

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Redetermination of tetrakis(trimethylstannyl)germane

Matthew Bauer, Thomas L. Groy* and John Kouvetakis

Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287-1604, USA

Correspondence e-mail: tgroy@asu.edu

Received 11 October 2007; accepted 30 October 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (Sn–C) = 0.008 Å; R factor = 0.049; wR factor = 0.105; data-to-parameter ratio = 36.7.

Redetermination of the structure of the title compound, $[Ge(SnMe_3)_4]$ or $[GeSn_4(CH_3)_{12}]$, previously refined from powder diffraction data only [Dinnebier, Bernatowicz, Helluy, Sebald, Wunschel, Fitch & van Smaalen *et al.* (2002). *Acta Cryst.* **B58**, 52–61], confirms that four bulky trimethylstannyl ligands surround the central Ge atom (site symmetry 1) in a tetrahedral coordination.

Related literature

For related literature, see: Dinnebier *et al.* (2002); Wrackmeyer & Bernatowicz (1999); Chizmeshya *et al.* (2003).

Experimental

Crystal data

er jotar aana	
$ \begin{bmatrix} \text{GeSn}_4(\text{CH}_3)_{12} \end{bmatrix} \\ M_r = 727.76 \\ \text{Triclinic, } P\overline{1} \\ a = 9.1666 (7) \text{ Å} \\ b = 9.9521 (7) \text{ Å} \\ c = 14.5400 (14) \text{ Å} \\ \alpha = 90.033 (2)^{\circ} \\ \beta = 90.546 (1)^{\circ} \\ \end{bmatrix} $	$\gamma = 111.736 (1)^{\circ}$ $V = 1232.06 (17) \text{ Å}^3$ Z = 2 Mo K α radiation $\mu = 5.19 \text{ mm}^{-1}$ T = 298 (2) K $0.22 \times 0.22 \times 0.15 \text{ mm}$
Data collection Bruker SMART APEX diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2002) $T_{min} = 0.317, T_{max} = 0.460$	12284 measured reflections 5646 independent reflections 4466 reflections with $I > 2\sigma(I)$ $R_{int} = 0.085$
Refinement	

 $R[F^2 > 2\sigma(F^2)] = 0.049$ $wR(F^2) = 0.105$ S = 1.015646 reflections

154 parameters H-atom parameters constrained $\Delta \rho_{max} = 1.09$ e Å⁻³ $\Delta \rho_{min} = -1.01$ e Å⁻³

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Bruker, 1997); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

We express our gratitude to the National Science Foundation for their contribution toward the purchase of the singlecrystal instrumentation used in this study through Award #CHE-9808440.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: MG2036).

References

- Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2002). *SADABS*, *SMART* (Version 5.625) and *SAINT* (Version 6.28A). Bruker AXS Inc., Madison, Wisconsin, USA.
- Chizmeshya, A. V. G., Bauer, M. R. & Kouvetakis, J. (2003). Chem. Mater. 15, 2511–2519.

Dinnebier, R. E., Bernatowicz, P., Helluy, X., Sebald, A., Wunschel, M., Fitch, A. & van Smaalen, S. (2002). *Acta Cryst.* B**58**, 52–61.

Wrackmeyer, B. & Bernatowicz, P. (1999). Magn. Reson. Chem. 37, 418-420.

supporting information

Acta Cryst. (2008). E64, m49 [https://doi.org/10.1107/S1600536807054724] Redetermination of tetrakis(trimethylstannyl)germane

Matthew Bauer, Thomas L. Groy and John Kouvetakis

S1. Comment

The structure of the Ge[Sn(CH₃)₃]₄ cluster has been previously determined by powder X-ray diffraction and magic angle spinning NMR spectroscopy (Dinnebier *et al.*, 2002). Here, we have developed a new synthetic route to form Ge[Sn(CH₃)₃]₄ in high yields (80–90%) and, for the first time, adequately sized crystals suitable for a single-crystal structure determination. The long-term objective is to use this bonding information to understand structural trends in recently developed Ge_{1-x}Sn_x and Ge_{1-xy}Sn_xSi_y semiconductor alloys, including unusual deviations from Vegard's Law (Chizmeshya *et al.*, 2003). Various tetrahedral cluster compounds with the general formula A(BH₃)₄ (where {A, B}= {Si, Ge, Sn}) are potentially viable low-temperature CVD precursors of Group IV alloys with highly metastable compositions and structures that cannot be obtained by conventional growth routes.

The central Ge atom is tetrahedrally coordinated with four Me₃Sn ligands. The average Ge—Sn distance of 2.5934 (8) Å agrees well with the predicted value of 2.5680 Å for a Ge(SnH₃)₄ analogue (Chizmeshya *et al.*, 2003). In the previous structure determination using powder data, estimated standard deviations for bond lengths and angles are given as 0.04 Å and 0.1°, respectively. In the current determination, an improvement in precision for the structure can be seen in the Ge—Sn core bond lengths, which range from 2.5912 (7) to 2.5953 (8) Å, and bond angles, which range from 107.59 (3) to 111.09 (3) °.

S2. Experimental

After addition of GeH₄ (0.1 g; 1.3 mmol) to Me₃SnNMe₂ (1.0 g; 5 mmol) at -196 °C, the mixture was warmed to room temperature and stirred for 24 h. The volatiles were identified as HNMe₂ and small amounts of GeH₄ by gas phase IR spectroscopy and were removed at room temperature *in vacuo*.

 $GeH_4 + 4 Me_3SnNMe_2 \Rightarrow Ge[Sn(CH_3)_3]_4 + 4 HNMe_2$

The white solid was recrystallized from a saturated toluene solution at -20 °C and the purity was confirmed by matching the IR spectrum, powder XRD pattern, 1H NMR spectrum, and melting point with the published data (Dinnebier *et al.*, 2002; Wrackmeyer & Bernatowicz, 1999). This represents a simpler alternative than the multistepped reaction, hydrolysis, and separation procedure required with the reaction of Me₃SnLi and GeCl₄ in tetrahydrofuran. Larger crystals, suitable for single-crystal XRD, were grown by subliming the pure powder in a sealed quartz tube held at 100 °C on one end and room temperature on the other. In contrast, sublimation at 135 °C *in vacuo* yields only microcrystalline powders.

S3. Refinement

H atoms were positioned geometrically and refined using a riding model, with C–H = 0.96 Å and $U_{iso}(H) = 1.5$ times $U_{eq}(C)$.

Figure 1

Structure of Ge[Sn(CH₃)₃]₄. (Ellipsoids are drawn at the 50% probability level.)

tetrakis(trimethylstannyl)germane

Crystal data

[GeSn₄(CH₃)₁₂] $M_r = 727.76$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 9.1666 (7) Å b = 9.9521 (7) Å c = 14.5400 (14) Å a = 90.033 (2)° $\beta = 90.546$ (1)° $\gamma = 111.736$ (1)° V = 1232.06 (17) Å³

Data collection

Bruker SMART APEX diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scan Z = 2 F(000) = 680 $D_x = 1.962 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 6668 reflections $\theta = 2.2-27.5^{\circ}$ $\mu = 5.19 \text{ mm}^{-1}$ T = 298 K Block, colorless $0.22 \times 0.22 \times 0.15 \text{ mm}$

Absorption correction: multi-scan (*SADABS*; Bruker, 2002) $T_{min} = 0.317$, $T_{max} = 0.460$ 12284 measured reflections 5646 independent reflections 4466 reflections with $I > 2\sigma(I)$

$R_{\rm int} = 0.085$	$k = -12 \rightarrow 12$
$\theta_{\rm max} = 27.6^\circ, \ \theta_{\rm min} = 2.2^\circ$	$l = -18 \rightarrow 18$
$h = -11 \rightarrow 11$	

5	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.049$	Hydrogen site location: inferred from
$wR(F^2) = 0.105$	neighbouring sites
<i>S</i> = 1.01	H-atom parameters constrained
5646 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0304P)^2]$
154 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 1.09 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -1.01 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Ge1	0.75863 (7)	0.73542 (6)	0.75103 (5)	0.04589 (16)
Sn1	0.76633 (5)	0.47736 (5)	0.75113 (4)	0.05566 (14)
Sn2	0.67526 (5)	0.79813 (5)	0.91050 (3)	0.05480 (14)
Sn3	0.55868 (5)	0.75649 (5)	0.63013 (3)	0.05205 (13)
Sn4	1.03424 (5)	0.92048 (5)	0.70999 (3)	0.05197 (13)
C1A	0.5374 (9)	0.3234 (8)	0.7776 (6)	0.084 (2)
H1AA	0.5400	0.2278	0.7776	0.125*
H1AB	0.4659	0.3296	0.7306	0.125*
H1AC	0.5030	0.3432	0.8364	0.125*
C1B	0.9275 (9)	0.4584 (9)	0.8546 (7)	0.092 (3)
H1BA	0.9284	0.3623	0.8534	0.138*
H1BB	0.8949	0.4776	0.9141	0.138*
H1BC	1.0311	0.5270	0.8424	0.138*
C1C	0.8419 (9)	0.4301 (9)	0.6205 (6)	0.084 (2)
H1CA	0.8442	0.3344	0.6214	0.126*
H1CB	0.9451	0.4990	0.6080	0.126*
H1CC	0.7702	0.4355	0.5734	0.126*
C2A	0.8272 (9)	0.7754 (10)	1.0181 (6)	0.088 (3)
H2AA	0.7939	0.7992	1.0762	0.132*
H2AB	0.9332	0.8395	1.0067	0.132*
H2AC	0.8224	0.6774	1.0194	0.132*
C2B	0.6866 (10)	1.0148 (8)	0.9115 (6)	0.087 (2)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H2BA	0.6556	1.0371	0.9707	0.131*
H2BB	0.6172	1.0264	0.8651	0.131*
H2BC	0.7922	1.0790	0.8993	0.131*
C2C	0.4400 (9)	0.6608 (10)	0.9404 (6)	0.088 (3)
H2CA	0.4116	0.6858	0.9996	0.132*
H2CB	0.4321	0.5619	0.9409	0.132*
H2CC	0.3703	0.6730	0.8943	0.132*
C3A	0.6191 (9)	0.7151 (9)	0.4940 (5)	0.085 (2)
H3AA	0.5431	0.7236	0.4509	0.128*
H3AB	0.6202	0.6191	0.4909	0.128*
H3AC	0.7212	0.7840	0.4792	0.128*
C3B	0.3259 (8)	0.6064 (8)	0.6589 (6)	0.076 (2)
H3BA	0.2539	0.6160	0.6134	0.115*
H3BB	0.2952	0.6266	0.7187	0.115*
H3BC	0.3247	0.5095	0.6575	0.115*
C3C	0.5645 (8)	0.9736 (8)	0.6319 (6)	0.075 (2)
H3CA	0.4909	0.9828	0.5874	0.112*
H3CB	0.6683	1.0393	0.6172	0.112*
H3CC	0.5371	0.9959	0.6920	0.112*
C4A	1.2038 (8)	0.9083 (9)	0.8092 (6)	0.081 (2)
H4AA	1.3058	0.9769	0.7938	0.121*
H4AB	1.2058	0.8125	0.8088	0.121*
H4AC	1.1756	0.9299	0.8693	0.121*
C4B	1.0969 (8)	0.8697 (9)	0.5750 (5)	0.078 (2)
H4BA	1.1990	0.9379	0.5593	0.117*
H4BB	1.0210	0.8748	0.5306	0.117*
H4BC	1.0986	0.7738	0.5752	0.117*
C4C	1.0413 (9)	1.1383 (7)	0.7095 (6)	0.080 (2)
H4CA	1.1451	1.2033	0.6940	0.120*
H4CB	1.0148	1.1625	0.7693	0.120*
H4CC	0.9674	1.1468	0.6648	0.120*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ge1	0.0459 (3)	0.0435 (3)	0.0477 (4)	0.0158 (3)	0.0020 (3)	0.0011 (3)
Sn1	0.0596 (3)	0.0444 (2)	0.0628 (3)	0.0192 (2)	-0.0006(2)	0.0007 (2)
Sn2	0.0586 (3)	0.0588 (3)	0.0469 (3)	0.0216 (2)	0.0030(2)	0.0002 (2)
Sn3	0.0501 (2)	0.0549 (3)	0.0501 (3)	0.0183 (2)	-0.00229 (19)	-0.0012 (2)
Sn4	0.0469 (2)	0.0507 (3)	0.0549 (3)	0.01392 (19)	0.00327 (19)	0.0024 (2)
C1A	0.079 (5)	0.058 (4)	0.102 (7)	0.012 (4)	0.009 (5)	0.015 (4)
C1B	0.086 (6)	0.081 (6)	0.119 (8)	0.042 (5)	-0.015 (5)	0.022 (5)
C1C	0.098 (6)	0.080 (5)	0.080 (6)	0.039 (5)	0.011 (5)	-0.021 (4)
C2A	0.091 (6)	0.110 (7)	0.068 (6)	0.045 (5)	-0.023 (4)	-0.006 (5)
C2B	0.120 (7)	0.072 (5)	0.076 (6)	0.041 (5)	0.003 (5)	-0.012 (4)
C2C	0.071 (5)	0.105 (7)	0.082 (6)	0.025 (5)	0.022 (4)	0.018 (5)
C3A	0.102 (6)	0.091 (6)	0.051 (5)	0.022 (5)	0.010 (4)	-0.011 (4)
C3B	0.055 (4)	0.082 (5)	0.084 (6)	0.016 (4)	0.006 (4)	-0.003 (4)

supporting information

C3C	0.080 (5)	0.060 (4)	0.086 (6)	0.028 (4)	0.000 (4)	0.009 (4)
C4A	0.063 (4)	0.102 (6)	0.080 (6)	0.035 (4)	-0.020 (4)	-0.016 (5)
C4B	0.079 (5)	0.084 (5)	0.069 (5)	0.026 (4)	0.029 (4)	0.006 (4)
C4C	0.094 (6)	0.049 (4)	0.094 (7)	0.022 (4)	0.009 (5)	0.009 (4)

Geometric parameters (Å, °)

Gel—Sn4	2.5912 (7)	Sn2—C2C	2.132 (7)
Ge1—Sn3	2.5917 (8)	Sn2—C2A	2.152 (7)
Ge1—Sn1	2.5952 (7)	Sn3—C3A	2.141 (7)
Ge1—Sn2	2.5953 (8)	Sn3—C3C	2.141 (7)
Sn1—C1A	2.130 (7)	Sn3—C3B	2.148 (7)
Sn1—C1C	2.139 (8)	Sn4—C4C	2.145 (7)
Sn1—C1B	2.156 (7)	Sn4—C4A	2.147 (7)
Sn2—C2B	2.120 (8)	Sn4—C4B	2.162 (7)
Sn4—Ge1—Sn3	108.29 (3)	C2B—Sn2—Ge1	110.0 (2)
Sn4—Ge1—Sn1	109.08 (3)	C2C—Sn2—Ge1	110.9 (3)
Sn3—Ge1—Sn1	111.09 (3)	C2A—Sn2—Ge1	111.2 (2)
Sn4—Ge1—Sn2	109.91 (3)	C3A—Sn3—C3C	107.0 (3)
Sn3—Ge1—Sn2	107.59 (3)	C3A—Sn3—C3B	108.5 (3)
Sn1—Ge1—Sn2	110.83 (3)	C3C—Sn3—C3B	110.3 (3)
C1A—Sn1—C1C	108.9 (3)	C3A—Sn3—Ge1	111.5 (2)
C1A—Sn1—C1B	109.3 (3)	C3C—Sn3—Ge1	108.7 (2)
C1C—Sn1—C1B	108.0 (3)	C3B—Sn3—Ge1	110.9 (2)
C1A—Sn1—Ge1	109.4 (2)	C4C—Sn4—C4A	108.0 (3)
C1C—Sn1—Ge1	110.3 (2)	C4C—Sn4—C4B	108.7 (3)
C1B—Sn1—Ge1	111.0 (2)	C4A—Sn4—C4B	109.4 (3)
C2B—Sn2—C2C	107.9 (3)	C4C—Sn4—Ge1	112.1 (2)
C2B—Sn2—C2A	108.2 (3)	C4A—Sn4—Ge1	109.6 (2)
C2C—Sn2—C2A	108.6 (3)	C4B—Sn4—Ge1	109.0 (2)