organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(2,5-Diphenylpent-4-yn-1-en-3-ylidene)triphenylphosphorane

Aichen Wang, Qibao Wang and Xiaoyan Li*

School of Chemistry and Chemical Engineering, Shandong University, Shanda Nanlu 27, Jinan 250100, People's Republic of China Correspondence e-mail: xli63@sdu.edu.cn

Received 20 November 2007; accepted 22 November 2007

Key indicators: single-crystal X-ray study; T = 383 K; mean σ (C–C) = 0.003 Å; R factor = 0.042; wR factor = 0.133; data-to-parameter ratio = 10.8.

The title compound, C₄₅H₂₇P, was obtained as a product of the reaction of triphenylmethylenephosphorane with one molar equivalent of 1,4-diphenylbutadiyne in toluene. The compound was very stable under ambient conditions, but rapidly decomposed in solution when exposed to the air. The P atom is tetracoordinated in an approximately tetrahedral geometry. The length of the C=C triple bond [1.206 (2) Å] is in the normal range.

Related literature

Related crystal structures of α,β -unsaturated-*C*,*P* ylides have been reported, see: Koollenz et al. (1996).

Experimental

Crystal data C35H27P $M_r = 478.54$

Triclinic, P1 a = 11.439 (2) Å

b = 11.609 (2) Å	
c = 11.913 (2) Å	
$\alpha = 116.00 \ (3)^{\circ}$	
$\beta = 97.24 \ (3)^{\circ}$	
$\gamma = 108.47 \ (3)^{\circ}$	
V = 1281.9 (4) Å ³	

Data collection

Bruker SMART diffractometer	9166 measured reflections
Absorption correction: multi-scan	4661 independent reflections
(SADABS; Sheldrick, 2004)	4077 reflections with $I > 2\sigma(I)$
$T_{\rm min} = 0.966, T_{\rm max} = 0.972$	$R_{\rm int} = 0.043$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.042$	H atoms treated by a mixture of
$wR(F^2) = 0.133$	independent and constrained
S = 1.06	refinement
4661 reflections	$\Delta \rho_{\rm max} = 0.57 \text{ e } \text{\AA}^{-3}$
433 parameters	$\Delta \rho_{\rm min} = -0.29 \ {\rm e} \ {\rm \AA}^{-3}$

Z = 2

Mo $K\alpha$ radiation

 $\mu = 0.13 \text{ mm}^{-1}$

T = 383 (2) K $0.27 \times 0.25 \times 0.22 \text{ mm}$

Table 1

Selected geometric parameters (Å, °).

P1-C19	1.7294 (15)	P1-C1	1.8178 (19)
P1-C13	1.8104 (15)	C20-C21	1.206 (2)
P1-C7	1.8132 (18)	C28-C29	1.343 (2)
C19-P1-C13	108.20 (7)	C13-P1-C1	107.73 (7)
C19-P1-C7	117.53 (8)	C7-P1-C1	106.29 (8)
C13-P1-C7	105.18 (7)	C21-C20-C19	179.42 (18)
C19-P1-C1	111.39 (7)	C20-C21-C22	164.32 (18)

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT and SHELXTL (Sheldrick, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

This work was supported by the NSFC (Nos. 20572062 and 20372042) and by the Doctoral Program of the MOE (Nos. 20050422010 and 20050422011).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LW2053).

References

- Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Koollenz, G., Penn, G., Theuer, R., Fabian, W. M. F., Abd El-Nabi, H. A., Xiong, Z., Peters, K., Peters, E.-M. & von Schnering, H. G. (1996). Tetrahedron, 52, 15, 5427-5440.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (2001). SHELXTL. Version 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.

supporting information

Acta Cryst. (2008). E64, o68 [https://doi.org/10.1107/S1600536807062034]

(2,5-Diphenylpent-4-yn-1-en-3-ylidene)triphenylphosphorane

Aichen Wang, Qibao Wang and Xiaoyan Li

S1. Comment

In the title molecule (Fig.1) the phosphorane atom is coordinated in a tetragonal pyramid by three C atoms of phenyl groups and one sp_2 -C atom. The length of the C—C triple bond is in the range of classic one, and the carbon atoms linked to the C—C triple bond lie in nearly a line.

S2. Experimental

To the solution of triphenylmethylenephosphorane(1.41 g, 5.11 mmol) in 30 ml of toluene was added 1,4-diphenylbutadiyne(1.05 g, 5.20 mmol) at room temperature, a deep red solution formed rapidly. After stirring for at least 24 h the reaction solution was filtrated. The solid residue was dried and extracted with pentane and diethyl ether, respectively. Purple red crystals were obtained suitable for X-ray diffraction analysis. (yield:1.59 g, 65.1%, d.p.: 87 °C)

S3. Refinement

All H atoms were positioned geometrically. All the H atoms are refined using a riding model with C—H = 0.92-1.02 Å and with $U_{iso}(H) = 1.2$ times $U_{eq}(C)$.

Figure 1

The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids for non-H atoms.

(2,5-Diphenylpent-4-yn-1-en-3-ylidene)triphenylphosphorane

Crystal data

C₃₅H₂₇P $M_r = 478.54$ Triclinic, P1 a = 11.439 (2) Å b = 11.609 (2) Å c = 11.913 (2) Å $\alpha = 116.00$ (3)° $\beta = 97.24$ (3)° $\gamma = 108.47$ (3)° V = 1281.9 (4) Å³ Z = 2 F(000) = 504 $D_x = 1.240 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5612 reflections $\theta = 2.2-23.2^{\circ}$ $\mu = 0.13 \text{ mm}^{-1}$ T = 383 KCubic, purple red $0.27 \times 0.25 \times 0.22 \text{ mm}$ Data collection

Bruker SMART diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 2004) $T_{\min} = 0.966, T_{\max} = 0.972$	9166 measured reflections 4661 independent reflections 4077 reflections with $I > 2\sigma(I)$ $R_{int} = 0.043$ $\theta_{max} = 26.0^{\circ}, \theta_{min} = 2.0^{\circ}$ $h = -14 \rightarrow 14$ $k = -13 \rightarrow 14$ $l = -14 \rightarrow 14$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.042$ $wR(F^2) = 0.133$ S = 1.06 4661 reflections 433 parameters 0 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.1P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.002$ $\Delta\rho_{max} = 0.57$ e Å ⁻³ $\Delta\rho_{min} = -0.29$ e Å ⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
P1	0.68533 (3)	0.36252 (4)	0.11133 (3)	0.01164 (15)	
C1	0.56521 (14)	0.24722 (17)	-0.05062 (14)	0.0144 (3)	
C2	0.47129 (15)	0.11909 (18)	-0.07668 (15)	0.0164 (3)	
C3	0.38692 (16)	0.02065 (19)	-0.20295 (16)	0.0187 (4)	
C4	0.39421 (15)	0.04989 (18)	-0.30372 (15)	0.0193 (4)	
C5	0.48380 (16)	0.1796 (2)	-0.27692 (16)	0.0206 (4)	
C6	0.56947 (15)	0.27875 (19)	-0.15066 (15)	0.0168 (3)	
C7	0.76840 (14)	0.52987 (17)	0.12146 (14)	0.0147 (3)	
C8	0.74427 (15)	0.64557 (19)	0.19848 (16)	0.0188 (4)	
C9	0.80051 (17)	0.7702 (2)	0.19820 (18)	0.0242 (4)	
C10	0.88218 (17)	0.7816 (2)	0.12299 (18)	0.0243 (4)	
C11	0.90960 (16)	0.6678 (2)	0.04955 (16)	0.0223 (4)	
C12	0.85367 (15)	0.54293 (18)	0.04849 (15)	0.0163 (3)	
C13	0.80689 (14)	0.29439 (18)	0.11596 (14)	0.0142 (3)	
C14	0.92794 (15)	0.38344 (19)	0.21428 (15)	0.0163 (3)	

C15	1.01613 (16)	0.3280 (2)	0.22863 (16)	0.0197 (4)
C16	0.98606 (16)	0.1863 (2)	0.14545 (17)	0.0222 (4)
C17	0.86805 (17)	0.0994 (2)	0.04615 (17)	0.0224 (4)
C18	0.77842 (16)	0.15322 (18)	0.03089 (16)	0.0191 (4)
C19	0.61694 (14)	0.36449 (17)	0.23325 (14)	0.0135 (3)
C20	0.68991 (14)	0.36051 (16)	0.33433 (14)	0.0132 (3)
C21	0.75197 (14)	0.35583 (17)	0.42069 (14)	0.0156(3)
C22	0.80550 (14)	0.30986 (17)	0.49926 (14)	0.0153(3)
C23	0.90307(15)	0.26281(19)	0 47269 (16)	0.0199(4)
C24	0.94525 (16)	0.20201(13)	0 53938 (17)	0.0232(4)
C25	0.89336 (17)	0.1928(2)	0.63495(16)	0.0232(1)
C26	0.899990(17) 0.80095(17)	0.1920(2) 0.24431(19)	0.66597 (16)	0.0233(1) 0.0211(4)
C27	0.00099(17) 0.75698(15)	0.24431(19) 0.30231(18)	0.50963(15)	0.0211(4) 0.0182(3)
C28	0.75076(15) 0.48816(14)	0.36477(17)	0.39903(13) 0.22947(14)	0.0102(3)
C20	0.40810(14)	0.30477(17)	0.22947(14) 0.16165(16)	0.0142(3)
C29	0.42800(10) 0.41673(14)	0.4080(2) 0.30236(17)	0.10105(10) 0.20066(14)	0.0203(4)
C30	0.41073(14)	0.30230(17)	0.30000(14)	0.0143(3)
C31	0.34931(13)	0.30/23(18)	0.37822(13) 0.44027(16)	0.0107(3)
C32	0.27977(15)	0.30399(19)	0.44037(10)	0.0199(4)
C33	0.2/7/6(17)	0.1813(2)	0.42805(17)	0.0234 (4)
C34	0.34548 (17)	0.1160(2)	0.35238 (18)	0.0233(4)
035	0.41519 (15)	0.17774 (18)	0.29087 (15)	0.0185 (3)
H21	0.3514 (19)	0.457 (2)	0.3947 (19)	0.024 (5)*
H5	0.630 (2)	0.366 (2)	-0.1330 (17)	0.017 (4)*
H1	0.4642 (19)	0.099 (2)	-0.0043 (18)	0.021 (5)*
H14	0.844 (2)	0.003 (3)	-0.013 (2)	0.042 (6)*
H2	0.328 (2)	-0.064 (2)	-0.2167 (19)	0.025 (5)*
H6	0.691 (2)	0.639 (2)	0.2514 (19)	0.023 (5)*
H23	0.229 (2)	0.134 (2)	0.4727 (19)	0.027 (5)*
H11	0.9484 (19)	0.480 (2)	0.2726 (19)	0.021 (5)*
H3	0.338 (2)	-0.017 (2)	-0.390 (2)	0.023 (5)*
H10	0.871 (2)	0.462 (3)	-0.004 (2)	0.030 (5)*
H16	0.9390 (19)	0.268 (2)	0.4059 (19)	0.021 (5)*
H24	0.348 (2)	0.034 (3)	0.343 (2)	0.032 (6)*
H19	0.768 (2)	0.240 (2)	0.735 (2)	0.028 (5)*
H27	0.475 (2)	0.451 (2)	0.1141 (19)	0.025 (5)*
H4	0.487 (2)	0.202 (2)	-0.345 (2)	0.028 (5)*
H15	0.698 (2)	0.092 (2)	-0.0382 (19)	0.021 (5)*
H18	0.921 (2)	0.153 (2)	0.682 (2)	0.029 (5)*
H13	1.050 (2)	0.147 (2)	0.1566 (19)	0.027 (5)*
H12	1.095 (2)	0.388 (2)	0.295 (2)	0.025 (5)*
H22	0.234 (2)	0.355 (2)	0.496 (2)	0.028 (5)*
H25	0.461 (2)	0.133 (3)	0.238 (2)	0.034 (6)*
H7	0.787 (2)	0.853 (3)	0.255 (2)	0.042 (6)*
H20	0.693 (2)	0.338 (2)	0.621 (2)	0.031 (5)*
H17	1.009 (2)	0.167 (2)	0.513 (2)	0.032 (6)*
H8	0.924 (2)	0.870 (3)	0.125 (2)	0.032 (6)*
H9	0.966 (2)	0.670 (3)	0.001 (2)	0.033 (6)*
H26	0.339(2)	0 390 (2)	0.1535(18)	0.022(5)*
1120	0.557 (2)	0.570 (2)	0.1000 (10)	0.022 (0)

supporting information

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U ²³
P1	0.0118 (2)	0.0110 (3)	0.0152 (2)	0.00594 (17)	0.00547 (16)	0.00793 (17)
C1	0.0143 (7)	0.0151 (9)	0.0155 (7)	0.0084 (6)	0.0046 (6)	0.0077 (6)
C2	0.0179 (7)	0.0137 (9)	0.0211 (8)	0.0078 (6)	0.0067 (6)	0.0106 (6)
C3	0.0175 (7)	0.0137 (9)	0.0246 (8)	0.0072 (7)	0.0055 (6)	0.0092 (7)
C4	0.0178 (8)	0.0172 (9)	0.0186 (8)	0.0085 (7)	0.0038 (6)	0.0054 (7)
C5	0.0194 (8)	0.0279 (11)	0.0186 (8)	0.0114 (7)	0.0076 (6)	0.0136 (7)
C6	0.0149 (7)	0.0145 (9)	0.0229 (8)	0.0053 (7)	0.0066 (6)	0.0115 (7)
C7	0.0128 (7)	0.0152 (9)	0.0180 (7)	0.0061 (6)	0.0030 (6)	0.0101 (6)
C8	0.0160 (7)	0.0181 (10)	0.0266 (8)	0.0090 (7)	0.0082 (7)	0.0131 (7)
C9	0.0214 (8)	0.0144 (10)	0.0413 (10)	0.0104 (7)	0.0079 (7)	0.0161 (8)
C10	0.0196 (8)	0.0217 (11)	0.0393 (10)	0.0057 (7)	0.0050 (7)	0.0248 (8)
C11	0.0189 (8)	0.0272 (11)	0.0235 (8)	0.0068 (7)	0.0059 (7)	0.0173 (7)
C12	0.0159 (7)	0.0156 (9)	0.0182 (7)	0.0049 (6)	0.0052 (6)	0.0105 (6)
C13	0.0157 (7)	0.0175 (9)	0.0184 (7)	0.0108 (7)	0.0101 (6)	0.0125 (6)
C14	0.0171 (7)	0.0167 (9)	0.0202 (7)	0.0086 (7)	0.0095 (6)	0.0113 (7)
C15	0.0170 (8)	0.0278 (10)	0.0238 (8)	0.0128 (7)	0.0096 (7)	0.0175 (7)
C16	0.0237 (8)	0.0287 (11)	0.0337 (9)	0.0196 (8)	0.0181 (7)	0.0231 (8)
C17	0.0291 (9)	0.0138 (10)	0.0349 (9)	0.0138 (7)	0.0185 (7)	0.0153 (7)
C18	0.0179 (8)	0.0154 (9)	0.0238 (8)	0.0075 (7)	0.0086 (7)	0.0089 (7)
C19	0.0144 (7)	0.0145 (9)	0.0164 (7)	0.0076 (6)	0.0072 (6)	0.0100 (6)
C20	0.0139 (7)	0.0100 (8)	0.0165 (7)	0.0055 (6)	0.0075 (6)	0.0064 (6)
C21	0.0157 (7)	0.0170 (9)	0.0169 (7)	0.0083 (6)	0.0076 (6)	0.0092 (6)
C22	0.0144 (7)	0.0110 (8)	0.0164 (7)	0.0031 (6)	0.0014 (6)	0.0061 (6)
C23	0.0180 (8)	0.0241 (10)	0.0217 (8)	0.0095 (7)	0.0077 (6)	0.0140 (7)
C24	0.0187 (8)	0.0281 (11)	0.0282 (9)	0.0135 (8)	0.0066 (7)	0.0162 (7)
C25	0.0245 (8)	0.0242 (11)	0.0233 (8)	0.0100 (8)	0.0018 (7)	0.0152 (7)
C26	0.0253 (8)	0.0200 (10)	0.0176 (8)	0.0069 (7)	0.0070 (6)	0.0110 (7)
C27	0.0186 (7)	0.0171 (9)	0.0195 (7)	0.0082 (7)	0.0078 (6)	0.0087 (6)
C28	0.0147 (7)	0.0127 (8)	0.0172 (7)	0.0077 (6)	0.0062 (6)	0.0074 (6)
C29	0.0180 (8)	0.0257 (10)	0.0266 (8)	0.0133 (7)	0.0099 (6)	0.0165 (7)
C30	0.0108 (7)	0.0135 (8)	0.0167 (7)	0.0054 (6)	0.0034 (6)	0.0063 (6)
C31	0.0157 (7)	0.0153 (9)	0.0205 (7)	0.0088 (7)	0.0061 (6)	0.0086 (6)
C32	0.0185 (8)	0.0191 (9)	0.0244 (8)	0.0095 (7)	0.0109 (7)	0.0107 (7)
C33	0.0237 (8)	0.0243 (10)	0.0286 (9)	0.0098 (7)	0.0144 (7)	0.0171 (7)
C34	0.0268 (9)	0.0169 (10)	0.0340 (9)	0.0115 (8)	0.0148 (7)	0.0161 (8)
C35	0.0193 (8)	0.0151 (9)	0.0224 (8)	0.0092 (7)	0.0091 (6)	0.0086 (6)

Geometric parameters (Å, °)

P1—C19	1.7294 (15)	C17—C18	1.390 (2)	
P1-C13	1.8104 (15)	C17—H14	0.95 (3)	
P1—C7	1.8132 (18)	C18—H15	0.95 (2)	
P1C1	1.8178 (19)	C19—C20	1.403 (2)	
C1—C6	1.394 (2)	C19—C28	1.4693 (19)	
C1—C2	1.401 (2)	C20—C21	1.206 (2)	

supporting information

С2—С3	1.389 (2)	C21—C22	1.427 (2)
C2—H1	0.99 (2)	C22—C23	1.403 (2)
C3—C4	1.388 (2)	C22—C27	1.405 (2)
С3—Н2	0.92 (2)	C23—C24	1.382 (2)
C4—C5	1.392 (3)	C23—H16	0.96 (2)
С4—Н3	0.95 (2)	C24—C25	1.385 (3)
C5—C6	1.394 (3)	C24—H17	0.98 (2)
С5—Н4	0.96 (2)	C25—C26	1.384 (2)
С6—Н5	0.94(2)	C25—H18	0.95(2)
C7—C8	1.393(2)	C^{26}	1 383 (2)
C7-C12	1.393(2) 1 402(2)	C26—H19	0.96(2)
C^{8}	1.402(2) 1 387(3)	C27—H20	0.96(2)
C8 H6	0.94(2)	C_{28} C_{29}	1343(2)
$C_0 = C_{10}$	1.380(3)	C_{28} C_{29}	1.545(2) 1.500(2)
C) H7	1.369(3)	C20 H27	1.300(2)
C_{9} $- \Pi /$	0.98(2)	C29—H27 C20 H26	1.00(2)
	1.388(3)	C_{29} $-H_{20}$	0.90(2)
C10—H8	0.97(3)	C_{30}	1.394 (2)
CII—CI2	1.381 (3)	C_{30} $-C_{31}$	1.398 (2)
CII—H9	0.92 (2)	C_{31}	1.392 (2)
C12—H10	0.97 (2)	C31—H21	0.96 (2)
C13—C18	1.393 (2)	C32—C33	1.382 (3)
C13—C14	1.407 (2)	C32—H22	0.99 (2)
C14—C15	1.388 (2)	C33—C34	1.391 (2)
C14—H11	0.95 (2)	C33—H23	1.02 (2)
C15—C16	1.390 (3)	C34—C35	1.390 (2)
C15—H12	0.93 (2)	C34—H24	0.92 (2)
C16—C17	1.388 (3)	C35—H25	0.96 (2)
C16—H13	1.00 (2)		
C19—P1—C13	108.20 (7)	C16—C17—C18	120.08 (17)
C19—P1—C7	117.53 (8)	C16—C17—H14	123.3 (15)
C13—P1—C7	105.18 (7)	C18—C17—H14	116.6 (15)
C19—P1—C1	111.39 (7)	C17—C18—C13	119.88 (16)
C13—P1—C1	107.73 (7)	C17—C18—H15	118.6 (12)
C7—P1—C1	106.29 (8)	C13—C18—H15	121.5 (12)
C6—C1—C2	119.66 (15)	C20—C19—C28	121.62 (13)
C6—C1—P1	121.88 (13)	C20—C19—P1	115.92 (10)
C2—C1—P1	118.32 (12)	C28—C19—P1	122.42 (11)
C3—C2—C1	120.33 (15)	C21—C20—C19	179.42 (18)
C3—C2—H1	119.9 (12)	C20—C21—C22	164.32 (18)
C1-C2-H1	119.8(12)	C^{23} C^{22} C^{27}	118 19 (15)
C4 - C3 - C2	119.0(12) 119.99(17)	$C_{23} = C_{22} = C_{21}$	120 51 (14)
C4—C3—H2	122 2 (12)	C27 - C22 - C21	120.31 (14)
C2—C3—H2	117 8 (12)	C_{24} C_{23} C_{21}	121.17 (14)
C_{3} C_{4} C_{5}	110 77 (16)	C_{24} C_{23} H_{16}	120.33(13) 110 A (12)
С3_С4_ Н3	119.77(10) 120.6(12)	$C_{24} = C_{23} = 1110$	117.4(12) 120.1(12)
$C_{5} = C_{4} = 115$	120.0(13) 110.6(12)	$C_{22} = C_{23} = 1110$	120.1(12) 120.65(15)
$C_4 = C_5 = C_4$	119.0(13)	$C_{23} = C_{24} = C_{23}$	120.03(13)
U4-U3-U0	120.00(10)	U23-U24-HI/	11/.8(13)

C4—C5—H4	120.6 (13)	C25—C24—H17	121.4 (13)
C6—C5—H4	118.8 (13)	C26—C25—C24	119.34 (16)
C1—C6—C5	119.49 (16)	С26—С25—Н18	118.5 (12)
C1—C6—H5	120.1 (11)	C24—C25—H18	122.1 (12)
С5—С6—Н5	120.4 (11)	C27—C26—C25	120.76 (15)
C8—C7—C12	119.35 (16)	С27—С26—Н19	120.4 (13)
C8—C7—P1	120.06 (12)	С25—С26—Н19	118.8 (13)
C12—C7—P1	120.55 (13)	C26—C27—C22	120.41 (15)
C9—C8—C7	119.84 (15)	С26—С27—Н20	121.1 (13)
С9—С8—Н6	120.2 (13)	С22—С27—Н20	118.5 (13)
С7—С8—Н6	119.9 (13)	C29—C28—C19	125.09 (15)
C8—C9—C10	120.66 (16)	C29—C28—C30	118.87 (14)
С8—С9—Н7	119.9 (15)	C19—C28—C30	115.91 (13)
С10—С9—Н7	119.4 (15)	С28—С29—Н27	120.4 (11)
C11—C10—C9	119.51 (18)	C28—C29—H26	118.9 (12)
С11—С10—Н8	119.9 (13)	H27—C29—H26	120.5 (16)
С9—С10—Н8	120.5 (12)	C35—C30—C31	118.12 (15)
C12—C11—C10	120.36 (16)	C35—C30—C28	120.97 (13)
С12—С11—Н9	116.2 (15)	C31—C30—C28	120.91 (15)
С10—С11—Н9	123.4 (15)	C32—C31—C30	120.45 (16)
C11—C12—C7	120.22 (16)	C32—C31—H21	116.8 (12)
C11—C12—H10	120.6 (14)	C30—C31—H21	122.6 (12)
С7—С12—Н10	119.1 (14)	C33—C32—C31	120.64 (15)
C18—C13—C14	120.01 (15)	С33—С32—Н22	120.8 (13)
C18—C13—P1	120.91 (12)	C31—C32—H22	118.5 (13)
C14—C13—P1	118.87 (12)	C32—C33—C34	119.68 (16)
C15—C14—C13	119.37 (16)	С32—С33—Н23	122.9 (12)
C15—C14—H11	119.8 (12)	С34—С33—Н23	117.5 (12)
C13—C14—H11	120.7 (12)	C35—C34—C33	119.51 (18)
C14—C15—C16	120.36 (16)	С35—С34—Н24	118.0 (13)
C14—C15—H12	117.8 (13)	C33—C34—H24	122.4 (14)
C16—C15—H12	121.8 (13)	C34—C35—C30	121.56 (15)
C17—C16—C15	120.25 (15)	C34—C35—H25	119.7 (14)
C17—C16—H13	120.0 (12)	C30—C35—H25	118.7 (14)
C15—C16—H13	119.8 (13)		