Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Diaquabis(4-methylbenzoato- $\kappa^{2} O, O^{\prime}$)cadmium(II)

Xiang-Hu Huang, ${ }^{\text {a }}$ Peng-Zhi Hong ${ }^{\text {b }}$ and Wen-Dong Song ${ }^{\text {c* }}$

${ }^{\text {a }}$ College of Fisheries, Guang Dong Ocean University, Zhan Jiang 524088, People's Republic of China, ${ }^{\mathbf{b}}$ School of Food Science and Technology, Guang Dong Ocean University, Zhan Jiang 524088, People's Republic of China, and ${ }^{\text {C College of Science, }}$ Guang Dong Ocean University, Zhanjiang 524088, People's Republic of China Correspondence e-mail: songwd60@126.com

Received 19 November 2007; accepted 7 December 2007

Key indicators: single-crystal X-ray study; $T=296 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$; R factor $=0.024 ; w R$ factor $=0.062 ;$ data-to-parameter ratio $=14.4$.

In the title mononuclear complex, $\left[\mathrm{Cd}\left(\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{O}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$, the $\mathrm{Cd}^{\text {II }}$ atom possesses crystallographically imposed C_{2} site symmetry, and is coordinated by four O atoms from two 4 methylbenzoate ligands and two water molecules, displaying a distorted octahedral geometry. The molecules are assembled via intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bond interactions into a supramolecular architecture.

Related literature

For the crystal structure of 4-methylbenzoic acid, see: Song et al. (2007).

Experimental

Crystal data
$\left[\mathrm{Cd}\left(\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{O}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$
$V=1638.21(8) \AA^{3}$
$M_{r}=418.70$
Monoclinic, C2/c
$a=26.5836$ (8) \AA
$b=5.3542$ (1) \AA
$Z=4$
Mo $K \alpha$ radiation
$\mu=1.36 \mathrm{~mm}^{-1}$
$c=12.0625$ (3) A
$T=296$ (2) K
$0.28 \times 0.26 \times 0.24 \mathrm{~mm}$

Data collection

Bruker APEXII diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.702, T_{\text {max }}=0.736$
7419 measured reflections 1528 independent reflections 1462 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.026$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.024 \quad 106$ parameters
$w R\left(F^{2}\right)=0.062$
H -atom parameters constrained
$S=1.19$
1528 reflections
$\Delta \rho_{\max }=0.30 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.74 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA,^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
${\text { O1 } W-\mathrm{H} 2 W \cdots \mathrm{O} 1^{\mathrm{i}}}^{\mathrm{ii}}$	0.81	1.94	$2.739(2)$	169
O1 $W-\mathrm{H} 1 W \cdots \mathrm{O} 2^{2}$	0.80	1.97	$2.757(2)$	170

Symmetry codes: (i) $-x+2, y-1,-z+\frac{3}{2}$; (ii) $-x+2,-y,-z+1$.

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Bruker, 2004); software used to prepare material for publication: SHELXL97 and XP.

The authors acknowledge Guang Dong Ocean University for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LX2040).

References

Bruker (2004). APEX2, SAINT and XP. Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Song, W.-D., Gu, C.-S., Hao, X.-M. \& Liu, J.-W. (2007). Acta Cryst. E63, m1023-m1024.

supporting information

Acta Cryst. (2008). E64, m175 [https://doi.org/10.1107/S1600536807066044]

Diaquabis(4-methylbenzoato- $\kappa^{2} O, O^{\prime}$) cadmium (II)

Xiang-Hu Huang, Peng-Zhi Hong and Wen-Dong Song

S1. Comment

In the structural investigation of 4-methylbenzate complexes, it has been found that the 4-methylbenzoic acid functions as a multidentate ligand (Song et al. 2007), with versatile binding and coordination modes. In this paper, we report the crystal structure of the title compound (Fig. 1), a new Cd complex obtained by the reaction of 4-methylbenzoic acid with cadmium chloride in alkaline aqueous solution.

As illustrated in Fig. 1, the $\mathrm{Cd}^{\mathrm{II}}$ atom, possesses crystallogarphically imposed C_{2} symmetry, which is coordinated by four O atoms from two 4-methylbenzate ligands and two water molecules, and displaying a distorted octahedral geometry. Intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond interactions (Table 1) between the coordinated water molecules and the carboxyl O atoms of 4-methylbenzate ligands stabilize the structural packing (Fig. 2).

S2. Experimental

A mixture of cadmium chloride ($183 \mathrm{mg}, 1 \mathrm{mmol}$), 4-methylbenzoic acid ($136 \mathrm{mg}, 1 \mathrm{mmol}$), $\mathrm{NaOH}(60 \mathrm{mg}, 1.5 \mathrm{mmol})$ and $\mathrm{H}_{2} \mathrm{O}(12 \mathrm{ml})$ was placed in a 23 ml Teflon reactor, which was heated to 433 K for three days and then cooled to room temperature at a rate of $10 \mathrm{~K} \mathrm{~h}^{-1}$. The crystals obtained were washed with water and dryed in air.

S3. Refinement

Carbon-bound H atoms were placed at calculated positions and were treated as riding on the parent C atoms with $\mathrm{C}-\mathrm{H}=$ $0.93 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$. Water H atoms were tentatively located in difference Fourier maps and were refined with distance restraints of $\mathrm{O}-\mathrm{H}=0.82 \AA$ and $\mathrm{H} \cdots \mathrm{H}=1.29 \AA$, each within a standard deviation of $0.01 \AA$ and and with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\mathrm{eq}}(\mathrm{O})$.

Figure 1
The structure of the title compound, showing the atomic numbering scheme. Non-H atoms are shown with 30% probability displacement ellipsoids. [Symmetry code: (i) $2-x, y,-z+3 / 2$.]

Figure 2
A packing view of the title compound. The intermolecluar hydrogen bonds are shown as dashed lines.

Diaquabis(4-methylbenzoato- $\kappa^{2} O, O^{\prime}$)cadmium(II)

Crystal data

$\left[\mathrm{Cd}\left(\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{O}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$
$M_{r}=418.70$
Monoclinic, C2/c
Hall symbol: -C 2yc
$a=26.5836$ (8) \AA
$b=5.3542$ (1) \AA
$c=12.0625(3) \AA$
$\beta=107.414(3)^{\circ}$
$V=1638.21(8) \AA^{3}$
$Z=4$
$F(000)=840$
$D_{\mathrm{x}}=1.698 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 3600 reflections
$\theta=1.4-28^{\circ}$
$\mu=1.36 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Block, colorless
$0.28 \times 0.26 \times 0.24 \mathrm{~mm}$

Data collection

Bruker APEXII

diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
Detector resolution: 10 pixels mm^{-1}
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min }=0.702, T_{\text {max }}=0.736$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.024$
$w R\left(F^{2}\right)=0.062$
$S=1.19$
1528 reflections
106 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

> 7419 measured reflections
> 1528 independent reflections
> 1462 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.026$
> $\theta_{\max }=25.5^{\circ}, \theta_{\min }=1.6^{\circ}$
> $h=-32 \rightarrow 32$
> $k=-6 \rightarrow 6$
> $l=-14 \rightarrow 14$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0402 P)^{2}+0.1795 P\right]$ where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.30$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.74 \mathrm{e}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Cd	1.0000	$0.07846(3)$	0.7500	$0.03171(11)$
O1	$0.93430(7)$	$0.3608(3)$	$0.71337(13)$	$0.0357(3)$
O2	$0.95598(6)$	$0.2636(3)$	$0.55703(12)$	$0.0396(4)$
O1W	$1.03133(8)$	$-0.2139(3)$	$0.66052(13)$	$0.0501(5)$
H1W	1.0312	-0.2214	0.5943	0.075^{*}
H2W	1.0438	-0.3428	0.6915	0.075^{*}
C1	$0.92908(9)$	$0.3898(4)$	$0.60582(19)$	$0.0311(5)$
C2	$0.89107(10)$	$0.5837(4)$	$0.5416(2)$	$0.0324(5)$
C3	$0.89229(10)$	$0.6742(5)$	$0.4358(2)$	$0.0454(6)$
H3	0.9174	0.6137	0.4031	0.054^{*}
C4	$0.85694(11)$	$0.8530(6)$	$0.3773(2)$	$0.0489(6)$
H4	0.8582	0.9083	0.3051	0.059^{*}
C5	$0.81971(11)$	$0.9516(5)$	$0.4240(2)$	$0.0434(6)$
C6	$0.81879(12)$	$0.8613(6)$	$0.5309(3)$	$0.0565(7)$
H6	0.7938	0.9232	0.5638	0.068^{*}
C7	$0.85403(10)$	$0.6813(6)$	$0.5901(2)$	$0.0477(6)$

H7	0.8529	0.6257	0.6623	0.057^{*}
C8	$0.78203(12)$	$1.1528(6)$	$0.3609(3)$	$0.0601(7)$
H8A	0.7485	1.1303	0.3745	0.090^{*}
H8B	0.7776	1.1418	0.2791	0.090^{*}
H8C	0.7960	1.3138	0.3890	0.090^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cd	$0.04502(18)$	$0.02220(15)$	$0.03014(15)$	0.000	$0.01461(11)$	0.000
O1	$0.0501(10)$	$0.0346(7)$	$0.0261(8)$	$0.0036(7)$	$0.0173(7)$	$0.0045(6)$
O2	$0.0552(10)$	$0.0377(8)$	$0.0283(7)$	$0.0131(7)$	$0.0162(7)$	$0.0004(6)$
O1W	$0.0907(14)$	$0.0338(9)$	$0.0352(8)$	$0.0196(9)$	$0.0329(9)$	$0.0057(7)$
C1	$0.0400(12)$	$0.0263(10)$	$0.0283(11)$	$-0.0038(9)$	$0.0122(10)$	$-0.0043(8)$
C2	$0.0378(13)$	$0.0327(13)$	$0.0272(11)$	$0.0011(8)$	$0.0103(10)$	$-0.0027(8)$
C3	$0.0589(16)$	$0.0480(14)$	$0.0371(12)$	$0.0187(12)$	$0.0264(11)$	$0.0090(11)$
C4	$0.0630(17)$	$0.0490(14)$	$0.0395(13)$	$0.0171(13)$	$0.0226(12)$	$0.0120(12)$
C5	$0.0429(14)$	$0.0393(13)$	$0.0417(14)$	$0.0073(10)$	$0.0029(11)$	$-0.0040(10)$
C6	$0.0528(16)$	$0.0713(17)$	$0.0522(16)$	$0.0241(14)$	$0.0261(14)$	$0.0045(14)$
C7	$0.0494(14)$	$0.0644(16)$	$0.0358(12)$	$0.0155(13)$	$0.0225(11)$	$0.0068(12)$
C8	$0.0557(17)$	$0.0515(15)$	$0.0629(18)$	$0.0172(15)$	$0.0021(14)$	$0.0002(15)$

Geometric parameters $\left({ }_{A},{ }^{\circ}\right)$

Cd-O1W	2.202 (2)	C3-H3	0.9300
$\mathrm{Cd}-\mathrm{O} 1$	2.252 (2)	C4-C5	1.382 (4)
$\mathrm{Cd}-\mathrm{O} 2$	2.478 (1)	C4-H4	0.9300
$\mathrm{Cd}-\mathrm{C} 1$	2.719 (2)	C5-C6	1.383 (4)
$\mathrm{O} 1-\mathrm{C} 1$	1.272 (3)	C5-C8	1.512 (4)
$\mathrm{O} 2-\mathrm{C} 1$	1.251 (3)	C6-C7	1.384 (4)
O1W-H1W	0.7994	C6-H6	0.9300
O1W-H2W	0.8075	C7-H7	0.9300
C1-C2	1.493 (3)	C8-H8A	0.9600
C2-C3	1.375 (3)	С8-H8B	0.9600
C2-C7	1.389 (3)	C8-H8C	0.9600
C3-C4	1.379 (4)		
O1W-Cd-O1W ${ }^{\text {i }}$	89.36 (9)	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{Cd}$	55.3 (1)
$\mathrm{O} 1 \mathrm{~W}-\mathrm{Cd}-\mathrm{O} 1^{\mathrm{i}}$	100.87 (7)	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{Cd}$	171.8 (2)
O1W-Cd-O1	140.02 (6)	C3-C2-C7	118.3 (2)
$\mathrm{O} 1^{\text {i }}-\mathrm{Cd}-\mathrm{O} 1$	95.64 (9)	C3-C2-C1	121.8 (2)
$\mathrm{O} 1 \mathrm{~W}-\mathrm{Cd}-\mathrm{O} 2^{\mathrm{i}}$	127.11 (6)	C7-C2-C1	119.9 (2)
$\mathrm{O} 1-\mathrm{Cd}-\mathrm{O} 2{ }^{\text {i }}$	92.08 (6)	C2-C3-C4	121.2 (2)
$\mathrm{O} 1 \mathrm{~W}-\mathrm{Cd}-\mathrm{O} 2$	88.02 (5)	C2-C3-H3	119.4
$\mathrm{O} 1-\mathrm{Cd}-\mathrm{O} 2$	55.00 (5)	C4-C3-H3	119.4
$\mathrm{O} 2{ }^{\text {i }}-\mathrm{Cd}-\mathrm{O} 2$	132.83 (7)	C3-C4-C5	121.2 (2)
$\mathrm{O} 1 \mathrm{~W}-\mathrm{Cd}-\mathrm{Cl}^{\mathrm{i}}$	117.25 (7)	C3-C4-H4	119.4
$\mathrm{O} 1{ }^{\mathrm{i}}-\mathrm{Cd}-\mathrm{Cl}^{\mathrm{i}}$	27.66 (6)	C5-C4-H4	119.4

$\mathrm{O} 1-\mathrm{Cd}-\mathrm{Cl}^{\mathrm{i}}$	93.58 (6)
$\mathrm{O} 2 \mathrm{i}-\mathrm{Cd}-\mathrm{C} 1^{\mathrm{i}}$	27.36 (6)
$\mathrm{O} 2-\mathrm{Cd}-\mathrm{Cl}^{\mathrm{i}}$	113.43 (6)
O1W-Cd-C1	114.45 (6)
$\mathrm{O} 1-\mathrm{Cd}-\mathrm{C} 1$	27.66 (6)
$\mathrm{O} 2-\mathrm{Cd}-\mathrm{C} 1$	27.36 (6)
$\mathrm{C} 1-\mathrm{Cd}-\mathrm{C} 1$	104.39 (9)
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{Cd}$	97.09 (13)
C1-O2-Cd	87.13 (13)
Cd-O1W-H1W	129.6
Cd-O1W-H2W	123.0
H1W-O1W-H2W	107.3
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 1$	120.7 (2)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	121.6 (2)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	117.7 (2)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{Cd}$	65.5 (2)
$\mathrm{O} 1 \mathrm{~W}-\mathrm{Cd}-\mathrm{O} 1-\mathrm{C} 1$	-27.42 (18)
$\mathrm{O} 1 \mathrm{~W}^{\mathrm{i}}-\mathrm{Cd}-\mathrm{O} 1-\mathrm{C} 1$	-129.62 (13)
$\mathrm{O} 1 \mathrm{i}-\mathrm{Cd}-\mathrm{O} 1-\mathrm{C} 1$	86.96 (13)
$\mathrm{O} 2 \mathrm{i}-\mathrm{Cd}-\mathrm{O} 1-\mathrm{C} 1$	141.99 (13)
$\mathrm{O} 2-\mathrm{Cd}-\mathrm{O} 1-\mathrm{C} 1$	-1.63 (12)
$\mathrm{C} 1-\mathrm{Cd}-\mathrm{O} 1-\mathrm{C} 1$	114.64 (14)
$\mathrm{O} 1 \mathrm{~W}-\mathrm{Cd}-\mathrm{O} 2-\mathrm{C} 1$	165.40 (14)
$\mathrm{O} 1 \mathrm{~W}^{\mathrm{i}}-\mathrm{Cd}-\mathrm{O} 2-\mathrm{C} 1$	77.70 (14)
$\mathrm{O} 1 \mathrm{i}-\mathrm{Cd}-\mathrm{O} 2-\mathrm{C} 1$	-93.79 (13)
$\mathrm{O} 1-\mathrm{Cd}-\mathrm{O} 2-\mathrm{C} 1$	1.64 (12)
$\mathrm{O} 2 \mathrm{i}-\mathrm{Cd}-\mathrm{O} 2-\mathrm{C} 1$	-52.29 (12)
$\mathrm{C} 1-\mathrm{Cd}-\mathrm{O} 2-\mathrm{C} 1$	-75.63 (17)
$\mathrm{Cd}-\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 1$	-2.8(2)
$\mathrm{Cd}-\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	175.45 (19)
$\mathrm{Cd}-\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 2$	3.1 (2)
$\mathrm{Cd}-\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	-175.22 (17)
$\mathrm{O} 1 \mathrm{~W}-\mathrm{Cd}-\mathrm{C} 1-\mathrm{O} 2$	-16.06 (15)
$\mathrm{O} 1 \mathrm{~W}-\mathrm{Cd}-\mathrm{C} 1-\mathrm{O} 2$	-118.79 (13)
$\mathrm{Ol}^{\mathrm{i}}-\mathrm{Cd}-\mathrm{C} 1-\mathrm{O} 2$	87.59 (13)
$\mathrm{O} 1-\mathrm{Cd}-\mathrm{C} 1-\mathrm{O} 2$	-177.1 (2)
$\mathrm{O} 2 \mathrm{i}-\mathrm{Cd}-\mathrm{C} 1-\mathrm{O} 2$	140.78 (11)

$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$117.4(2)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 8$	$120.9(3)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 8$	$121.6(3)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$121.7(2)$
C5-C6-H6	119.1
C7-C6-H6	119.1
C6-C7-C2	$120.0(2)$
C6-C7-H7	120.0
C2-C7-H7	120.0
C5-C8-H8A	109.5
C5-C8-H8B	109.5
H8A-C8-H8B	109.5
C5-C8-H8C	109.5
H8A-C8-H8C	109.5
H8B-C8-H8C	109.5

$\mathrm{C} 1{ }^{\mathrm{i}}-\mathrm{Cd}-\mathrm{C} 1-\mathrm{O} 2 \quad 113.42$ (14)
$\mathrm{O} 1 \mathrm{~W}-\mathrm{Cd}-\mathrm{C} 1-\mathrm{O} 1 \quad 161.03$ (13)
O1W ${ }^{\mathrm{i}-\mathrm{Cd}-\mathrm{C} 1-\mathrm{O} 1 \quad 58.30(15)}$
O1 ${ }^{\text {i }} \mathrm{Cd}-\mathrm{C} 1-\mathrm{O} 1 \quad-95.31$ (15)
$\mathrm{O} 2 \mathrm{i}-\mathrm{Cd}-\mathrm{C} 1-\mathrm{O} 1 \quad-42.12(15)$
$\mathrm{O} 2-\mathrm{Cd}-\mathrm{C} 1-\mathrm{O} 1 \quad 177.1$ (2)
$\mathrm{C} 1-\mathrm{Cd}-\mathrm{C} 1-\mathrm{O} 1 \quad-69.48(13)$
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3 \quad-15.4$ (4)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3 \quad 162.9$ (2)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7 \quad 166.1$ (2)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7 \quad-15.6$ (3)
$\mathrm{C} 7-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4 \quad-1.6$ (4)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4 \quad 179.9$ (2)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5 \quad 1.4(5)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6 \quad-0.9$ (5)
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 8 \quad 178.3$ (3)
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7 \quad 0.8$ (5)
C8-C5-C6-C7 -178.5 (3)
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 2 \quad-1.0(5)$
C3-C2-C7-C6 1.4 (4)
C1-C2-C7-C6
179.9 (3)

Symmetry code: (i) $-x+2, y,-z+3 / 2$.

Hydrogen-bond geometry ($\stackrel{A}{ },{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H}^{\cdots} A$
$\mathrm{O} 1 W — \mathrm{H} 2 W \cdots \mathrm{O}^{\mathrm{iii}}$	0.81	1.94	$2.739(2)$	169
$\mathrm{O} 1 W — \mathrm{H} 1 W \cdots \mathrm{O}^{\mathrm{iiii}}$	0.80	1.97	$2.757(2)$	170

Symmetry codes: (ii) $-x+2, y-1,-z+3 / 2$; (iii) $-x+2,-y,-z+1$.

