrm{N} 3-\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 1$ | $178.4(3)$ |
| $\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 2-\mathrm{N} 2$ | $0.9(5)$ |
| $\mathrm{Cd} 1-\mathrm{N} 1-\mathrm{C} 2-\mathrm{N} 2$ | $-176.8(2)$ |
| $\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 1$ | $-178.1(3)$ |
| $\mathrm{Cd} 1-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 1$ | $4.2(4)$ |
| $\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 2$ | $-9.7(5)$ |
| $\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 2$ | $171.8(3)$ |
| $\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1$ | $169.2(3)$ |
| $\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1$ | $-9.3(5)$ |
| $\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 3-\mathrm{N} 3$ | $-0.9(5)$ |
| $\mathrm{Cd} 1-\mathrm{N} 1-\mathrm{C} 3-\mathrm{N} 3$ | $175.3(3)$ |
| $\mathrm{N} 2-\mathrm{N} 3-\mathrm{C} 3-\mathrm{N} 1$ | $0.7(5)$ |

Symmetry code: (i) $-x,-y,-z$.

Hydrogen-bond geometry ( $\AA,{ }^{o}$ )

| $D — \mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{O} 3 — \mathrm{H} 3 C \cdots \mathrm{O}^{\mathrm{ii}}$ | 0.85 | 1.90 | $2.715(3)$ | 159 |
| $\mathrm{O} 3 — \mathrm{H} 3 B \cdots 1^{\mathrm{iii}}$ | 0.85 | 1.91 | $2.736(3)$ | 162 |
| $\mathrm{~N} 3 — \mathrm{H} 3 \cdots \mathrm{O}^{\mathrm{iv}}$ | 0.86 | 1.89 | $2.728(4)$ | 164 |

Symmetry codes: (ii) $-x, y-1 / 2,-z+1 / 2$; (iii) $x,-y+1 / 2, z+1 / 2$; (iv) $-x+1, y-1 / 2,-z+1 / 2$.

