Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Pyrimidine-2-carboxamide

Bing-Yu Zhang, Qian Yang and Jing-Jing Nie*

Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China
Correspondence e-mail: niejj@zju.edu.cn

Received 23 November 2007; accepted 23 November 2007

Key indicators: single-crystal X-ray study; $T=291 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.038 ; w R$ factor $=0.107$; data-to-parameter ratio $=16.6$.

In the crystal strucuture of the title compound, $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}$, which was obtained upon recrystallization of 2-cyanopyrimidine from aqueous sodium hydroxide, the amide group is twisted with respect to the aromatic ring by 24.9 (1) $)^{\circ} . \pi-\pi$ stacking is observed between partially overlapped rings at a face-to-face separation of 3.439 (6) \AA. The structure features a centrosymmetric pair of intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. Another $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond between adjacent molecules links them into a helical chain motif.

Related literature

For general background, see: Cheng et al. (2000); Xu \& Xu (2004); Zhang et al. (2008). For a similar structure, see: Zhang et al. (2007).

Experimental

Crystal data
$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O} \quad$ Monoclinic, $P 2_{\mathrm{a}} / c$
$M_{r}=123.12$

$$
\begin{aligned}
b & =7.3059(7) \AA \\
c & =9.823(9) \AA \\
\beta & =103.512(6){ }^{\circ} \\
V & =552.90(9) \AA^{3} \\
Z & =4
\end{aligned}
$$

Data collection

Rigaku R-AXIS RAPID IP diffractometer
Absorption correction: none
7501 measured reflections

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038 \quad 82$ parameters
$w R\left(F^{2}\right)=0.107$
$S=1.01$
1365 reflections

Mo $K \alpha$ radiation
$\mu=0.11 \mathrm{~mm}^{-1}$
$T=291$ (2) K
$0.34 \times 0.26 \times 0.20 \mathrm{~mm}$

1365 independent reflections 1202 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.020$

H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.25 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.19 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N3-H1A $\cdots \mathrm{O}^{\mathrm{i}}$	0.94	2.06	$2.994(1)$	172
N3-H1B $\cdots 1^{\mathrm{ii}}$	0.96	2.04	$2.986(2)$	167

Symmetry codes: (i) $x,-y+\frac{1}{2}, z-\frac{1}{2}$; (ii) $-x,-y,-z+1$.
Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/ MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

This work was supported by the ZIJIN Project of Zhejiang University, China.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2399).

References

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Cheng, D.-P., Zheng, Y., Lin, J., Xu, D. \& Xu, Y. (2000). Acta Cryst. C56, 523524.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2002). CrystalStructure. Version 3.00. Rigaku/MSC, The Woodlands, Texas, USA.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Xu, T.-G. \& Xu, D.-J. (2004). Acta Cryst. E60, m1131-m1133.
Zhang, B.-Y., Yang, Q. \& Nie, J.-J. (2008). Acta Cryst. E64, m7.

supporting information

Acta Cryst. (2008). E64, o105 [https://doi.org/10.1107/S1600536807062770]

Pyrimidine-2-carboxamide

Bing-Yu Zhang, Qian Yang and Jing-Jing Nie

S1. Comment

In order to study the nature of $\pi-\pi$ stacking, a series of metal complexes incorporating substituted benzoate ligand have been prepared in our laboratory (Cheng et al., 2000; Xu \& Xu, 2004). As a continuing work, metal complexes with pyrimidine-2-carboxylate ligand have recently been prepared (Zhang et al., 2007). In the process of preparing pyrimidine-2-carboxylic acid from cyanopyrimidine, the title compound has been obtained.

The molecular structure of the title complex is shown in Fig. 1. The bond distances and angles are normal. The amide group is twisted with respect to the benzene ring by a dihedral angel of $24.92(12)^{\circ}$. The amino group links with carbonyl groups of adjacent molecules via $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding (Table 1). $\pi-\pi$ stacking is observed between parallel, partially overlapped N1-pyrimidine and N^{i}-pyrimidine rings (Fig. 1) [symmetry code: (i) $1-x, 1-y, 1-z$], face-to-face separation being 3.439 (6) \AA; similar to the situation found in the pyrimidine-2-carboxylate complex of copper(II) (Zhang et al., 2007).

S2. Experimental

2-Cyanopyrimidine ($1.0 \mathrm{~g}, 9.5 \mathrm{mmol}$) was dissolved in 10 ml water, then a NaOH solution $(0.1 \mathrm{M})$ was dropped to the solution until to $\mathrm{pH}=12$. Single crystals of the title compound were obtained from the solution after one week.

S3. Refinement

Amino H atoms were located in a difference Fourier map and refined as riding in as-found relative positions with $U_{\text {iso }}(\mathrm{H})$ $=1.5 U_{\mathrm{eq}}(\mathrm{N})$. Other H atoms were placed in calculated positions with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and refined in riding mode with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Figure 1
The molecular structure of the title compound with 30% probability displacement (arbitrary spheres for H atoms) [symmetry codes: (i) $1-x, 1-y, 1-z$].

pyrimidine-2-carboxamide

Crystal data

$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}$
$M_{r}=123.12$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=7.9241$ (7) \AA
$b=7.3059$ (7) \AA
$c=9.8223$ (9) \AA
$\beta=103.512(6)^{\circ}$
$V=552.90(9) \AA^{3}$
$Z=4$

Data collection

Rigaku R-AXIS RAPID IP
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
ω scans
7501 measured reflections
1365 independent reflections
$F(000)=256$
$D_{\mathrm{x}}=1.479 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 2086 reflections
$\theta=3.0-25.5^{\circ}$
$\mu=0.11 \mathrm{~mm}^{-1}$
$T=291 \mathrm{~K}$
Prism, yellow
$0.34 \times 0.26 \times 0.20 \mathrm{~mm}$

1202 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.020$
$\theta_{\text {max }}=28.3^{\circ}, \theta_{\text {min }}=2.6^{\circ}$
$h=-10 \rightarrow 10$
$k=-9 \rightarrow 9$
$l=-12 \rightarrow 13$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.107$
$S=1.02$
1365 reflections
82 parameters
0 restraints

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained

supporting information

```
\(w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0584 P)^{2}+0.1258 P\right]\)
    where \(P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3\)
\((\Delta / \sigma)_{\max }<0.001\)
```

$$
\begin{aligned}
& \Delta \rho_{\max }=0.25 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.19 \mathrm{e}^{-3}
\end{aligned}
$$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors $(\mathrm{gt}) \mathrm{etc}$. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
N1	$0.35320(14)$	$0.45375(15)$	$0.64547(11)$	$0.0431(3)$
N2	$0.18202(13)$	$0.54314(14)$	$0.42171(10)$	$0.0383(3)$
O1	$0.13605(12)$	$0.15236(12)$	$0.61860(8)$	$0.0431(3)$
N3	$0.07527(15)$	$0.18634(15)$	$0.38330(10)$	$0.0435(3)$
H1A	0.0949	0.2477	0.3043	0.065^{*}
H1B	0.0039	0.0783	0.3675	0.065^{*}
C1	$0.23238(14)$	$0.42647(15)$	$0.52761(11)$	$0.0315(2)$
C2	$0.43153(18)$	$0.6167(2)$	$0.65658(14)$	$0.0495(3)$
H2	0.5193	0.6412	0.7355	0.059^{*}
C3	$0.38709(19)$	$0.74967(19)$	$0.55555(15)$	$0.0502(3)$
H3	0.4405	0.8638	0.5659	0.060^{*}
C4	$0.26039(18)$	$0.70681(18)$	$0.43855(14)$	$0.0462(3)$
H4	0.2279	0.7944	0.3686	0.055^{*}
C5	$0.14304(14)$	$0.24129(15)$	$0.51331(11)$	$0.0325(3)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	$0.0446(6)$	$0.0418(6)$	$0.0383(5)$	$-0.0037(4)$	$0.0002(4)$	$-0.0014(4)$
N 2	$0.0417(5)$	$0.0350(5)$	$0.0375(5)$	$0.0003(4)$	$0.0080(4)$	$0.0046(4)$
O1	$0.0602(6)$	$0.0366(5)$	$0.0316(4)$	$-0.0065(4)$	$0.0087(4)$	$0.0025(3)$
N3	$0.0593(7)$	$0.0389(6)$	$0.0304(5)$	$-0.0120(5)$	$0.0065(4)$	$-0.0018(4)$
C1	$0.0325(5)$	$0.0315(5)$	$0.0311(5)$	$0.0019(4)$	$0.0085(4)$	$-0.0016(4)$
C2	$0.0478(7)$	$0.0501(8)$	$0.0473(7)$	$-0.0108(6)$	$0.0046(5)$	$-0.0103(6)$
C3	$0.0530(8)$	$0.0377(7)$	$0.0628(9)$	$-0.0123(5)$	$0.0194(6)$	$-0.0072(6)$
C4	$0.0506(7)$	$0.0367(6)$	$0.0538(7)$	$0.0001(5)$	$0.0175(6)$	$0.0084(5)$
C5	$0.0362(5)$	$0.0304(5)$	$0.0302(5)$	$0.0018(4)$	$0.0067(4)$	$-0.0001(4)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{N} 1-\mathrm{C} 1$	$1.3336(14)$	$\mathrm{N} 3-\mathrm{H} 1 \mathrm{~B}$	0.9622
$\mathrm{~N} 1 — \mathrm{C} 2$	$1.3355(18)$	$\mathrm{C} 1-\mathrm{C} 5$	$1.5182(15)$

$\mathrm{N} 2-\mathrm{C} 1$	$1.3319(14)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.374(2)$
$\mathrm{N} 2-\mathrm{C} 4$	$1.3397(17)$	$\mathrm{C} 2-\mathrm{H} 2$	0.9300
$\mathrm{O} 1-\mathrm{C} 5$	$1.2335(13)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.374(2)$
$\mathrm{N} 3-\mathrm{C} 5$	$1.3265(14)$	$\mathrm{C} 3-\mathrm{H} 3$	0.9300
$\mathrm{~N} 3-\mathrm{H} 1 \mathrm{~A}$	0.9406	$\mathrm{C} 4-\mathrm{H} 4$	0.9300
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2$	$115.46(11)$	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	118.8
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 4$	$115.41(10)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$117.18(12)$
$\mathrm{C} 5-\mathrm{N} 3-\mathrm{H} 1 \mathrm{~A}$	122.9	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	121.4
$\mathrm{C} 5-\mathrm{N} 3-\mathrm{H} 1 \mathrm{~B}$	119.6	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	121.4
$\mathrm{H} 1 \mathrm{~A}-\mathrm{N} 3-\mathrm{H} 1 \mathrm{~B}$	117.5	$\mathrm{~N} 2-\mathrm{C} 4-\mathrm{C} 3$	$122.26(12)$
$\mathrm{N} 2-\mathrm{C} 1-\mathrm{N} 1$	$127.28(11)$	$\mathrm{N} 2-\mathrm{C} 4-\mathrm{H} 4$	118.9
$\mathrm{~N} 2-\mathrm{C} 1-\mathrm{C} 5$	$116.74(9)$	$\mathrm{O} 1-\mathrm{C} 4-\mathrm{H} 4$	118.9
$\mathrm{~N} 1-\mathrm{C} 3-\mathrm{C} 5$	$\mathrm{O} 5-\mathrm{C} 5-\mathrm{C} 1$	$124.08(11)$	
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	$115.99(10)$	$\mathrm{N} 3-\mathrm{C} 5-\mathrm{C} 1$	$120.20(9)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{H} 2$	$122.37(12)$	118.8	$115.72(9)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 3 — \mathrm{H} 1 A \cdots \mathrm{O} 1^{\mathrm{i}}$	0.94	2.06	$2.994(1)$	172
$\mathrm{~N} 3 — \mathrm{H} 1 B \cdots 1^{\mathrm{ii}}$	0.96	2.04	$2.986(2)$	167

Symmetry codes: (i) $x,-y+1 / 2, z-1 / 2$; (ii) $-x,-y,-z+1$.

