metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

$Di-\mu$ -chlorido-bis[dichlorido(N,Ndiethylacetamidinato)(N.N-diethylacetamidine)titanium(IV)] acetonitrile disolvate

Nicholas A. Straessler,^a M. Tyler Caudle^b and Thomas L. Grov^c*

^aATK Launch Systems, Brigham City, UT 84302, USA, ^bBASF Catalysts LLC, Iselin, NJ 08830, USA, and ^cDepartment of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA Correspondence e-mail: tgroy@asu.edu

Received 16 November 2007; accepted 22 November 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.006 Å; R factor = 0.045; wR factor = 0.134; data-to-parameter ratio = 18.0.

In the centrosymmetric title compound [Ti₂Cl₆(C₆H₁₃N₂)₂- $(C_6H_{14}N_2)_2$]·2C₂H₃N, an inversion center relates the two Ti atoms which display a distorted octahedral coordination geometry. There are two uncoordinated acetonitrile solvent molecules per molecule of title compound in the crystal structure.

Related literature

For the structure, see: Dunn et al. (1994); Guiducci et al. (2001); Lewkebandara et al. (1994); Nielson et al. (2001). For the reaction mechanism, see: Bradley & Ganorkar (1968); Chandra et al. (1970); Forsberg et al. (1987); Maresca et al. (1986); Rouschias & Wilkinson (1968).

Experimental

Crystal data

[Ti₂Cl₆(C₆H₁₃N₂)₂(C₆H₁₄N₂)₂]-- $\beta = 105.192 \ (1)^{\circ}$ 2C₂H₃N $M_{\rm r} = 845.36$ Triclinic, $P\overline{1}$ a = 9.6217 (6) Å b = 11.1812 (7) Å c = 11.2298 (8) Å $\alpha = 95.680 (1)^{\circ}$

Data collection

Bruker SMART APEX diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2003a) $T_{\min} = 0.870, \ T_{\max} = 0.890$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.045$ $wR(F^2) = 0.134$ S = 1.023871 reflections

 $\gamma = 106.938 (1)^{\circ}$ $V = 1095.03 (12) \text{ Å}^3$ Z = 1Mo $K\alpha$ radiation $\mu = 0.76 \text{ mm}^-$ T = 298 (2) K $0.30 \times 0.15 \times 0.15$ mm

8928 measured reflections 3871 independent reflections 2999 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.045$

215 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.82 \ {\rm e} \ {\rm \AA}^ \Delta \rho_{\rm min} = -0.28$ e Å⁻³

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 2003b); software used to prepare material for publication: SHELXTL.

We express our gratitude to the National Science Foundation for their contribution toward the purchase of the singlecrystal instrumentation used in this study through Award No. CHE-9808440.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LX2036).

References

- Bradley, D. C. & Ganorkar, M. C. (1968). Chem. Ind. (London), 44, 1521-1522. Bruker (2003). SMART (Version 5.632) and SAINT (Version 6.45A). Bruker AXS Inc., Madison, Wisconsin, USA.
- Chandra, G., Jenkins, A. D., Lappert, M. F. & Srivastava, R. C. (1970). J. Chem. Soc. A, 2550-2558.
- Dunn, S. C., Batsanov, A. S. & Mountford, P. (1994). J. Chem. Soc. Chem. Commun. pp. 2007-2008.
- Forsberg, J. H., Spaziano, V. T., Balasubramanian, T. M., Liu, G. K., Kinsley, S. A., Duckworth, C. A., Poteruca, J. J., Brown, P. S. & Miller, J. L. (1987). J. Org. Chem. 52, 1017-1021.
- Guiducci, A. E., Cowley, A. R., Skinner, M. E. G. & Mountford, P. (2001). J. Chem. Soc. Dalton Trans. pp. 1392-1394.
- Lewkebandara, T. S., Sheridan, P. H., Heeg, M. J., Rheingold, A. L. & Winter, C. H. (1994). Inorg. Chem. 33, 5879-89.
- Maresca, L., Natile, G., Intini, F. P., Gasparrini, F., Tiripicchio, A. & Tiripicchio-Camellini, M. (1986). J. Am. Chem. Soc. 108, 1180-1185.
- Nielson, A. J., Glenny, M. W. & Rickard, C. E. F. (2001). J. Chem. Soc. Dalton Trans. pp. 232-239.
- Rouschias, G. & Wilkinson, G. (1968). J. Chem. Soc. A, 489-496.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (2003a). SADABS. Version 2.10. University of Göttingen, Germany
- Sheldrick, G. M. (2003b). SHELXTL. Version 6.14. Bruker AXS Inc., Madison, Wisconsin, USA.

Acta Cryst. (2008). E64, m20 [https://doi.org/10.1107/S1600536807062022]

Di-µ-chlorido-bis[dichlorido(N,N-diethylacetamidinato)(N,N-diethylacetamidine)titanium(IV)] acetonitrile disolvate

Nicholas A. Straessler, M. Tyler Caudle and Thomas L. Groy

S1. Comment

The structure of title compound, (I) was solved as part of an investigation into the effects of nitriles on *N*,*N*-dialkylamido titanium(IV) complexes. Compound (I) is a dimeric molecule in which two symmetrically equivalent titanium atoms are each coordinated by one anionic diethylacetamidino group (N1), one neutral diethylacetamidine ligand (N3), two terminal chlorides (Cl2 and Cl3), and two equivalent bridging chlorides (Cl1). This gives a pseudo–octahedral configuration about each titanium center. The acetamidine and acetamidino ligands are oriented in *cis* coordination positions.

The Ti₂Cl₂ unit of (I) is distorted such that the Ti1—Cl1 bond that is *trans* to the diethylacetamidino ligand is significantly longer than the Ti—Cl1 bond that is *trans* to Cl3 (2.7002 (8) Å *versus*. 2.4557 (8) Å). This is consistent with the greater sigma-electron donating ability of the acetamidino ligand relative to the Cl⁻. The Ti—Cl1—Ti bond angle is 102.96 (3)°, similar to that of other dichloro-bridged Ti⁴⁺ compounds (Nielson *et al.*, 2001). The terminal titanium–chloride bond lengths (Ti—Cl2 = 2.3882 (8) Å and Ti—Cl3 = 2.3511 (9) Å) are shorter than the bridging Ti—Cl1 bonds, and are within the normal range for such linkages.

In general, the ligands in (I) bend away from the diethylacetamidino group resulting in bond angles greater than the ideal 90° for octahedral complexes {N1—Ti—Cl3 = 101.24 (9)°, N1—Ti—Cl1 = 95.57 (9)°, N1—Ti—Cl2 = 95.51 (8)°, N1—Ti—N3 = 94.42 (10)°}. This can be attributed to electrostatic repulsion caused by substantial pi–electron donation from the diethylacetamidino nitrogen to the empty 3 d orbitals on Ti⁴⁺. The approximately linear Ti—N1—Cl bond angle (165.7 (2)°) and the short Ti—N1 bond length (1.751 (2) Å) indicate significant Ti—N1 multiple–bond character analogous to those observed in titanium(IV) imides (Guiducci *et al.*, 2001; Lewkebandara *et al.*, 1994; Dunn *et al.*, 1994). The Ti—N3 acetamidine bond length is 2.130 (2) Å, which is 0.379 Å longer than the Ti—N1 acetamidino bond length at 1.751 (2) Å, clearly supporting multiple–bond character in the Ti—N1 bond.

Formation of metal–amidine complexes has been shown to occur by two different mechanisms: (1) acetonitrile insertion into metal–amide bonds (Bradley & Ganorkar, 1968; Chandra *et al.*, 1970); (2) nucleophilic attack by free amine on coordinated nitriles in the presence of metal ions (Forsberg *et al.*, 1987; Rouschias & Wilkinson, 1968; Maresca *et al.*, 1986). However, secondary amines such as diethylamine do not react with nitriles in the absence of metal ions. The addition of TiCl₄ to acetonitrile results in a yellow solvate formed by coordination of CH₃CN to the titanium atom. We speculate that (I) then most likely forms *via* mechanism 2 because the metal-nitrogen linkage to the nitrile is established before addition of diethylamine. Furthermore, direct insertion of CH₃CN has been reported to only occur slowly (Bradley & Ganorkar, 1968), whereas we observe reaction of diethylamine with the TiCl₄–acetonitrile solvate to occur immediately.

S2. Experimental

While stirring under an atmosphere of nitrogen, 2 ml (18.24 mmol) of TiCl₄ were added to approximately 50 ml of anhydrous acetonitrile in a Schlenk flask. To the resulting bright yellow solution was added 5.66 ml (54.71 mmol) of diethylamine. The exothermic reaction turned dark orange and white solid began to precipitate immediately. After twelve hours of stirring, solid white diethylammonium chloride was removed by filtration under nitrogen, and the filtrate was concentrated by intermittent evaporation with a stream of nitrogen over a period of four days. Removal of almost half of the solvent yielded X-ray quality crystals of **I**.

S3. Refinement

Hydrogen atoms were positioned geometrically and allowed to ride on their bonding partners with C—H distances = 0.96\AA and $U_{iso}(H) = 1.5U_{eq}(C)$ for the methyl H atoms, C—H distances = 0.97\AA and $U_{iso}(H) = 1.2U_{eq}(C)$ for the methylene H atoms, and N—H distance = 0.86\AA and $U_{iso}(H) = 1.2U_{eq}(N)$ for the amino hydrogen.

Figure 1

Thermal ellipsoid plot of centrosymmetric title compund shown at the 30% probability level. Solvent molecules and hydrogen atoms omitted for clarity. Only unique atoms are labeled.

 $Di-\mu$ -chlorido-bis[dichlorido(N,N-diethylacetamidinato)(N,N- diethylacetamidine)titanium(IV)] acetonitrile disolvate

Crystal data $[Ti_2Cl_6(C_6H_{13}N_2)_2(C_6H_{14}N_2)_2] \cdot 2C_2H_3N$ $M_r = 845.36$ Triclinic, $P\overline{1}$

Hall symbol: -P 1 a = 9.6217 (6) Å b = 11.1812 (7) Å Mo *K* α radiation, $\lambda = 0.71073$ Å

 $\theta = 4.7 - 55.0^{\circ}$

 $\mu = 0.76 \text{ mm}^{-1}$

Block, orange

 $0.30 \times 0.15 \times 0.15$ mm

T = 298 K

Cell parameters from 5597 reflections

c = 11.2298 (8) Å $\alpha = 95.680 (1)^{\circ}$ $\beta = 105.192 (1)^{\circ}$ $\gamma = 106.938 (1)^{\circ}$ $V = 1095.03 (12) \text{ Å}^{3}$ Z = 1 F(000) = 444 $D_{x} = 1.282 \text{ Mg m}^{-3}$

Data collection

Bruker SMART APEX	8928 measured reflections
diffractometer	3871 independent reflections
Radiation source: fine-focus sealed tube	2999 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{ m int} = 0.045$
ω scan	$\theta_{\rm max} = 25.0^\circ, \ \theta_{\rm min} = 1.9^\circ$
Absorption correction: multi-scan	$h = -11 \rightarrow 11$
(SADABS; Sheldrick, 2003a)	$k = -13 \rightarrow 13$
$T_{\min} = 0.870, \ T_{\max} = 0.890$	$l = -13 \rightarrow 13$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.045$	Hydrogen site location: inferred from
$wR(F^2) = 0.134$	neighbouring sites
S = 1.02	H-atom parameters constrained
3871 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0851P)^2]$
215 parameters	where $P = (F_0^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.82 \text{ e} \text{ Å}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.28 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Ti	0.68333 (5)	0.53749 (4)	0.65286 (4)	0.04665 (18)	
Cl1	0.62466 (7)	0.54169 (6)	0.42723 (6)	0.0509 (2)	
Cl2	0.65097 (9)	0.31620 (6)	0.60603 (8)	0.0697 (3)	
C13	0.66161 (11)	0.52732 (8)	0.85562 (7)	0.0787 (3)	
N1	0.8818 (3)	0.5903 (2)	0.6847 (2)	0.0596 (6)	
C1	1.0294 (5)	0.6394 (3)	0.6804 (3)	0.0803 (10)	
C2	1.0542 (5)	0.7145 (5)	0.5730 (5)	0.135 (2)	
H2A	1.1219	0.6877	0.5358	0.203*	
H2B	1.0979	0.8041	0.6073	0.203*	

H2C	0.9579	0.6978	0.5101	0.203*
N2	1.1381 (3)	0.6309 (3)	0.7609 (3)	0.0836 (9)
C3	1.1039 (5)	0.5546 (4)	0.8621 (4)	0.0909 (12)
H3A	1.1916	0.5854	0.9371	0.109*
H3B	1.0184	0.5697	0.8837	0.109*
C4	1.0682 (6)	0.4183 (5)	0.8236 (5)	0.136 (2)
H4A	1.0827	0.3799	0.8967	0.204*
H4B	1.1345	0.4034	0.7774	0.204*
H4C	0.9641	0.3815	0.7714	0.204*
C5	1.2977 (4)	0.6763 (4)	0.7612 (4)	0.0981 (14)
H5A	1.3002	0.6815	0.6760	0.118*
H5B	1.3466	0.6153	0.7897	0.118*
C6	1.3848 (5)	0.8030 (5)	0.8434 (5)	0.132 (2)
H6A	1.4855	0.8319	0.8353	0.198*
H6B	1.3917	0.7964	0.9292	0.198*
H6C	1.3334	0.8626	0.8189	0.198*
N3	0.6676 (3)	0.72414 (19)	0.66808 (19)	0.0484 (5)
H3C	0.5873	0.7282	0.6148	0.058*
C7	0.7531 (3)	0.8339 (2)	0.7406 (2)	0.0480 (6)
C8	0.8672 (3)	0.8363 (3)	0.8616 (3)	0.0621 (8)
H8A	0.8564	0.7507	0.8738	0.093*
H8B	0.8499	0.8823	0.9300	0.093*
H8C	0.9684	0.8776	0.8584	0.093*
N4	0.7431 (3)	0.9462 (2)	0.7128 (2)	0.0579 (6)
С9	0.8370 (4)	1.0706 (3)	0.7955 (3)	0.0731 (9)
H9A	0.8673	1.1323	0.7443	0.088*
H9B	0.9289	1.0624	0.8501	0.088*
C10	0.7545 (5)	1.1182 (4)	0.8737 (4)	0.1025 (14)
H10A	0.8175	1.2011	0.9222	0.154*
H10B	0.7312	1.0608	0.9293	0.154*
H10C	0.6615	1.1237	0.8203	0.154*
C11	0.6473 (4)	0.9544 (3)	0.5929 (3)	0.0742 (10)
H11A	0.6273	1.0346	0.6006	0.089*
H11B	0.5503	0.8862	0.5705	0.089*
C12	0.7191 (6)	0.9456 (5)	0.4896 (4)	0.1124 (16)
H12A	0.6590	0.9637	0.4153	0.169*
H12B	0.7236	0.8612	0.4721	0.169*
H12C	0.8204	1.0061	0.5157	0.169*
N5	0.7942 (7)	0.9547 (5)	0.1738 (6)	0.175 (2)
C13	0.7192 (6)	0.8570 (5)	0.1685 (5)	0.1060 (14)
C14	0.6195 (7)	0.7345 (5)	0.1617 (6)	0.1335 (18)
H14A	0.5241	0.7402	0.1683	0.200*
H14B	0.6639	0.6977	0.2293	0.200*
H14C	0.6025	0.6819	0.0828	0.200*

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ti	0.0470 (3)	0.0384 (3)	0.0445 (3)	0.0127 (2)	-0.0004 (2)	0.0059 (2)
Cl1	0.0511 (4)	0.0509 (4)	0.0447 (4)	0.0153 (3)	0.0081 (3)	0.0041 (3)
Cl2	0.0661 (5)	0.0421 (4)	0.0841 (6)	0.0206 (4)	-0.0059 (4)	0.0067 (4)
C13	0.0915 (6)	0.0739 (5)	0.0456 (4)	0.0040 (5)	0.0037 (4)	0.0171 (4)
N1	0.0457 (14)	0.0528 (14)	0.0677 (15)	0.0153 (11)	0.0003 (11)	0.0041 (11)
C1	0.076 (2)	0.073 (2)	0.081 (2)	0.032 (2)	0.008 (2)	-0.0126 (18)
C2	0.079 (3)	0.152 (5)	0.187 (5)	0.022 (3)	0.055 (3)	0.099 (4)
N2	0.0541 (17)	0.082 (2)	0.097 (2)	0.0180 (15)	0.0127 (16)	-0.0198 (17)
C3	0.083 (3)	0.103 (3)	0.084 (3)	0.041 (2)	0.006 (2)	0.027 (2)
C4	0.126 (4)	0.097 (4)	0.134 (4)	0.023 (3)	-0.022 (3)	0.010 (3)
C5	0.051 (2)	0.118 (3)	0.113 (3)	0.027 (2)	0.022 (2)	-0.027 (3)
C6	0.058 (2)	0.137 (4)	0.159 (5)	-0.001 (3)	0.030 (3)	-0.046 (4)
N3	0.0502 (13)	0.0409 (12)	0.0443 (12)	0.0163 (10)	-0.0014 (9)	0.0029 (9)
C7	0.0476 (15)	0.0463 (15)	0.0444 (14)	0.0132 (12)	0.0093 (12)	0.0026 (11)
C8	0.0627 (19)	0.0536 (17)	0.0512 (17)	0.0114 (15)	-0.0018 (13)	0.0011 (13)
N4	0.0654 (16)	0.0363 (12)	0.0557 (14)	0.0118 (11)	0.0013 (11)	-0.0024 (10)
C9	0.083 (2)	0.0399 (16)	0.072 (2)	0.0089 (16)	0.0028 (17)	-0.0060 (14)
C10	0.134 (4)	0.077 (3)	0.090 (3)	0.044 (3)	0.022 (3)	-0.013 (2)
C11	0.093 (2)	0.0432 (16)	0.070(2)	0.0233 (16)	-0.0030 (18)	0.0061 (14)
C12	0.150 (4)	0.106 (3)	0.071 (3)	0.026 (3)	0.029 (3)	0.032 (2)
N5	0.170 (5)	0.122 (4)	0.249 (6)	0.012 (3)	0.132 (5)	0.038 (4)
C13	0.102 (3)	0.101 (3)	0.132 (4)	0.028 (3)	0.069 (3)	0.031 (3)
C14	0.144 (5)	0.101 (4)	0.162 (5)	0.029 (3)	0.065 (4)	0.041 (3)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

Ti—N1	1.751 (2)	N3—C7	1.307 (3)
Ti—N3	2.130 (2)	N3—H3C	0.8600
Ti—Cl3	2.3511 (9)	C7—N4	1.348 (3)
Ti—Cl2	2.3882 (8)	C7—C8	1.498 (4)
Ti—Cl1	2.4557 (8)	C8—H8A	0.9600
Ti-Cl1 ⁱ	2.7002 (8)	C8—H8B	0.9600
Cl1—Ti ⁱ	2.7002 (8)	C8—H8C	0.9600
N1-C1	1.381 (4)	N4—C11	1.447 (4)
C1—N2	1.225 (4)	N4—C9	1.478 (3)
C1—C2	1.566 (6)	C9—C10	1.484 (5)
C2—H2A	0.9600	С9—Н9А	0.9700
C2—H2B	0.9600	С9—Н9В	0.9700
C2—H2C	0.9600	C10—H10A	0.9600
N2—C5	1.469 (4)	C10—H10B	0.9600
N2—C3	1.534 (5)	C10—H10C	0.9600
C3—C4	1.454 (6)	C11—C12	1.506 (5)
С3—НЗА	0.9700	C11—H11A	0.9700
С3—Н3В	0.9700	C11—H11B	0.9700
C4—H4A	0.9600	C12—H12A	0.9600

C4—H4B	0.9600	C12—H12B	0.9600
C4—H4C	0.9600	C12—H12C	0.9600
C5—C6	1.485 (6)	N5—C13	1.106 (6)
C5—H5A	0 9700	C13—C14	1 406 (7)
C5—H5B	0.9700	C14—H14A	0.9600
C6 H6A	0.9700	C14 $H14B$	0.9600
C6 H6P	0.9000		0.9000
	0.9000		0.9000
Co-HoC	0.9000		
	04.40 (10)		100 5
N1 - 11 - N3	94.42 (10)	С5—С6—Н6С	109.5
N1—T1—Cl3	101.24 (9)	H6A—C6—H6C	109.5
N3—Ti—Cl3	90.72 (6)	H6B—C6—H6C	109.5
N1—Ti—Cl2	95.51 (8)	C7—N3—Ti	134.05 (18)
N3—Ti—Cl2	168.45 (6)	C7—N3—H3C	113.0
Cl3—Ti—Cl2	93.10 (3)	Ti—N3—H3C	113.0
N1—Ti—Cl1	95.57 (9)	N3—C7—N4	123.2 (2)
N3—Ti—Cl1	84.04 (6)	N3—C7—C8	119.0 (2)
Cl3—Ti—Cl1	162.74 (4)	N4—C7—C8	117.8 (2)
Cl2—Ti—Cl1	89.15 (3)	С7—С8—Н8А	109.5
N1—Ti—Cl1 ⁱ	172.61 (9)	C7—C8—H8B	109.5
$N3$ — Ti — $C11^i$	84 93 (6)	H8A - C8 - H8B	109.5
C_{13} T_{13} C_{11}	86 13 (3)	C7 - C8 - H8C	109.5
C_{12} Ti C_{11}	84.46 (3)	$H_{8A} \subset S = H_{8C}$	109.5
$C_{12} = T_{12} = C_{11}$	77.04(2)		109.5
	//.04 (3) 102 0C (2)		109.3
$11 - C11 - 11^{4}$	102.96 (3)	C/—N4—CII	121.7(2)
CI—NI—II	165.7 (2)	C/—N4—C9	123.6 (2)
N2—C1—N1	121.7 (4)	C11—N4—C9	114.5 (2)
N2—C1—C2	120.8 (4)	N4—C9—C10	112.4 (3)
N1—C1—C2	117.4 (3)	N4—C9—H9A	109.1
C1—C2—H2A	109.5	С10—С9—Н9А	109.1
C1—C2—H2B	109.5	N4—C9—H9B	109.1
H2A—C2—H2B	109.5	С10—С9—Н9В	109.1
C1—C2—H2C	109.5	H9A—C9—H9B	107.9
H2A—C2—H2C	109.5	С9—С10—Н10А	109.5
H2B—C2—H2C	109.5	C9—C10—H10B	109.5
C1 - N2 - C5	125.3 (4)	H10A—C10—H10B	109.5
C1 - N2 - C3	1175(3)	C9-C10-H10C	109.5
C_{5} N2 C_{3}	117.9(3)	H_{10A} C_{10} H_{10C}	109.5
C_{4} C_{3} N2	110.5(3) 113.5(4)	HIOR CIO HIOC	109.5
$C_4 = C_2 = H_2 \Lambda$	102.0	N4 C11 C12	109.5
C4 - C3 - H3A	108.9	N4-C11-C12	112.4 (5)
$N_2 - C_3 - H_3 A$	108.9	N4—CII—HIIA	109.1
C4—C3—H3B	108.9	CI2—CII—HIIA	109.1
N2—C3—H3B	108.9	N4—C11—H11B	109.1
H3A—C3—H3B	107.7	C12—C11—H11B	109.1
C3—C4—H4A	109.5	H11A—C11—H11B	107.9
C3—C4—H4B	109.5	C11—C12—H12A	109.5
H4A—C4—H4B	109.5	C11—C12—H12B	109.5
C3—C4—H4C	109.5	H12A—C12—H12B	109.5

100 -		100 5
109.5	C11—C12—H12C	109.5
109.5	H12A-C12-H12C	109.5
112.4 (3)	H12B-C12-H12C	109.5
109.1	N5-C13-C14	178.0 (6)
109.1	C13—C14—H14A	109.5
109.1	C13—C14—H14B	109.5
109.1	H14A—C14—H14B	109.5
107.9	C13—C14—H14C	109.5
109.5	H14A—C14—H14C	109.5
109.5	H14B—C14—H14C	109.5
109.5		
	109.5 109.5 112.4 (3) 109.1 109.1 109.1 109.1 109.1 109.5 109.5 109.5	109.5 C11—C12—H12C 109.5 H12A—C12—H12C 112.4 (3) H12B—C12—H12C 109.1 N5—C13—C14 109.1 C13—C14—H14A 109.1 C13—C14—H14B 109.1 H14A—C14—H14B 109.5 H14A—C14—H14C 109.5 H14B—C14—H14C 109.5 H14B—C14—H14C

Symmetry code: (i) -x+1, -y+1, -z+1.