

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(E)-Methyl 3-(2-nitrobenzylidene)dithiocarbazate

Shang Shan,* Yu-Liang Tian, Wen-Long Wang and Shan-Heng Wang

College of Chemical Engineering and Materials Science, Zhejiang University of Technology People's Republic of China Correspondence e-mail: shanshang@mail.hz.zj.cn

Received 17 November 2007; accepted 19 November 2007

Key indicators: single-crystal X-ray study: T = 291 K: mean σ (C–C) = 0.003 Å: R factor = 0.041; wR factor = 0.116; data-to-parameter ratio = 17.6.

The asymmetric unit of the title compound, $C_9H_9N_3O_2S_2$, contains two independent molecules, A and B, with similar bond dimensions. In both molecules, the nitro group is tilted with respect to the aromatic ring [dihedral angles $32.0 (1)^{\circ}$ in molecule A and 34.0 $(1)^{\circ}$ in molecule B]. The dithiocarbazate unit is nearly coplanar with the aromatic ring in both molecules. For molecule B, pairs of molecules are linked by $N-H \cdots O$ and $C-H \cdots O$ hydrogen bonds about a centre of symmetry to form a dimer, whereas molecules A are not involved in hydrogen bonding in the crystal structure.

Related literature

For general background, see: Okabe et al. (1993); Hu et al. (2001). For related structures, see: Chen et al. (2007); Shan & Zhang, 2006; Zhang et al. 2005). For synthesis, see: Hu et al. (2001).

Experimental

Crystal data	
$C_9H_9N_3O_2S_2$	a = 7.5261 (12) Å
$M_r = 255.31$	b = 10.7128 (16) Å
Triclinic, P1	c = 14.5343 (17) Å

$\alpha = 78.588 \ (6)^{\circ}$
$\beta = 87.095 \ (5)^{\circ}$
$\gamma = 84.612 \ (6)^{\circ}$
V = 1143.0 (3) Å ³
Z = 4

Data collection

Rigaku R-AXIS RAPID IP	11206 measured reflections
diffractometer	5127 independent reflections
Absorption correction: multi-scan	3773 reflections with $I > 2\sigma(I)$
(ABSCOR; Higashi, 1995)	$R_{\rm int} = 0.024$
$T_{\min} = 0.795, T_{\max} = 0.930$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.041$	291 parameters
$wR(F^2) = 0.116$	H-atom parameters constrained
S = 1.10	$\Delta \rho_{\rm max} = 0.32 \text{ e} \text{ Å}^{-3}$
5127 reflections	$\Delta \rho_{\rm min} = -0.31 \text{ e Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

N13-H13N···O11 ⁱ 0.86 2.16 3.014 (3) 174 C17-H17···O12 ⁱ 0.93 2.55 3.373 (3) 148	$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
	$\begin{array}{l} N13-H13N\cdotsO11^{i}\\ C17-H17\cdotsO12^{i} \end{array}$	0.86 0.93	2.16 2.55	3.014 (3) 3.373 (3)	174 148

Symmetry code: (i) -x + 1, -y + 1, -z + 1.

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/ MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

This project was supported by the Natural Science Foundation of Zhejiang Province of China (grant No. M203027).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2380).

References

- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
- Chen, Z.-Y., Wu, G.-Q., Jiang, F.-X., Tian, Y.-L. & Shan, S. (2007). Acta Cryst. E63, o1919-o1920.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Hu, W., Sun, N. & Yang, Z. (2001). Chem. J. Chin. Univ. 22, 2014-2017.
- Okabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678-1680.
- Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Rigaku/MSC (2002). CrystalStructure. Version 3.00. Rigaku/MSC, The Wood-
- lands, Texas, USA.
- Shan, S. & Zhang, Y.-L. (2006). Acta Cryst. E62, o2051-o2052.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Zhang, Y.-L., Shan, S. & Xu, D.-J. (2005). Acta Cryst. E61, 01173-01175.

Mo $K\alpha$ radiation $\mu = 0.45 \text{ mm}^{-1}$

 $0.36 \times 0.30 \times 0.16$ mm

T = 291 (2) K

supporting information

Acta Cryst. (2008). E64, o53 [https://doi.org/10.1107/S160053680706059X]

(E)-Methyl 3-(2-nitrobenzylidene)dithiocarbazate

Shang Shan, Yu-Liang Tian, Wen-Long Wang and Shan-Heng Wang

S1. Comment

Hydrazone and its derivatives have attracted our much attention because of their application in biological field (Okabe *et al.*, 1993). As part of our ongoing investigation on anti-cancer compounds (Hu *et al.*, 2001), the title compound has been prepared and its structure is presented here.

The asymmetric unit of the title compound contains two crystallographic independent molecules, A (C1-containing molecule) and B (C11-containing molecule), with the similar structure (Fig. 1). In the two molecules, the nitro groups are tilted with respect to the connected benzene rings by dihedral angles of 31.96 (11) and $33.96 (11)^\circ$, respectively; while di-thiocarbazate moieties are nearly co-planar with the benzene rings, dihedral angles being 3.00 (6) and $4.03 (6)^\circ$, respectively. The centro-symmetry related B molecules are linked by N—H···O hydrogen bonding to form the supramolecular dimer (Table 2). Whereas the A molecules are not involved in hydrogen bonding in the crystal structure. The N2?C7 and N12?C17 bond distances (Table 1) indicate the typical N?C double bonds. Around the N?C double bonds, both molecules A and B exhibit the E configuration, similar to those found in related compounds (Chen *et al.*, 2007; Shan & Zhang, 2006; Zhang *et al.*, 2005).

S2. Experimental

Methyl dithiocarbazate was synthesized in the manner reported previously (Hu *et al.*, 2001). Methyl dithiocarbazate (1.24 g, 10 mmol) and 2-nitrobenzaldehyde (1.51 g, 10 mmol) were dissolved in ethanol (10 ml) and refluxed for 4 h. Fine yellow crystals appeared on cooling. They were separated and washed with cold water three times. Single crystals of the title compound were obtained by recrystallization from an absolute ethanol solution.

S3. Refinement

Methyl H atoms were placed in calculated positions with C—H = 0.96 Å and torsion angle was refined to fit electron density, $U_{iso}(H) = 1.5 U_{eq}(C)$. Other H atoms were placed in calculated positions with C—H = 0.97 and N—H = 0.86 Å, and refined in the riding mode, with $U_{iso}(H) = 1.2 U_{eq}(C,N)$.

Figure 1

The molecular structure of the title compound with 40% probability displacement ellipsoids (arbitrary spheres for H atoms).

(E)-Methyl 3-(2-nitrobenzylidene)dithiocarbazate

Crystal data

 $C_9H_9N_3O_2S_2$ Z = 4 $M_r = 255.31$ F(000) = 528Triclinic, $P\overline{1}$ $D_{\rm x} = 1.484 {\rm Mg} {\rm m}^{-3}$ Hall symbol: -P 1 Mo *K* α radiation, $\lambda = 0.71073$ Å a = 7.5261 (12) ÅCell parameters from 8768 reflections *b* = 10.7128 (16) Å $\theta = 3.5 - 25.2^{\circ}$ $\mu = 0.45 \text{ mm}^{-1}$ c = 14.5343 (17) ÅT = 291 K $\alpha = 78.588~(6)^{\circ}$ Prism, yellow $\beta = 87.095 (5)^{\circ}$ $0.36 \times 0.30 \times 0.16 \text{ mm}$ $\gamma = 84.612 \ (6)^{\circ}$ V = 1143.0 (3) Å³ Data collection Rigaku R-AXIS RAPID IP Absorption correction: multi-scan diffractometer (ABSCOR; Higashi, 1995) $T_{\min} = 0.795, T_{\max} = 0.930$ Radiation source: fine-focus sealed tube Graphite monochromator 11206 measured reflections Detector resolution: 10.00 pixels mm⁻¹ 5127 independent reflections ω scans 3773 reflections with $I > 2\sigma(I)$

$R_{\rm int} = 0.024$	$k = -13 \rightarrow 13$
$\theta_{\rm max} = 27.4^{\circ}, \theta_{\rm min} = 3.0^{\circ}$	$l = -18 \rightarrow 18$
$h = -9 \rightarrow 9$	
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.041$	Hydrogen site location: inferred from
$wR(F^2) = 0.116$	neighbouring sites
S = 1.10	H-atom parameters constrained
5127 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0526P)^2 + 0.2566P]$
291 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.002$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.32 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	X	У	Ζ	$U_{\rm iso}^*/U_{\rm eq}$	
S1	-0.10244 (10)	0.28477 (6)	0.50066 (5)	0.0686 (2)	
S2	-0.04064 (8)	0.25046 (5)	0.29873 (4)	0.05480 (17)	
S11	0.67348 (9)	0.86939 (5)	0.15976 (5)	0.06155 (19)	
S12	0.62739 (8)	0.64462 (5)	0.06773 (4)	0.05198 (16)	
N1	0.1634 (3)	0.88846 (18)	0.18824 (14)	0.0555 (5)	
N2	0.0369 (2)	0.50343 (16)	0.26593 (12)	0.0470 (4)	
N3	-0.0124 (3)	0.46023 (17)	0.35805 (13)	0.0545 (5)	
H3N	-0.0185	0.5114	0.3970	0.065*	
N11	0.3762 (3)	0.30552 (17)	0.50958 (12)	0.0499 (4)	
N12	0.5421 (2)	0.52269 (15)	0.24812 (12)	0.0420 (4)	
N13	0.5836 (3)	0.64538 (16)	0.24503 (12)	0.0477 (4)	
H13N	0.5823	0.6745	0.2961	0.057*	
01	0.1188 (3)	1.00252 (16)	0.16247 (14)	0.0801 (6)	
O2	0.2133 (3)	0.84171 (18)	0.26726 (13)	0.0751 (5)	
011	0.4082 (3)	0.23524 (18)	0.58419 (12)	0.0875 (7)	
012	0.3194 (3)	0.41716 (15)	0.50380 (12)	0.0646 (5)	
C1	0.1201 (3)	0.67717 (18)	0.14835 (14)	0.0404 (4)	
C2	0.1581 (3)	0.80514 (18)	0.12003 (14)	0.0427 (4)	
C3	0.1920 (3)	0.8603 (2)	0.02687 (15)	0.0496 (5)	
H3	0.2125	0.9463	0.0103	0.060*	
C4	0.1951 (3)	0.7869 (2)	-0.04046 (16)	0.0535 (5)	
H4	0.2187	0.8226	-0.1031	0.064*	

C5	0.1629 (3)	0.6593 (2)	-0.01493 (16)	0.0532 (5)
Н5	0.1668	0.6091	-0.0605	0.064*
C6	0.1251 (3)	0.6061 (2)	0.07770 (16)	0.0494 (5)
H6	0.1025	0.5205	0.0933	0.059*
C7	0.0663 (3)	0.6209 (2)	0.24519 (15)	0.0480 (5)
H7	0.0539	0.6708	0.2911	0.058*
C8	-0.0516 (3)	0.3381 (2)	0.38814 (16)	0.0504 (5)
C9	-0.0977 (4)	0.0963 (2)	0.3612 (2)	0.0689 (7)
H9A	-0.0182	0.0664	0.4121	0.103*
H9B	-0.0869	0.0369	0.3193	0.103*
H9C	-0.2183	0.1032	0.3857	0.103*
C11	0.4580 (3)	0.32678 (17)	0.33941 (13)	0.0382 (4)
C12	0.4033 (3)	0.25252 (18)	0.42419 (13)	0.0390 (4)
C13	0.3699 (3)	0.12543 (18)	0.43353 (15)	0.0453 (5)
H13	0.3341	0.0789	0.4914	0.054*
C14	0.3904 (3)	0.06946 (19)	0.35602 (16)	0.0514 (5)
H14	0.3677	-0.0155	0.3608	0.062*
C15	0.4450 (3)	0.1400 (2)	0.27100 (16)	0.0511 (5)
H15	0.4585	0.1020	0.2185	0.061*
C16	0.4798 (3)	0.2658 (2)	0.26259 (15)	0.0451 (5)
H16	0.5186	0.3109	0.2048	0.054*
C17	0.5029 (3)	0.45918 (19)	0.32906 (14)	0.0454 (5)
H17	0.5028	0.4967	0.3816	0.054*
C18	0.6263 (3)	0.72055 (18)	0.16279 (14)	0.0427 (5)
C19	0.6919 (4)	0.7682 (3)	-0.02735 (17)	0.0663 (7)
H19A	0.5985	0.8366	-0.0368	0.099*
H19B	0.7119	0.7340	-0.0836	0.099*
H19C	0.7996	0.8002	-0.0124	0.099*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0862 (5)	0.0596 (4)	0.0520 (3)	-0.0072 (3)	0.0147 (3)	0.0049 (3)
S2	0.0588 (3)	0.0460 (3)	0.0564 (3)	-0.0097 (3)	0.0041 (3)	-0.0011 (2)
S11	0.0834 (4)	0.0354 (3)	0.0657 (4)	-0.0174 (3)	0.0141 (3)	-0.0080(3)
S12	0.0637 (4)	0.0490 (3)	0.0444 (3)	-0.0098 (3)	-0.0008 (3)	-0.0096 (2)
N1	0.0720 (13)	0.0434 (10)	0.0562 (12)	-0.0216 (9)	0.0085 (10)	-0.0167 (9)
N2	0.0487 (10)	0.0401 (9)	0.0482 (10)	-0.0041 (8)	0.0011 (8)	0.0004 (7)
N3	0.0682 (12)	0.0446 (10)	0.0471 (10)	-0.0055 (9)	0.0062 (9)	-0.0023 (8)
N11	0.0681 (12)	0.0432 (10)	0.0405 (9)	-0.0102 (9)	0.0001 (9)	-0.0114 (8)
N12	0.0511 (10)	0.0315 (8)	0.0441 (9)	-0.0073 (7)	-0.0019 (8)	-0.0068 (7)
N13	0.0674 (12)	0.0347 (8)	0.0425 (9)	-0.0142 (8)	0.0037 (8)	-0.0078 (7)
01	0.1226 (17)	0.0372 (9)	0.0830 (13)	-0.0105 (10)	0.0093 (12)	-0.0194 (9)
O2	0.1115 (16)	0.0655 (11)	0.0557 (11)	-0.0289 (11)	-0.0109 (10)	-0.0178 (9)
011	0.164 (2)	0.0608 (11)	0.0367 (9)	-0.0046 (12)	-0.0097 (11)	-0.0065 (8)
012	0.0928 (13)	0.0452 (9)	0.0593 (10)	-0.0055 (9)	0.0089 (9)	-0.0219 (7)
C1	0.0378 (10)	0.0347 (9)	0.0481 (11)	-0.0036 (8)	-0.0020 (8)	-0.0063 (8)
C2	0.0452 (11)	0.0369 (10)	0.0475 (11)	-0.0076 (8)	0.0004 (9)	-0.0105 (8)

supporting information

C3	0.0563 (13)	0.0400 (11)	0.0509 (12)	-0.0102 (9)	0.0048 (10)	-0.0038 (9)
C4	0.0555 (13)	0.0572 (13)	0.0467 (12)	-0.0055 (11)	0.0023 (10)	-0.0085 (10)
C5	0.0584 (13)	0.0542 (13)	0.0519 (13)	-0.0078 (11)	-0.0006 (11)	-0.0206 (10)
C6	0.0528 (12)	0.0370 (10)	0.0610 (13)	-0.0088(9)	-0.0024 (10)	-0.0139 (10)
C7	0.0537 (12)	0.0409 (11)	0.0491 (12)	-0.0083 (9)	-0.0005 (10)	-0.0067 (9)
C8	0.0464 (11)	0.0455 (11)	0.0530 (12)	-0.0008 (9)	0.0043 (10)	0.0027 (10)
C9	0.0703 (16)	0.0472 (13)	0.0838 (19)	-0.0125 (12)	0.0040 (14)	0.0016 (12)
C11	0.0435 (10)	0.0327 (9)	0.0396 (10)	-0.0055 (8)	-0.0058 (8)	-0.0079 (8)
C12	0.0455 (11)	0.0346 (9)	0.0385 (10)	-0.0037 (8)	-0.0069 (8)	-0.0096 (8)
C13	0.0546 (12)	0.0329 (10)	0.0476 (11)	-0.0077 (9)	-0.0073 (10)	-0.0026 (8)
C14	0.0628 (14)	0.0309 (10)	0.0635 (14)	-0.0070 (9)	-0.0164 (11)	-0.0113 (9)
C15	0.0617 (14)	0.0444 (11)	0.0527 (12)	0.0000 (10)	-0.0101 (10)	-0.0230 (10)
C16	0.0522 (12)	0.0437 (11)	0.0417 (10)	-0.0062 (9)	-0.0022 (9)	-0.0129 (9)
C17	0.0615 (13)	0.0379 (10)	0.0398 (10)	-0.0119 (9)	-0.0023 (9)	-0.0110 (8)
C18	0.0462 (11)	0.0357 (10)	0.0457 (11)	-0.0050 (8)	0.0023 (9)	-0.0072 (8)
C19	0.0759 (17)	0.0732 (17)	0.0450 (12)	-0.0097 (14)	0.0031 (12)	0.0006 (11)

Geometric parameters (Å, °)

0.9300 1.385 (3) 0.9300 1.381 (3) 0.9300 0.9300 0.9300
1.385 (3) 0.9300 1.381 (3) 0.9300 0.9300 0.9300
0.9300 1.381 (3) 0.9300 0.9300 0.9300
1.381 (3) 0.9300 0.9300 0.9300
0.9300 0.9300 0.9300
0.9300 0.9300
0.9300
0.9600
0.9600
0.9600
1.394 (3)
1.396 (3)
1.466 (3)
1.387 (3)
1.373 (3)
0.9300
1.380 (3)
0.9300
1.378 (3)
0.9300
0.9300
0.9300
0.9600
0.9600
0.9600
2 113.24 (16)
2 126.39 (13)
9A 109.5

O2—N1—C2	118.83 (19)	S2—C9—H9B	109.5
O1—N1—C2	117.9 (2)	H9A—C9—H9B	109.5
C7—N2—N3	115.10 (19)	S2—C9—H9C	109.5
C8—N3—N2	120.7 (2)	Н9А—С9—Н9С	109.5
C8—N3—H3N	119.7	Н9В—С9—Н9С	109.5
N2—N3—H3N	119.7	C12—C11—C16	116.26 (17)
O11—N11—O12	122.41 (19)	C12—C11—C17	123.88 (18)
O11—N11—C12	118.20 (18)	C16—C11—C17	119.74 (18)
O12—N11—C12	119.38 (17)	C13—C12—C11	123.03 (19)
C17—N12—N13	115.97 (17)	C13—C12—N11	115.63 (18)
C18—N13—N12	120.58 (17)	C11—C12—N11	121.34 (17)
C18—N13—H13N	119.7	C14—C13—C12	118.95 (19)
N12—N13—H13N	119.7	C14—C13—H13	120.5
C6—C1—C2	116.07 (19)	С12—С13—Н13	120.5
C6—C1—C7	120.58 (18)	C13—C14—C15	119.60 (19)
C2—C1—C7	123.24 (19)	C13—C14—H14	120.2
C3—C2—C1	122.61 (19)	C15—C14—H14	120.2
C3—C2—N1	116.12 (17)	C16—C15—C14	121.1 (2)
C1—C2—N1	121.27 (18)	C16—C15—H15	119.5
C4—C3—C2	119.33 (19)	C14—C15—H15	119.5
С4—С3—Н3	120.3	C15—C16—C11	121.1 (2)
С2—С3—Н3	120.3	C15—C16—H16	119.5
C3—C4—C5	119.7 (2)	C11—C16—H16	119.5
C3—C4—H4	120.1	N12—C17—C11	119.89 (18)
C5—C4—H4	120.1	N12—C17—H17	120.1
C6—C5—C4	120.4 (2)	C11—C17—H17	120.1
С6—С5—Н5	119.8	N13—C18—S11	120.14 (16)
С4—С5—Н5	119.8	N13—C18—S12	113.32 (14)
C5—C6—C1	121.75 (19)	S11—C18—S12	126.54 (12)
С5—С6—Н6	119.1	S12—C19—H19A	109.5
С1—С6—Н6	119.1	S12—C19—H19B	109.5
N2—C7—C1	119.6 (2)	H19A—C19—H19B	109.5
N2—C7—H7	120.2	S12—C19—H19C	109.5
С1—С7—Н7	120.2	H19A—C19—H19C	109.5
N3—C8—S1	120.37 (19)	H19B—C19—H19C	109.5

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	H···A	D···A	D—H···A
N13—H13 <i>N</i> ···O11 ⁱ	0.86	2.16	3.014 (3)	174
C17—H17…O12 ⁱ	0.93	2.55	3.373 (3)	148

Symmetry code: (i) -x+1, -y+1, -z+1.