Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Diaquabis(4-methylbenzoato- κ O)zinc(II)

De-Yun Ma, ${ }^{\text {a }}$ Guo-Hua Deng ${ }^{\text {a }}$ and Wen-Dong Song ${ }^{\text {b }}$

${ }^{\text {a }}$ College of Chemistry, South China University of Technology, Guangzhou 510640, People's Republic of China, and ${ }^{\mathbf{b}}$ College of Science, Guang Dong Ocean University, Zhanjiang 524088, People's Republic of China
Correspondence e-mail: ghdeng@126.com

Received 23 November 2007; accepted 23 November 2007

Key indicators: single-crystal X-ray study; $T=273 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.031 ; w R$ factor $=0.076 ;$ data-to-parameter ratio $=15.9$.

The Zn atom in the title mononuclear complex, $\left[\mathrm{Zn}\left(\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{O}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$, lies on a special position of site symmetry 2. The carboxylate group binds in a monodentate manner so that the geometry is best described as tetrahedral. Adjacent molecules are linked by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds into a three-dimensional network.

Related literature

For related literature, see: Song et al. (2007).

Experimental

Crystal data

$$
\begin{aligned}
& {\left[\mathrm{Zn}\left(\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{O}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]} \\
& M_{r}=371.70 \\
& \text { Monoclinic, } C 2 / c \\
& a=26.8432(5) \AA
\end{aligned}
$$

$Z=4$
Mo $K \alpha$ radiation
$\mu=1.59 \mathrm{~mm}^{-1}$
Data collection
Bruker APEXII area-detector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.605, T_{\text {max }}=0.660$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
$w R\left(F^{2}\right)=0.076$
$S=1.05$
1784 reflections
112 parameters
3 restraints

$$
\begin{aligned}
& T=273(2) \mathrm{K} \\
& 0.32 \times 0.29 \times 0.26 \mathrm{~mm}
\end{aligned}
$$

9051 measured reflections 1784 independent reflections 1566 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.036$

Table 1
Hydrogen-bond geometry ($\AA,^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1 $W-\mathrm{H} 1 W \cdots \mathrm{O}^{\mathrm{i}}$	$0.813(9)$	$1.973(10)$	$2.774(2)$	$168(3)$
O1 $W-\mathrm{H} 2 W \cdots \mathrm{O}^{\mathrm{ii}}$	$0.803(9)$	$1.931(11)$	$2.726(2)$	$171(3)$
Symmetry codes: (i) $x, y+1, z ;$ (ii) $x,-y+2, z-\frac{1}{2}$				

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2004); software used to prepare material for publication: SHELXTL.

The authors acknowledge South China University of Technology and Guang Dong Ocean University for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2397).

References

Bruker (2004). APEX2, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Song, W.-D., Gu, C.-S., Hao, X.-M. \& Liu, J.-W. (2007). Acta Cryst. E63, m1023-m1024.

supporting information

Acta Cryst. (2008). E64, m32 [https://doi.org/10.1107/S1600536807062460]

Diaquabis(4-methylbenzoato-кO)zinc(II)

De-Yun Ma, Guo-Hua Deng and Wen-Dong Song

S1. Comment

In the structural investigation of 4-methylbenzate complexes, it has been found that the 4-methylbenzoic acid functions as a multidentate ligand [(Song et al. (2007)], with versatile binding and coordination modes. In this paper, we report the crystal structure of the title compound, (I), a new Zn complex obtained by the reaction of 4-methylbenzoic acid with zinc chloride in alkaline aqueous solution.
As illustrated in Figure 1, the $\mathrm{Zn}^{\mathrm{II}}$ atom, possesses crystallogarphically imposed C_{2} symmetry, which is coordinated by two O atoms from two 4-methylbenzate ligands and two water molecules, and displays a tetrahedral geometry. Intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding interactions (Table 1) between the coordinated water molecules and the carboxyl O atoms of 4-methylbenzate ligands stabilize the structural packing (Fig. 2).

S2. Experimental

A mixture of zinc nitrate $(1 \mathrm{mmol})$, 4-methylbenzoic acid $(1 \mathrm{mmol}) \mathrm{NaOH}(1.5 \mathrm{mmol})$ and $\mathrm{H}_{2} \mathrm{O}(12 \mathrm{ml})$ was placed in a 23 ml Teflon reactor, which was heated to 433 K for three days and then cooled to room temperature at a rate of $10 \mathrm{~K} \mathrm{~h}^{-1}$. The crystals obtained were washed with water and dryed in air.

S3. Refinement

Carbon-bound H atoms were placed at calculated positions and were treated as riding on the parent C atoms with $\mathrm{C}-\mathrm{H}=$ 0.93-0.97 \AA, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. Water H atoms were tentatively located in difference Fourier maps and were refined with distance restraints of $\mathrm{O}-\mathrm{H}=0.82 \AA$ and $\mathrm{H} \cdots \mathrm{H}=1.29 \AA$, each within a standard deviation of $0.01 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$.

Figure 1
The structure of (I), showing the atomic numbering scheme. Non-H atoms are shown with 30% probability displacement ellipsoids. Unlabeled atoms are related to the labelled atoms by the symmetry operator $(-x, y, 0.5-z)$.

Figure 2
A packing view of the title compound. The intermolecluar hydrogen bonds are shown as dashed lines.

Diaquabis(4-methylbenzoato- κ O)zinc(II)

Crystal data

$\left[\mathrm{Zn}\left(\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{O}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$
$M_{r}=371.70$
Monoclinic, $C 2 / c$
Hall symbol: -C 2 yc
$a=26.8432(5) \AA$
$b=5.0600(1) \AA$
$c=12.0609(2) \AA$
$\beta=106.806(1)^{\circ}$
$V=1568.22(5) \AA^{3}$
$Z=4$

$$
\begin{aligned}
& F(000)=768 \\
& D_{\mathrm{x}}=1.574 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 3600 \text { reflections } \\
& \theta=3.0-27.5^{\circ} \\
& \mu=1.59 \mathrm{~mm}^{-1} \\
& T=273 \mathrm{~K} \\
& \text { Block, colorless } \\
& 0.32 \times 0.29 \times 0.26 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker APEXII area-detector
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scan
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.605, T_{\text {max }}=0.660$

> 9051 measured reflections
> 1784 independent reflections
> 1566 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.036$
> $\theta_{\max }=27.5^{\circ}, \theta_{\min }=3.2^{\circ}$
> $h=-34 \rightarrow 34$
> $k=-6 \rightarrow 6$
> $l=-15 \rightarrow 15$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
$w R\left(F^{2}\right)=0.076$
$S=1.05$
1784 reflections
112 parameters
3 restraints
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
C1	$0.06512(8)$	$0.6273(4)$	$0.40073(18)$	$0.0311(4)$
C2	$0.10484(7)$	$0.4299(4)$	$0.46142(17)$	$0.0300(4)$
C3	$0.10475(9)$	$0.3264(4)$	$0.56687(19)$	$0.0409(5)$

H3	0.0795	0.3813	0.6009	0.049^{*}
C4	$0.14146(9)$	$0.1422(5)$	$0.6231(2)$	$0.0437(5)$
H4	0.1408	0.0771	0.6948	0.052^{*}
C5	$0.17921(8)$	$0.0533(4)$	$0.5741(2)$	$0.0384(5)$
C6	$0.17872(9)$	$0.1556(5)$	$0.4675(2)$	$0.0463(6)$
H6	0.2036	0.0985	0.4329	0.056^{*}
C7	$0.14237(8)$	$0.3399(5)$	$0.4110(2)$	$0.0416(5)$
H7	0.1429	0.4044	0.3391	0.050^{*}
C8	$0.21820(10)$	$-0.1520(5)$	$0.6349(2)$	$0.0550(6)$
H8A	0.2226	-0.1445	0.7166	0.082^{*}
H8B	0.2510	-0.1183	0.6204	0.082^{*}
H8C	0.2059	-0.3243	0.6062	0.082^{*}
O1	$0.05926(5)$	$0.6655(3)$	$0.29258(12)$	$0.0356(3)$
O2	$0.03766(6)$	$0.7481(3)$	$0.45086(13)$	$0.0415(4)$
O1W	$0.02917(7)$	$1.2004(3)$	$0.16969(14)$	$0.0450(4)$
H1W	$0.0402(11)$	$1.342(3)$	$0.199(2)$	0.067^{*}
H2W	$0.0326(10)$	$1.199(5)$	$0.1058(12)$	0.067^{*}
Zn1	0.0000	$0.92389(6)$	0.2500	$0.03485(13)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0344(10)$	$0.0256(9)$	$0.0297(11)$	$-0.0033(8)$	$0.0038(9)$	$-0.0014(7)$
C2	$0.0319(9)$	$0.0304(9)$	$0.0257(10)$	$0.0002(8)$	$0.0053(8)$	$-0.0020(8)$
C3	$0.0470(12)$	$0.0430(11)$	$0.0362(12)$	$0.0136(10)$	$0.0177(10)$	$0.0066(9)$
C4	$0.0527(13)$	$0.0423(12)$	$0.0365(13)$	$0.0112(10)$	$0.0135(11)$	$0.0113(9)$
C5	$0.0369(11)$	$0.0322(10)$	$0.0392(12)$	$0.0039(9)$	$0.0000(9)$	$-0.0018(9)$
C6	$0.0383(11)$	$0.0568(13)$	$0.0453(14)$	$0.0146(11)$	$0.0142(11)$	$-0.0009(11)$
C7	$0.0425(12)$	$0.0514(12)$	$0.0328(12)$	$0.0069(10)$	$0.0139(10)$	$0.0041(10)$
C8	$0.0494(14)$	$0.0459(13)$	$0.0588(17)$	$0.0159(11)$	$-0.0015(12)$	$-0.0005(12)$
O1	$0.0428(8)$	$0.0325(7)$	$0.0296(8)$	$0.0029(6)$	$0.0074(6)$	$0.0073(6)$
O2	$0.0459(8)$	$0.0389(8)$	$0.0379(9)$	$0.0135(7)$	$0.0094(7)$	$-0.0002(7)$
O1W	$0.0727(11)$	$0.0285(7)$	$0.0383(9)$	$-0.0127(7)$	$0.0232(9)$	$-0.0040(6)$
Zn1	$0.0361(2)$	$0.02136(17)$	$0.0484(2)$	0.000	$0.01423(16)$	0.000

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{C} 1-\mathrm{O} 2$	$1.241(2)$	$\mathrm{C} 6-\mathrm{H} 6$	0.9300
$\mathrm{C} 1-\mathrm{O} 1$	$1.283(2)$	$\mathrm{C} 7-\mathrm{H} 7$	0.9300
$\mathrm{C} 1-\mathrm{C} 2$	$1.490(3)$	$\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A}$	0.9600
$\mathrm{C} 2-\mathrm{C} 3$	$1.376(3)$	$\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$	0.9600
$\mathrm{C} 2-\mathrm{C} 7$	$1.395(3)$	$\mathrm{C} 8-\mathrm{H} 8 \mathrm{C}$	0.9600
$\mathrm{C} 3-\mathrm{C} 4$	$1.383(3)$	$\mathrm{O} 1-\mathrm{Zn} 1$	$2.0078(14)$
$\mathrm{C} 3-\mathrm{H} 3$	0.9300	$\mathrm{O} 1 \mathrm{~W}-\mathrm{Zn} 1$	$1.9867(14)$
$\mathrm{C} 4-\mathrm{C} 5$	$1.387(3)$	$\mathrm{O} 1 \mathrm{~W}-\mathrm{H} 1 \mathrm{~W}$	$0.813(9)$
$\mathrm{C} 4 — \mathrm{H} 4$	0.9300	$\mathrm{O} 1 \mathrm{~W}-\mathrm{H} 2 \mathrm{~W}$	$0.803(9)$
$\mathrm{C} 5-\mathrm{C} 6$	$1.383(3)$	$\mathrm{Zn} 1-\mathrm{O} 1 \mathrm{~W}^{\mathrm{i}}$	$1.9867(14)$
$\mathrm{C} 5-\mathrm{C} 8$	$1.506(3)$	$\mathrm{Zn} 1-\mathrm{O} 1^{\mathrm{i}}$	$2.0078(14)$

$\mathrm{C} 6-\mathrm{C} 7$	$1.379(3)$
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 1$	$120.38(18)$
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	$122.17(19)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	$117.43(17)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 7$	$118.26(19)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$121.13(17)$
$\mathrm{C} 7-\mathrm{C} 2-\mathrm{C} 1$	$120.59(18)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$121.21(19)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	119.4
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	119.4
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$121.0(2)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4$	119.5
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4$	119.5
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$117.58(19)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 8$	$121.9(2)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 8$	$120.5(2)$
$\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 5$	$121.8(2)$
$\mathrm{C} 7-\mathrm{C} 6-\mathrm{H} 6$	119.1
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{H} 6$	119.1
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 2$	$120.1(2)$

$\mathrm{C} 6-\mathrm{C} 7-\mathrm{H} 7$	119.9
$\mathrm{C} 2-\mathrm{C} 7-\mathrm{H} 7$	119.9
$\mathrm{C} 5-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A}$	109.5
$\mathrm{C} 5-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$	109.5
$\mathrm{H} 8 \mathrm{~A}-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$	109.5
$\mathrm{C} 5-\mathrm{C} 8-\mathrm{H} 8 \mathrm{C}$	109.5
$\mathrm{H} 8 \mathrm{~A}-\mathrm{C} 8-\mathrm{H} 8 \mathrm{C}$	109.5
$\mathrm{H} 8 \mathrm{~B}-\mathrm{C} 8-\mathrm{H} 8 \mathrm{C}$	109.5
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{Zn} 1$	$102.32(12)$
$\mathrm{Zn} 1-\mathrm{O} 1 \mathrm{~W}-\mathrm{H} 1 \mathrm{~W}$	$123.8(18)$
$\mathrm{Zn} 1-\mathrm{O} 1 \mathrm{~W}-\mathrm{H} 2 \mathrm{~W}$	$129.3(18)$
$\mathrm{H} 1 \mathrm{~W}-\mathrm{O} 1 \mathrm{~W}-\mathrm{H} 2 \mathrm{~W}$	$106.9(15)$
$\mathrm{O} 1 \mathrm{~W}-\mathrm{Zn} 1-\mathrm{O} 1 \mathrm{~W}$	$90.48(9)$
$\mathrm{O} 1 \mathrm{~W}-\mathrm{Zn} 1-\mathrm{O} 1^{\mathrm{i}}$	$100.86(7)$
$\mathrm{O} 1 \mathrm{~W}-\mathrm{Zn} 1-\mathrm{O} 1^{\mathrm{i}}$	$136.77(7)$
O1W $\mathrm{i}-\mathrm{Zn} 1-\mathrm{O} 1$	$136.77(7)$
O1W-Zn1-O1	$100.86(6)$
O1 $1-\mathrm{Zn} 1-\mathrm{O} 1$	$98.74(8)$

Symmetry code: (i) $-x, y,-z+1 / 2$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D — \mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 W — \mathrm{H} 1 W \cdots 1^{\mathrm{ii}}$	$0.81(1)$	$1.97(1)$	$2.774(2)$	$168(3)$
$\mathrm{O} 1 W — \mathrm{H} 2 W \cdots 2^{\mathrm{iii}}$	$0.80(1)$	$1.93(1)$	$2.726(2)$	$171(3)$

Symmetry codes: (ii) $x, y+1, z$; (iii) $x,-y+2, z-1 / 2$.

