Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Diaquabis(pyrimidine-2-carboxylic acid$\left.\kappa^{2} N, O\right)$ cobalt(II) dichloride

Duan-Jun Xu, Bing-Yu Zhang, Qian Yang and Jing-Jing Nie*

Department of Chemistry, Zhejiang University, People's Republic of China Correspondence e-mail: niejj@zju.edu.cn

Received 24 November 2007; accepted 26 November 2007

Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$; R factor $=0.040 ; w R$ factor $=0.119$; data-to-parameter ratio $=16.5$.

In the title salt, $\left[\mathrm{Co}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \mathrm{Cl}_{2}$, the $\mathrm{Co}^{\mathrm{II}}$ ion is located on an inversion center. It is chelated by two neutral pyrimidine-2-carboxylic acid molecules and is coordinated by two water molecules in an octahedral coordination geometry. The cations and anions are linked via $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds into a layer structure; an intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond connects the carboxylic acid group to the pyrimidine N atom.

Related literature

For general background, see: Cheng et al. (2000); Wu et al. (2003). For related structures, see: Rodriquez-Dieguez et al. (2007); Zhang et al. (2008).

$2 \mathrm{Cl}^{-}$

Experimental

Crystal data

```
\(\left[\mathrm{Co}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \mathrm{Cl}_{2}\)
\(M_{r}=414.07\)
Monoclinic, \(P 2_{1} / n\)
\(a=6.2803\) (8) A
\(b=10.361\) (2) \(\AA\)
\(c=11.906\) (2) \(\AA\)
\(\beta=95.254\) (15) \({ }^{\circ}\)
```


Data collection

Rigaku R-AXIS RAPID IP diffractometer
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) $T_{\text {min }}=0.726, T_{\text {max }}=0.862$

7413 measured reflections 1763 independent reflections 1178 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.052$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.119$
$S=1.12$
1763 reflections

107 parameters

H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.70 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.72 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right.$).

$\mathrm{Co}-\mathrm{O} 1$	$2.077(3)$	$\mathrm{Co}-\mathrm{N} 1$	$2.085(3)$
$\mathrm{Co}-\mathrm{O} 3$	$2.123(3)$		
$\mathrm{O} 1-\mathrm{Co}-\mathrm{N} 1$	$78.92(11)$	$\mathrm{N} 1-\mathrm{Co}-\mathrm{O} 3$	$87.84(12)$
$\mathrm{O} 1-\mathrm{Co}-\mathrm{O} 3$	$91.01(12)$		

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{~N} 2$	0.82	2.32	2.784 (5)	116
$\mathrm{O} 3-\mathrm{H} 3 A \cdots \mathrm{Cl} 1^{\text {i }}$	0.95	2.20	3.140 (4)	168
$\mathrm{O} 3-\mathrm{H} 3 B \cdots \mathrm{Cl} 1$	0.97	2.34	3.273 (3)	161

Symmetry code: (i) $-x+\frac{3}{2}, y-\frac{1}{2},-z+\frac{3}{2}$.

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/ MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The work was supported by the ZIJIN project of Zhejiang University, China.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2402).

References

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Cheng, D.-P., Zheng, Y., Lin, J., Xu, D. \& Xu, Y. (2000). Acta Cryst. C56, 523524
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2002). CrystalStructure. Version 3.00. Rigaku/MSC, The Woodlands, Texas, USA.
Rodriquez-Dieguez, A., Cano, J., Kivekas, R., Debdoudi, A. \& Colacio, E. (2007). Inorg. Chem. 46, 2503-2510.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Wu, Z.-Y., Xue, Y.-H. \& Xu, D.-J. (2003). Acta Cryst. E59, m809-m811.
Zhang, B.-Y., Yang, Q. \& Nie, J.-J. (2008). Acta Cryst. E64. In the press.

supporting information

Acta Cryst. (2008). E64, m77 [https://doi.org/10.1107/S1600536807063258]

Diaquabis(pyrimidine-2-carboxylic acid- $\kappa^{2} \mathrm{~N}, \mathrm{O}$) cobalt(II) dichloride

Duan-Jun Xu, Bing-Yu Zhang, Qian Yang and Jing-Jing Nie

S1. Comment

As part of our ongoing investigation on the nature of aromatic stacking (Cheng et al., 2000; Wu et al., 2003), the title Co ${ }^{\text {II }}$ compound has recently been prepared and its crystal structure is presented here.
The molecular structure of the title compound is shown in Fig. 1. The crystal of the title compound consists of complex cations and Cl^{-}anions. The $\mathrm{Co}^{\text {II }}$ located on an inversion center is coordinated by two neutral pyrimidine-2-carboxylic acid and two water molecules with an octahedral geometry (Table 1). The Cl^{-}anions link with the complex cations via O $\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonding (Table 2 and Fig. 1). The charge balance indicates that the pyrimidine-2-carboxylic acid is a neutral ligand but not an anion; and the significant difference in $\mathrm{C}-\mathrm{O}$ bond distances (Table 1) also suggests that the carboxyl group is not deprotonated. This is obviously owing to the acidified solution environment in the preparation of the compound (see _publ_section_exptl_prep). The intra-molecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonding exsits between the carboxyl group and adjacent pyrimidine-N atom (Fig. 1). Thus the pyrimidine-2-carboxylic acid can not play a role of bridge ligand in this structure, contrast to that found in pyrimidine-2-carboxylate complex of Co (II) reported previously (Rodriquez-Dieguez et al., 2007).
$\pi-\pi$ stacking is not observed in this crystal structure, which is different from the situation in a related $\mathrm{Cu}^{\mathrm{II}}$ complex with pyrimidine-2-carboxylate (Zhang et al., 2008). It may be due to extensive hydrogen bonding network involving coordinated water molecules and counter Cl^{-}anions.

S2. Experimental

2-Cyanopyrimidine $(0.19 \mathrm{~g}, 1.8 \mathrm{mmol}), \mathrm{CoCl}_{2} .6\left(\mathrm{H}_{2} \mathrm{O}\right)(0.24 \mathrm{~g}, 1 \mathrm{mmol})$ were dissolved in a mixture solution of water $(15$ $\mathrm{ml})$ and ethanol (5 ml), then hydrochloric acid solution ($3 \mathrm{ml}, 37 \%$) was added into the solution. The solution was refluxed for 5 h . Single crystals of the title compound were obtained after about one month.

S3. Refinement

Hydroxy and water H atoms were located in a difference Fourier map and refined as riding in as-found relative positions, with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$. Other H atoms were placed in calculated positions with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and refined in riding mode with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$.

Figure 1
The molecular structure of the title compound with 30% probability displacement (arbitrary spheres for H atoms), dashed lines indicate hydrogen bonding [symmetry codes: (i) $1-x, 1-y, 1-z$].

Diaquabis(pyrimidine-2-carboxylic acid- $\kappa^{2} N, O$)cobalt(II) dichloride

Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \mathrm{Cl}_{2}$
$M_{r}=414.07$
Monoclinic, $P 2_{1} / n$
Hall symbol: -P 2yn
$a=6.2803$ (8) Å
$b=10.361$ (2) \AA
$c=11.906$ (2) \AA
$\beta=95.254(15)^{\circ}$
$V=771.5(2) \AA^{3}$
$Z=2$

Data collection

Rigaku R-AXIS RAPID IP
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
Detector resolution: 10.0 pixels mm^{-1}
ω scans
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.726, T_{\text {max }}=0.862$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.119$
$S=1.12$
$F(000)=418$
$D_{\mathrm{x}}=1.782 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 2668 reflections
$\theta=3.5-24.5^{\circ}$
$\mu=1.49 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Prism, pink
$0.25 \times 0.12 \times 0.10 \mathrm{~mm}$

7413 measured reflections
1763 independent reflections
1178 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.052$
$\theta_{\text {max }}=27.4^{\circ}, \theta_{\text {min }}=3.4^{\circ}$
$h=-8 \rightarrow 8$
$k=-12 \rightarrow 13$
$l=-15 \rightarrow 15$

1763 reflections
107 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0359 P)^{2}+1.9784 P\right] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.70 \text { e } \AA^{-3} \\
& \Delta \rho_{\min }=-0.72 \mathrm{e}^{-3}
\end{aligned}
$$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} *^{\prime} / U_{\text {eq }}$
Co	0.5000	0.5000	0.5000	$0.0257(2)$
C11	$0.83609(17)$	$0.85016(10)$	$0.65401(9)$	$0.0367(3)$
N1	$0.6455(5)$	$0.6498(3)$	$0.4186(3)$	$0.0250(7)$
N2	$0.5891(6)$	$0.8696(3)$	$0.3695(3)$	$0.0340(8)$
O1	$0.3012(4)$	$0.6537(3)$	$0.5310(2)$	$0.0329(7)$
O2	$0.2425(6)$	$0.8657(3)$	$0.4995(3)$	$0.0541(9)$
H2	0.2993	0.9247	0.4674	0.081^{*}
O3	$0.7051(5)$	$0.5443(3)$	$0.6466(3)$	$0.0397(7)$
H3A	0.7018	0.4951	0.7142	0.060^{*}
H3B	0.7642	0.6288	0.6649	0.060^{*}
C1	$0.3501(6)$	$0.7589(3)$	$0.4885(3)$	$0.0268(8)$
C2	$0.5395(6)$	$0.7618(4)$	$0.4203(3)$	$0.0258(8)$
C3	$0.7628(8)$	$0.8641(5)$	$0.3124(4)$	$0.0415(11)$
H3	0.8027	0.9374	0.2746	0.050^{*}
C4	$0.8852(7)$	$0.7540(4)$	$0.3075(4)$	$0.0381(10)$
H4	1.0058	0.7524	0.2677	0.046^{*}
C5	$0.8217(6)$	$0.6467(4)$	$0.3637(3)$	$0.0323(9)$
H5	0.9021	0.5713	0.3635	0.039^{*}

Atomic displacement parameters (\hat{A}^{2})

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Co	$0.0300(4)$	$0.0184(4)$	$0.0294(4)$	$0.0009(3)$	$0.0068(3)$	$0.0022(3)$
C11	$0.0399(6)$	$0.0365(6)$	$0.0339(6)$	$-0.0014(5)$	$0.0045(4)$	$-0.0036(4)$
N1	$0.0274(16)$	$0.0192(15)$	$0.0289(17)$	$-0.0015(14)$	$0.0056(13)$	$-0.0003(13)$
N2	$0.0376(19)$	$0.0261(18)$	$0.039(2)$	$-0.0039(16)$	$0.0045(16)$	$0.0076(15)$
O1	$0.0352(15)$	$0.0248(14)$	$0.0410(17)$	$0.0033(13)$	$0.0157(13)$	$0.0007(13)$
O2	$0.058(2)$	$0.0387(19)$	$0.067(3)$	$0.0051(18)$	$0.0102(19)$	$-0.0011(18)$
O3	$0.0529(19)$	$0.0332(16)$	$0.0317(16)$	$-0.0045(15)$	$-0.0028(14)$	$0.0010(13)$
C1	$0.030(2)$	$0.0167(17)$	$0.034(2)$	$0.0004(16)$	$0.0038(17)$	$-0.0033(16)$
C2	$0.031(2)$	$0.0210(18)$	$0.025(2)$	$-0.0024(17)$	$0.0017(16)$	$0.0000(15)$

C3	$0.047(3)$	$0.037(2)$	$0.041(3)$	$-0.010(2)$	$0.007(2)$	$0.014(2)$
C4	$0.037(2)$	$0.042(3)$	$0.037(2)$	$-0.007(2)$	$0.0124(19)$	$0.005(2)$
C5	$0.028(2)$	$0.036(2)$	$0.033(2)$	$0.0004(19)$	$0.0047(17)$	$-0.0040(18)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{Co}-\mathrm{O} 1$	2.077 (3)	$\mathrm{O} 2-\mathrm{C} 1$	1.309 (5)
$\mathrm{Co}-\mathrm{Ol}^{\text {i }}$	2.077 (3)	$\mathrm{O} 2-\mathrm{H} 2$	0.8200
$\mathrm{Co}-\mathrm{O3}^{\text {i }}$	2.123 (3)	O3-H3A	0.9545
$\mathrm{Co}-\mathrm{O} 3$	2.123 (3)	O3-H3B	0.9674
$\mathrm{Co}-\mathrm{N} 1^{\text {i }}$	2.085 (3)	$\mathrm{C} 1-\mathrm{C} 2$	1.501 (5)
$\mathrm{Co}-\mathrm{N} 1$	2.085 (3)	C3-C4	1.379 (7)
N1-C5	1.337 (5)	C3-H3	0.9300
N1-C2	1.338 (5)	C4-C5	1.375 (6)
N2-C2	1.321 (5)	C4-H4	0.9300
N2-C3	1.338 (6)	C5-H5	0.9300
$\mathrm{O} 1-\mathrm{C} 1$	1.252 (5)		
$\mathrm{O} 1-\mathrm{Co}-\mathrm{Ol}^{\mathrm{i}}$	180.00 (16)	$\mathrm{C} 1-\mathrm{O} 2-\mathrm{H} 2$	109.5
$\mathrm{O} 1-\mathrm{Co}-\mathrm{N} 1^{\mathrm{i}}$	101.08 (11)	$\mathrm{Co}-\mathrm{O} 3-\mathrm{H} 3 \mathrm{~A}$	121.3
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Co}-\mathrm{N} 1^{\mathrm{i}}$	78.92 (11)	Co-O3-H3B	124.9
$\mathrm{O} 1-\mathrm{Co}-\mathrm{N} 1$	78.92 (11)	$\mathrm{H} 3 \mathrm{~A}-\mathrm{O} 3-\mathrm{H} 3 \mathrm{~B}$	109.3
$\mathrm{Ol}^{\text {i }}-\mathrm{Co}-\mathrm{N} 1$	101.08 (11)	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 2$	123.2 (4)
N1- ${ }^{\text {i }}$ - $0-\mathrm{N} 1$	180.00 (11)	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	118.2 (3)
$\mathrm{O} 1-\mathrm{Co}-\mathrm{O}^{\text {i }}$	88.99 (12)	$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	118.6 (3)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Co}-\mathrm{O} 3^{\mathrm{i}}$	91.01 (12)	$\mathrm{N} 2-\mathrm{C} 2-\mathrm{N} 1$	126.0 (4)
$\mathrm{N} 1^{\mathrm{i}}-\mathrm{Co}-\mathrm{O} 3^{\mathrm{i}}$	87.84 (12)	N2-C2-C1	119.7 (3)
$\mathrm{N} 1-\mathrm{Co}-\mathrm{O}^{\text {i }}$	92.16 (12)	N1-C2-C1	114.3 (3)
$\mathrm{O} 1-\mathrm{Co}-\mathrm{O} 3$	91.01 (12)	N2-C3-C4	122.7 (4)
$\mathrm{Ol}^{\text {i }}-\mathrm{Co}-\mathrm{O} 3$	88.99 (12)	N2-C3-H3	118.6
$\mathrm{N} 1{ }^{\text {i }}-\mathrm{Co}-\mathrm{O} 3$	92.16 (12)	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	118.6
$\mathrm{N} 1-\mathrm{Co}-\mathrm{O} 3$	87.84 (12)	C5-C4-C3	117.4 (4)
O3 ${ }^{\text {i }}$ - $\mathrm{Co}-\mathrm{O} 3$	180.000 (1)	C5-C4-H4	121.3
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 2$	117.6 (3)	C3-C4-H4	121.3
C5-N1-Co	128.8 (3)	N1-C5-C4	120.5 (4)
C2-N1-Co	113.5 (2)	N1-C5-H5	119.7
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 3$	115.7 (4)	C4-C5-H5	119.7
C1-O1-Co	115.0 (2)		

Symmetry code: (i) $-x+1,-y+1,-z+1$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D — \mathrm{H} \cdots A$
$\mathrm{O} 2 — \mathrm{H} 2 \cdots \mathrm{~N} 2$	0.82	2.32	$2.784(5)$	116
$\mathrm{O} 3 — \mathrm{H} 3 A \cdots \mathrm{Cl1} 1^{\mathrm{ii}}$	0.95	2.20	$3.140(4)$	168

supporting information

$\mathrm{O} 3 — \mathrm{H} 3 B \cdots \mathrm{Cl1}$	0.97	2.34	$3.273(3)$	161
$\mathrm{C} 4 — \mathrm{H} 4 \cdots \mathrm{Cl}^{\mathrm{iii}}$	0.93	2.79	$3.670(5)$	159

Symmetry codes: (ii) $-x+3 / 2, y-1 / 2,-z+3 / 2$; (iii) $x+1 / 2,-y+3 / 2, z-1 / 2$.

