

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

# Diaguabis(4-methylbenzoato- $\kappa^2 O, O'$ )cadmium(II)

# Xiang-Hu Huang,<sup>a</sup> Peng-Zhi Hong<sup>b</sup> and Wen-Dong Song<sup>c</sup>\*

<sup>a</sup>College of Fisheries, Guang Dong Ocean University, Zhan Jiang 524088, People's Republic of China, <sup>b</sup>School of Food Science and Technology, Guang Dong Ocean University, Zhan Jiang 524088, People's Republic of China, and <sup>c</sup>College of Science, Guang Dong Ocean University, Zhanjiang 524088, People's Republic of China Correspondence e-mail: songwd60@126.com

Received 19 November 2007; accepted 7 December 2007

Key indicators: single-crystal X-ray study; T = 296 K; mean  $\sigma$ (C–C) = 0.004 Å; R factor = 0.024; wR factor = 0.062; data-to-parameter ratio = 14.4.

In the title mononuclear complex,  $[Cd(C_8H_7O_2)_2(H_2O)_2]$ , the  $Cd^{II}$  atom possesses crystallographically imposed  $C_2$  site symmetry, and is coordinated by four O atoms from two 4methylbenzoate ligands and two water molecules, displaying a distorted octahedral geometry. The molecules are assembled via intermolecular  $O-H \cdots O$  hydrogen-bond interactions into a supramolecular architecture.

## **Related literature**

For the crystal structure of 4-methylbenzoic acid, see: Song et al. (2007).



7419 measured reflections

 $R_{\rm int} = 0.026$ 

1528 independent reflections

1462 reflections with  $I > 2\sigma(I)$ 

### **Experimental**

#### Crystal data

| $[Cd(C_8H_7O_2)_2(H_2O)_2]$     | V = 1638.21 (8) Å <sup>3</sup>    |
|---------------------------------|-----------------------------------|
| $M_r = 418.70$                  | Z = 4                             |
| Monoclinic, $C2/c$              | Mo $K\alpha$ radiation            |
| a = 26.5836 (8) Å               | $\mu = 1.36 \text{ mm}^{-1}$      |
| b = 5.3542 (1)  Å               | T = 296 (2) K                     |
| c = 12.0625 (3) Å               | $0.28 \times 0.26 \times 0.24$ mm |
| $\beta = 107.414 \ (3)^{\circ}$ |                                   |

## Data collection

Bruker APEXII diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996)  $T_{\rm min} = 0.702, \ T_{\rm max} = 0.736$ 

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.024$ | 106 parameters                                             |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.062$               | H-atom parameters constrained                              |
| S = 1.19                        | $\Delta \rho_{\rm max} = 0.30 \text{ e } \text{\AA}^{-3}$  |
| 1528 reflections                | $\Delta \rho_{\rm min} = -0.74 \ {\rm e} \ {\rm \AA}^{-3}$ |

### Table 1

Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$           | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|----------------------------|------|-------------------------|--------------|--------------------------------------|
| $O1W - H2W \cdots O1^{i}$  | 0.81 | 1.94                    | 2.739 (2)    | 169                                  |
| $O1W - H1W \cdots O2^{ii}$ | 0.80 | 1.97                    | 2.757 (2)    | 170                                  |

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Bruker, 2004); software used to prepare material for publication: SHELXL97 and XP.

The authors acknowledge Guang Dong Ocean University for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LX2040).

#### References

- Bruker (2004). APEX2, SAINT and XP. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Song, W.-D., Gu, C.-S., Hao, X.-M. & Liu, J.-W. (2007). Acta Cryst. E63, m1023-m1024.

# supporting information

Acta Cryst. (2008). E64, m175 [https://doi.org/10.1107/S1600536807066044]

Diaquabis(4-methylbenzoato- $\kappa^2 O, O'$ ) cadmium(II)

# Xiang-Hu Huang, Peng-Zhi Hong and Wen-Dong Song

## S1. Comment

In the structural investigation of 4-methylbenzate complexes, it has been found that the 4-methylbenzoic acid functions as a multidentate ligand (Song *et al.* 2007), with versatile binding and coordination modes. In this paper, we report the crystal structure of the title compound (Fig. 1), a new Cd complex obtained by the reaction of 4-methylbenzoic acid with cadmium chloride in alkaline aqueous solution.

As illustrated in Fig. 1, the  $Cd^{II}$  atom, possesses crystallogarphically imposed  $C_2$  symmetry, which is coordinated by four O atoms from two 4-methylbenzate ligands and two water molecules, and displaying a distorted octahedral geometry. Intermolecular O—H···O hydrogen bond interactions (Table 1) between the coordinated water molecules and the carboxyl O atoms of 4-methylbenzate ligands stabilize the structural packing (Fig. 2).

## **S2. Experimental**

A mixture of cadmium chloride(183 mg, 1 mmol), 4-methylbenzoic acid (136 mg, 1 mmol), NaOH (60 mg, 1.5 mmol) and  $H_2O$  (12 ml) was placed in a 23 ml Teflon reactor, which was heated to 433 K for three days and then cooled to room temperature at a rate of 10 K h<sup>-1</sup>. The crystals obtained were washed with water and dryed in air.

# S3. Refinement

Carbon-bound H atoms were placed at calculated positions and were treated as riding on the parent C atoms with C—H = 0.93 Å, and with  $U_{iso}(H) = 1.2 U_{eq}(C)$ . Water H atoms were tentatively located in difference Fourier maps and were refined with distance restraints of O–H = 0.82 Å and H···H = 1.29 Å, each within a standard deviation of 0.01 Å and and with  $U_{iso}(H) = 1.5 U_{eq}(O)$ .



# Figure 1

The structure of the title compound, showing the atomic numbering scheme. Non-H atoms are shown with 30% probability displacement ellipsoids. [Symmetry code: (i) 2 - x, y, -z + 3/2.]



# Figure 2

A packing view of the title compound. The intermolecluar hydrogen bonds are shown as dashed lines.

Diaquabis(4-methylbenzoato- $\kappa^2 O, O'$ )cadmium(II)

Crystal data  $[Cd(C_8H_7O_2)_2(H_2O)_2]$   $M_r = 418.70$ Monoclinic, C2/cHall symbol: -C 2yc a = 26.5836 (8) Å b = 5.3542 (1) Å c = 12.0625 (3) Å  $\beta = 107.414$  (3)° V = 1638.21 (8) Å<sup>3</sup> Z = 4

F(000) = 840  $D_x = 1.698 \text{ Mg m}^{-3}$ Mo K\alpha radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3600 reflections  $\theta = 1.4-28^{\circ}$   $\mu = 1.36 \text{ mm}^{-1}$  T = 296 KBlock, colorless  $0.28 \times 0.26 \times 0.24 \text{ mm}$  Data collection

| Bruker APEXII<br>diffractometer<br>Radiation source: fine-focus sealed tube<br>Graphite monochromator<br>Detector resolution: 10 pixels mm <sup>-1</sup><br>$\varphi$ and $\omega$ scans<br>Absorption correction: multi-scan<br>( <i>SADABS</i> ; Sheldrick, 1996)<br>$T_{\min} = 0.702, T_{\max} = 0.736$ | 7419 measured reflections<br>1528 independent reflections<br>1462 reflections with $I > 2\sigma(I)$<br>$R_{int} = 0.026$<br>$\theta_{max} = 25.5^{\circ}, \theta_{min} = 1.6^{\circ}$<br>$h = -32 \rightarrow 32$<br>$k = -6 \rightarrow 6$<br>$l = -14 \rightarrow 14$                                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Refinement                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                  |
| Refinement on $F^2$<br>Least-squares matrix: full<br>$R[F^2 > 2\sigma(F^2)] = 0.024$<br>$wR(F^2) = 0.062$<br>S = 1.19<br>1528 reflections<br>106 parameters<br>0 restraints<br>Primary atom site location: structure-invariant<br>direct methods                                                            | Secondary atom site location: difference Fourier<br>map<br>Hydrogen site location: inferred from<br>neighbouring sites<br>H-atom parameters constrained<br>$w = 1/[\sigma^2(F_o^2) + (0.0402P)^2 + 0.1795P]$<br>where $P = (F_o^2 + 2F_c^2)/3$<br>$(\Delta/\sigma)_{max} < 0.001$<br>$\Delta\rho_{max} = 0.30$ e Å <sup>-3</sup><br>$\Delta\rho_{min} = -0.74$ e Å <sup>-3</sup> |

## Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

| x            | У                                                                                                                                                                                                                         | Ζ                                                                                                                                                                                                                                                                                                                                                            | $U_{ m iso}$ */ $U_{ m eq}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.0000       | 0.07846 (3)                                                                                                                                                                                                               | 0.7500                                                                                                                                                                                                                                                                                                                                                       | 0.03171 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.93430 (7)  | 0.3608 (3)                                                                                                                                                                                                                | 0.71337 (13)                                                                                                                                                                                                                                                                                                                                                 | 0.0357 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.95598 (6)  | 0.2636 (3)                                                                                                                                                                                                                | 0.55703 (12)                                                                                                                                                                                                                                                                                                                                                 | 0.0396 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1.03133 (8)  | -0.2139 (3)                                                                                                                                                                                                               | 0.66052 (13)                                                                                                                                                                                                                                                                                                                                                 | 0.0501 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1.0312       | -0.2214                                                                                                                                                                                                                   | 0.5943                                                                                                                                                                                                                                                                                                                                                       | 0.075*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1.0438       | -0.3428                                                                                                                                                                                                                   | 0.6915                                                                                                                                                                                                                                                                                                                                                       | 0.075*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.92908 (9)  | 0.3898 (4)                                                                                                                                                                                                                | 0.60582 (19)                                                                                                                                                                                                                                                                                                                                                 | 0.0311 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.89107 (10) | 0.5837 (4)                                                                                                                                                                                                                | 0.5416 (2)                                                                                                                                                                                                                                                                                                                                                   | 0.0324 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.89229 (10) | 0.6742 (5)                                                                                                                                                                                                                | 0.4358 (2)                                                                                                                                                                                                                                                                                                                                                   | 0.0454 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.9174       | 0.6137                                                                                                                                                                                                                    | 0.4031                                                                                                                                                                                                                                                                                                                                                       | 0.054*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.85694 (11) | 0.8530 (6)                                                                                                                                                                                                                | 0.3773 (2)                                                                                                                                                                                                                                                                                                                                                   | 0.0489 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.8582       | 0.9083                                                                                                                                                                                                                    | 0.3051                                                                                                                                                                                                                                                                                                                                                       | 0.059*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.81971 (11) | 0.9516 (5)                                                                                                                                                                                                                | 0.4240 (2)                                                                                                                                                                                                                                                                                                                                                   | 0.0434 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.81879 (12) | 0.8613 (6)                                                                                                                                                                                                                | 0.5309 (3)                                                                                                                                                                                                                                                                                                                                                   | 0.0565 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.7938       | 0.9232                                                                                                                                                                                                                    | 0.5638                                                                                                                                                                                                                                                                                                                                                       | 0.068*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.85403 (10) | 0.6813 (6)                                                                                                                                                                                                                | 0.5901 (2)                                                                                                                                                                                                                                                                                                                                                   | 0.0477 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|              | x<br>1.0000<br>0.93430 (7)<br>0.95598 (6)<br>1.03133 (8)<br>1.0312<br>1.0438<br>0.92908 (9)<br>0.89107 (10)<br>0.89229 (10)<br>0.9174<br>0.85694 (11)<br>0.8582<br>0.81971 (11)<br>0.81879 (12)<br>0.7938<br>0.85403 (10) | xy $1.0000$ $0.07846$ (3) $0.93430$ (7) $0.3608$ (3) $0.95598$ (6) $0.2636$ (3) $1.03133$ (8) $-0.2139$ (3) $1.0312$ $-0.2214$ $1.0438$ $-0.3428$ $0.92908$ (9) $0.3898$ (4) $0.89107$ (10) $0.5837$ (4) $0.89229$ (10) $0.6742$ (5) $0.9174$ $0.6137$ $0.85694$ (11) $0.8530$ (6) $0.81879$ (12) $0.8613$ (6) $0.7938$ $0.9232$ $0.85403$ (10) $0.6813$ (6) | xyz $1.0000$ $0.07846$ (3) $0.7500$ $0.93430$ (7) $0.3608$ (3) $0.71337$ (13) $0.95598$ (6) $0.2636$ (3) $0.55703$ (12) $1.03133$ (8) $-0.2139$ (3) $0.66052$ (13) $1.0312$ $-0.2214$ $0.5943$ $1.0438$ $-0.3428$ $0.6915$ $0.92908$ (9) $0.3898$ (4) $0.60582$ (19) $0.89107$ (10) $0.5837$ (4) $0.5416$ (2) $0.89229$ (10) $0.6742$ (5) $0.4358$ (2) $0.9174$ $0.6137$ $0.4031$ $0.85694$ (11) $0.8530$ (6) $0.3773$ (2) $0.8582$ $0.9083$ $0.3051$ $0.81971$ (11) $0.9516$ (5) $0.4240$ (2) $0.81879$ (12) $0.8613$ (6) $0.5309$ (3) $0.7938$ $0.9232$ $0.5638$ $0.85403$ (10) $0.6813$ (6) $0.5901$ (2) | xyz $U_{iso}^*/U_{eq}$ 1.00000.07846 (3)0.75000.03171 (11)0.93430 (7)0.3608 (3)0.71337 (13)0.0357 (3)0.95598 (6)0.2636 (3)0.55703 (12)0.0396 (4)1.03133 (8)-0.2139 (3)0.66052 (13)0.0501 (5)1.0312-0.22140.59430.075*1.0438-0.34280.69150.075*0.92908 (9)0.3898 (4)0.60582 (19)0.0311 (5)0.89107 (10)0.5837 (4)0.5416 (2)0.0324 (5)0.89229 (10)0.6742 (5)0.4358 (2)0.0454 (6)0.91740.61370.40310.054*0.85694 (11)0.8530 (6)0.3773 (2)0.0489 (6)0.81879 (12)0.8613 (6)0.5309 (3)0.0565 (7)0.79380.92320.56380.068*0.85403 (10)0.6813 (6)0.5901 (2)0.0477 (6) |

# supporting information

| H7  | 0.8529       | 0.6257     | 0.6623     | 0.057*     |
|-----|--------------|------------|------------|------------|
| C8  | 0.78203 (12) | 1.1528 (6) | 0.3609 (3) | 0.0601 (7) |
| H8A | 0.7485       | 1.1303     | 0.3745     | 0.090*     |
| H8B | 0.7776       | 1.1418     | 0.2791     | 0.090*     |
| H8C | 0.7960       | 1.3138     | 0.3890     | 0.090*     |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$     | $U^{22}$     | $U^{33}$     | $U^{12}$    | $U^{13}$     | $U^{23}$     |
|-----|--------------|--------------|--------------|-------------|--------------|--------------|
| Cd  | 0.04502 (18) | 0.02220 (15) | 0.03014 (15) | 0.000       | 0.01461 (11) | 0.000        |
| 01  | 0.0501 (10)  | 0.0346 (7)   | 0.0261 (8)   | 0.0036 (7)  | 0.0173 (7)   | 0.0045 (6)   |
| O2  | 0.0552 (10)  | 0.0377 (8)   | 0.0283 (7)   | 0.0131 (7)  | 0.0162 (7)   | 0.0004 (6)   |
| O1W | 0.0907 (14)  | 0.0338 (9)   | 0.0352 (8)   | 0.0196 (9)  | 0.0329 (9)   | 0.0057 (7)   |
| C1  | 0.0400 (12)  | 0.0263 (10)  | 0.0283 (11)  | -0.0038 (9) | 0.0122 (10)  | -0.0043 (8)  |
| C2  | 0.0378 (13)  | 0.0327 (13)  | 0.0272 (11)  | 0.0011 (8)  | 0.0103 (10)  | -0.0027 (8)  |
| C3  | 0.0589 (16)  | 0.0480 (14)  | 0.0371 (12)  | 0.0187 (12) | 0.0264 (11)  | 0.0090 (11)  |
| C4  | 0.0630 (17)  | 0.0490 (14)  | 0.0395 (13)  | 0.0171 (13) | 0.0226 (12)  | 0.0120 (12)  |
| C5  | 0.0429 (14)  | 0.0393 (13)  | 0.0417 (14)  | 0.0073 (10) | 0.0029 (11)  | -0.0040 (10) |
| C6  | 0.0528 (16)  | 0.0713 (17)  | 0.0522 (16)  | 0.0241 (14) | 0.0261 (14)  | 0.0045 (14)  |
| C7  | 0.0494 (14)  | 0.0644 (16)  | 0.0358 (12)  | 0.0155 (13) | 0.0225 (11)  | 0.0068 (12)  |
| C8  | 0.0557 (17)  | 0.0515 (15)  | 0.0629 (18)  | 0.0172 (15) | 0.0021 (14)  | 0.0002 (15)  |
|     |              |              |              |             |              |              |

# Geometric parameters (Å, °)

| Cd—O1W                 | 2.202 (2)  | С3—Н3    | 0.9300    |  |
|------------------------|------------|----------|-----------|--|
| Cd01                   | 2.252 (2)  | C4—C5    | 1.382 (4) |  |
| Cd—O2                  | 2.478 (1)  | C4—H4    | 0.9300    |  |
| Cd—C1                  | 2.719 (2)  | C5—C6    | 1.383 (4) |  |
| 01—C1                  | 1.272 (3)  | C5—C8    | 1.512 (4) |  |
| O2—C1                  | 1.251 (3)  | C6—C7    | 1.384 (4) |  |
| O1W—H1W                | 0.7994     | C6—H6    | 0.9300    |  |
| O1W—H2W                | 0.8075     | С7—Н7    | 0.9300    |  |
| C1—C2                  | 1.493 (3)  | C8—H8A   | 0.9600    |  |
| С2—С3                  | 1.375 (3)  | C8—H8B   | 0.9600    |  |
| C2—C7                  | 1.389 (3)  | C8—H8C   | 0.9600    |  |
| C3—C4                  | 1.379 (4)  |          |           |  |
|                        | 80.26 (0)  | 01 C1 C1 | 55 2 (1)  |  |
|                        | 89.36 (9)  |          | 55.5 (1)  |  |
| OIW—Cd—OI <sup>1</sup> | 100.87 (7) | C2C1Cd   | 171.8 (2) |  |
| O1W—Cd—O1              | 140.02 (6) | C3—C2—C7 | 118.3 (2) |  |
| O1 <sup>i</sup> —Cd—O1 | 95.64 (9)  | C3—C2—C1 | 121.8 (2) |  |
| O1W-Cd-O2 <sup>i</sup> | 127.11 (6) | C7—C2—C1 | 119.9 (2) |  |
| $O1$ — $Cd$ — $O2^i$   | 92.08 (6)  | C2—C3—C4 | 121.2 (2) |  |
| O1W—Cd—O2              | 88.02 (5)  | С2—С3—Н3 | 119.4     |  |
| 01—Cd—O2               | 55.00 (5)  | С4—С3—Н3 | 119.4     |  |
| O2 <sup>i</sup> —Cd—O2 | 132.83 (7) | C3—C4—C5 | 121.2 (2) |  |
| $O1W$ — $Cd$ — $C1^i$  | 117.25 (7) | C3—C4—H4 | 119.4     |  |
| $O1^i$ —Cd—C $1^i$     | 27.66 (6)  | C5—C4—H4 | 119.4     |  |
|                        |            |          |           |  |

| O1—Cd—C1 <sup>i</sup>         | 93.58 (6)    | C4—C5—C6                      | 117.4 (2)   |
|-------------------------------|--------------|-------------------------------|-------------|
| $O2^{i}$ —Cd—C1 <sup>i</sup>  | 27.36 (6)    | C4—C5—C8                      | 120.9 (3)   |
| $O2$ — $Cd$ — $C1^i$          | 113.43 (6)   | C6—C5—C8                      | 121.6 (3)   |
| O1W—Cd—C1                     | 114.45 (6)   | C5—C6—C7                      | 121.7 (2)   |
| O1—Cd—C1                      | 27.66 (6)    | С5—С6—Н6                      | 119.1       |
| O2—Cd—C1                      | 27.36 (6)    | С7—С6—Н6                      | 119.1       |
| C1 <sup>i</sup> —Cd—C1        | 104.39 (9)   | C6—C7—C2                      | 120.0 (2)   |
| C1—O1—Cd                      | 97.09 (13)   | С6—С7—Н7                      | 120.0       |
| C1—O2—Cd                      | 87.13 (13)   | С2—С7—Н7                      | 120.0       |
| Cd—O1W—H1W                    | 129.6        | С5—С8—Н8А                     | 109.5       |
| Cd—O1W—H2W                    | 123.0        | С5—С8—Н8В                     | 109.5       |
| H1W—O1W—H2W                   | 107.3        | H8A—C8—H8B                    | 109.5       |
| O2—C1—O1                      | 120.7 (2)    | С5—С8—Н8С                     | 109.5       |
| O2—C1—C2                      | 121.6 (2)    | H8A—C8—H8C                    | 109.5       |
| O1—C1—C2                      | 117.7 (2)    | H8B—C8—H8C                    | 109.5       |
| O2—C1—Cd                      | 65.5 (2)     |                               |             |
|                               |              |                               |             |
| O1W—Cd—O1—C1                  | -27.42 (18)  | $C1^{i}$ — $Cd$ — $C1$ — $O2$ | 113.42 (14) |
| O1W <sup>i</sup> —Cd—O1—C1    | -129.62 (13) | O1W—Cd—C1—O1                  | 161.03 (13) |
| $O1^{i}$ —Cd—O1—C1            | 86.96 (13)   | O1W <sup>i</sup> —Cd—C1—O1    | 58.30 (15)  |
| $O2^{i}$ —Cd—O1—C1            | 141.99 (13)  | $O1^{i}$ —Cd—C1—O1            | -95.31 (15) |
| O2—Cd—O1—C1                   | -1.63 (12)   | $O2^{i}$ —Cd—C1—O1            | -42.12 (15) |
| $C1^{i}$ — $Cd$ — $O1$ — $C1$ | 114.64 (14)  | O2—Cd—C1—O1                   | 177.1 (2)   |
| O1W—Cd—O2—C1                  | 165.40 (14)  | $C1^{i}$ — $Cd$ — $C1$ — $O1$ | -69.48 (13) |
| $O1W^{i}$ —Cd—O2—C1           | 77.70 (14)   | O2—C1—C2—C3                   | -15.4 (4)   |
| $O1^{i}$ —Cd—O2—C1            | -93.79 (13)  | O1—C1—C2—C3                   | 162.9 (2)   |
| O1—Cd—O2—C1                   | 1.64 (12)    | O2—C1—C2—C7                   | 166.1 (2)   |
| $O2^{i}$ —Cd—O2—C1            | -52.29 (12)  | O1—C1—C2—C7                   | -15.6 (3)   |
| $C1^{i}$ — $Cd$ — $O2$ — $C1$ | -75.63 (17)  | C7—C2—C3—C4                   | -1.6 (4)    |
| Cd—O2—C1—O1                   | -2.8 (2)     | C1—C2—C3—C4                   | 179.9 (2)   |
| Cd—O2—C1—C2                   | 175.45 (19)  | C2—C3—C4—C5                   | 1.4 (5)     |
| Cd-01-C1-02                   | 3.1 (2)      | C3—C4—C5—C6                   | -0.9 (5)    |
| Cd-01-C1-C2                   | -175.22 (17) | C3—C4—C5—C8                   | 178.3 (3)   |
| O1W—Cd—C1—O2                  | -16.06 (15)  | C4—C5—C6—C7                   | 0.8 (5)     |
| O1W <sup>i</sup> —Cd—C1—O2    | -118.79 (13) | C8—C5—C6—C7                   | -178.5 (3)  |
| $O1^{i}$ —Cd—C1—O2            | 87.59 (13)   | C5—C6—C7—C2                   | -1.0 (5)    |
| O1—Cd—C1—O2                   | -177.1 (2)   | C3—C2—C7—C6                   | 1.4 (4)     |
| $O2^{i}$ —Cd—C1—O2            | 140.78 (11)  | C1—C2—C7—C6                   | 179.9 (3)   |

Symmetry code: (i) -x+2, y, -z+3/2.

# Hydrogen-bond geometry (Å, °)

| D—H···A                                       | <i>D</i> —Н | H···A | $D \cdots A$ | D—H···A |
|-----------------------------------------------|-------------|-------|--------------|---------|
| 01 <i>W</i> —H2 <i>W</i> ···O1 <sup>ii</sup>  | 0.81        | 1.94  | 2.739 (2)    | 169     |
| O1 <i>W</i> —H1 <i>W</i> ···O2 <sup>iii</sup> | 0.80        | 1.97  | 2.757 (2)    | 170     |

Symmetry codes: (ii) -*x*+2, *y*-1, -*z*+3/2; (iii) -*x*+2, -*y*, -*z*+1.