Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

cis-Dichlorido(3-chloro-2-methyliminophenyl- $\kappa^2 C^1$,*N*)-*trans*-bis(trimethylphosphine- κP)cobalt(III)

Yue Chen, Jin Zhou and Xiaoyan Li*

Department of Chemistry, Shandong University, Shanda Nanlu 27, Jinan 250100, People's Republic of China Correspondence e-mail: xli63@sdu.edu.cn

Received 22 November 2007; accepted 23 November 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.002 Å; R factor = 0.025; wR factor = 0.066; data-to-parameter ratio = 25.8.

In the title compound, $[CoCl_2(C_8H_7CIN)(C_3H_9P)_2]$, the Co atom displays an octahedral coordination, with two *cis* Cl atoms perpendicular to two *trans* trimethylphosphine ligands as well as *trans* to the bidentate 3-chloro-2-methyliminophenyl ligand.

Related literature

For reactions of chlorinated phenyl Schiff bases with $[CoCl(PMe_3)_3]$, see: Chen *et al.* (2007).

Experimental

Crystal data

 $\begin{bmatrix} \text{CoCl}_2(\text{C}_8\text{H}_7\text{CIN})(\text{C}_3\text{H}_9\text{P})_2 \end{bmatrix}$ $M_r = 434.57$ Orthorhombic, $P2_12_12_1$ a = 8.5530 (17) Å b = 10.543 (2) Å c = 21.769 (4) Å

Data collection

Bruker SMART diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{min} = 0.672, T_{max} = 0.689$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.025$ $wR(F^2) = 0.066$ S = 1.074910 reflections 190 parameters H-atom parameters constrained $V = 1963.0 (7) \text{ Å}^{3}$ Z = 4 Mo K\alpha radiation \(\mu = 1.44 \text{ mm}^{-1}\) T = 298 (2) K 0.30 \times 0.30 \times 0.28 \text{ mm}\)

16045 measured reflections 4910 independent reflections 4868 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.038$

 $\begin{array}{l} \Delta \rho_{max} = 0.47 \mbox{ e } \mathring{A}^{-3} \\ \Delta \rho_{min} = -0.43 \mbox{ e } \mathring{A}^{-3} \\ \mbox{ Absolute structure: Flack (1983),} \\ \mbox{ with } 2082 \mbox{ Friedel pairs} \\ \mbox{ Flack parameter: } -0.001 \mbox{ (9)} \end{array}$

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Sheldrick, 2001); software used to prepare material for publication: *SHELXTL*.

We gratefully acknowledge support by the NSF China (No. 20572062) and the Doctoral Program of the Ministry of Education of China (MOE) (Nos. 20050422010 and 20050422011).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LN2014).

References

- Bruker (1997). *SMART* (Version 5.6) and *SAINT* (Version 5.06A). Bruker AXS Inc., Madison, Wisconsin, USA.
- Chen, Y., Sun, H. & Li, X. (2007). Organometallics. In the press.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (2001). *SHELXTL*. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.

supporting information

Acta Cryst. (2008). E64, m210 [https://doi.org/10.1107/S1600536807062654]

cis-Dichlorido(3-chloro-2-methyliminophenyl- $\kappa^2 C^1$,*N*)-*trans*-bis(trimethyl-phosphine- κP)cobalt(III)

Yue Chen, Jin Zhou and Xiaoyan Li

S1. Comment

Reaction of chlorinated phenyl Schiff bases with [CoCl(PMe3)3] has been reported recently (Chen *et al.*, 2007). *N*-(2,6-Dichlorobenzylidene)methanamine reacts with [CoCl(PMe3)3] by a cyclometallation reaction involving C—Cl bond activation at cobalt(I) centers and with imine as pre-chelate ligands to afford the hexacoordinate title cobalt(III) complex as a red solid that is soluble in pentane or diethyl ether.

A view of the molecular structure is given in Fig. 1. The cobalt atom displays an octahedral coordination with two *cis*chlorine atoms (Cl1 and Cl2) perpendicular to two *trans* trimethylphosphine ligands as well as *trans* to the bidentate 3chloro-2-methyliminophenyl ligand. The P1—Co—P2 angle of 172.71 (2)° implies a slight distortion from an ideal octahedron. The sum of the internal angles (540°) indicates planarity of the chelate ring. The C?N bond length C7—N1 [1.288 (2) Å] is relatively long, indicating significant bond weakening upon coordination of the nitrogen donor atom. The longer Co1—Cl5 bond [2.3471 (6) Å], when compared with Co1—Cl1 [2.2742 (5) Å], reflects the stronger *trans*influence of the carbon atom (C1) than that of the nitrogen atom (N1).

S2. Experimental

Standard vacuum techniques were used in the manipulations of volatile and air-sensitive materials. Chlorotris(trimethyl-phosphane)cobalt(I) (1.11 g, 3.44 mmol) was dissolved in 40 ml of tetrahydrofuran (THF). To this solution was added *N*-(2,6-dichlorobenzylidene)methanamine (0.63 g, 3.43 mmol) in 20 ml of THF at 193 K. The mixture was allowed to warm to 293 K and stirred for 18 h to form a red-brown turbid mixture. The filtrate was evaporated *in vacuo*, and the residue was extracted with pentane (60 ml)and diethyl ether (60 ml), respectively. Crystallization in diethyl ether at 246 K afforded the title complex as red crystals in 57% yield.

S3. Refinement

The H atoms were introduced at calculated positions as riding atoms, with C—H bond lengths of 0.93 (CH) or 0.96 Å (CH₃) and with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(C)$, respectively.

Figure 1

The molecular structure of the title complex, shown with 30% probability displacement ellipsoids.

Figure 2 The formation of the title compound.

cis-Dichlorido(3-chloro-2-methyliminophenyl- $\kappa^2 C^1$,*N*)-*trans*- bis(trimethylphosphine- κP)cobalt(III)

V = 1963.0 (7) Å ³
Z = 4
F(000) = 896
$D_{\rm x} = 1.470 {\rm ~Mg~m^{-3}}$
Mo K α radiation, $\lambda = 0.71073$ Å
Cell parameters from 3063 reflections

 $\theta = 3.1 - 20.4^{\circ}$ $\mu = 1.44 \text{ mm}^{-1}$ T = 298 K

Data collection

Bruker P4 diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.672, T_{\max} = 0.689$ 16045 measured reflections

Refinement

Refinement on F^2 Hydrogen site location: inferred from Least-squares matrix: full neighbouring sites $R[F^2 > 2\sigma(F^2)] = 0.025$ H-atom parameters constrained $wR(F^2) = 0.066$ $w = 1/[\sigma^2(F_0^2) + (0.0416P)^2 + 0.7929P]$ *S* = 1.07 where $P = (F_0^2 + 2F_c^2)/3$ 4910 reflections $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 0.47 \text{ e } \text{\AA}^{-3}$ 190 parameters 0 restraints $\Delta \rho_{\rm min} = -0.43 \ {\rm e} \ {\rm \AA}^{-3}$ Primary atom site location: structure-invariant Absolute structure: Flack (1983), 2082 Friedel direct methods pairs Secondary atom site location: difference Fourier Absolute structure parameter: -0.001 (9) map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R* fractors *R* are based on *F* with *F* sat to zero for parentius F^2 . The threshold current of $F^2 > \sigma(F^2)$ is used

Block, red

 $R_{\rm int} = 0.038$

 $h = -11 \longrightarrow 9$ $k = -14 \longrightarrow 14$

 $l = -29 \rightarrow 26$

 $0.30 \times 0.30 \times 0.28 \text{ mm}$

 $\theta_{\text{max}} = 28.5^{\circ}, \ \theta_{\text{min}} = 1.9^{\circ}$

intensity decay: 0.02%

4910 independent reflections

4868 reflections with $I > 2\sigma(I)$

2699 standard reflections every 5 reflections

conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N1	0.03793 (18)	0.45205 (14)	0.18750 (6)	0.0120 (3)	
Co1	0.21282 (3)	0.51827 (2)	0.141359 (10)	0.00967 (6)	
Cl1	0.41880 (5)	0.58705 (4)	0.08431 (2)	0.01627 (9)	
Cl2	0.23616 (5)	0.69589 (4)	0.205711 (19)	0.01659 (9)	
C13	-0.14169 (5)	0.09058 (4)	0.112040 (19)	0.01852 (9)	
P1	0.06006 (6)	0.62472 (4)	0.07525 (2)	0.01346 (9)	
P2	0.38816 (5)	0.41085 (4)	0.19781 (2)	0.01276 (9)	
C1	0.1815 (2)	0.36764 (16)	0.09372 (8)	0.0121 (3)	
C2	0.2656 (2)	0.32345 (17)	0.04297 (8)	0.0159 (3)	
H2A	0.3464	0.3721	0.0268	0.019*	
C3	0.2291 (2)	0.20742 (17)	0.01664 (8)	0.0170 (3)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

НЗА	0.2881	0.1787	-0.0164	0.020*
C4	0.1063 (2)	0.13253 (16)	0.03839 (8)	0.0161 (3)
H4A	0.0832	0.0549	0.0202	0.019*
C5	0.0203 (2)	0.17679 (16)	0.08749 (8)	0.0136 (3)
C6	0.0574 (2)	0.29240 (15)	0.11584 (8)	0.0122 (3)
C7	-0.0181 (2)	0.34538 (16)	0.16892 (8)	0.0129 (3)
H7A	-0.1015	0.3055	0.1884	0.015*
C8	-0.0316 (2)	0.50993 (18)	0.24222 (8)	0.0174 (3)
H8A	-0.1168	0.4584	0.2564	0.026*
H8B	-0.0696	0.5931	0.2322	0.026*
H8C	0.0460	0.5163	0.2739	0.026*
С9	0.0955 (3)	0.79342 (18)	0.07302 (10)	0.0258 (4)
H9A	0.0261	0.8322	0.0439	0.039*
H9B	0.2018	0.8089	0.0610	0.039*
H9C	0.0774	0.8290	0.1130	0.039*
C10	0.0760 (3)	0.5799 (2)	-0.00478 (8)	0.0227 (4)
H10A	0.0061	0.6308	-0.0289	0.034*
H10B	0.0489	0.4920	-0.0093	0.034*
H10C	0.1814	0.5930	-0.0185	0.034*
C11	-0.1493 (2)	0.6155 (2)	0.08898 (10)	0.0258 (4)
H11A	-0.2035	0.6640	0.0583	0.039*
H11B	-0.1726	0.6492	0.1289	0.039*
H11C	-0.1824	0.5286	0.0869	0.039*
C12	0.3113 (3)	0.3308 (2)	0.26513 (9)	0.0243 (4)
H12A	0.3947	0.2879	0.2861	0.036*
H12B	0.2337	0.2702	0.2528	0.036*
H12C	0.2648	0.3920	0.2922	0.036*
C13	0.5434 (3)	0.5051 (2)	0.23006 (12)	0.0293 (5)
H13A	0.6122	0.4516	0.2533	0.044*
H13B	0.4998	0.5688	0.2565	0.044*
H13C	0.6009	0.5452	0.1976	0.044*
C14	0.4966 (3)	0.2879 (2)	0.15854 (10)	0.0260 (4)
H14A	0.5677	0.2484	0.1868	0.039*
H14B	0.5543	0.3246	0.1252	0.039*
H14C	0.4252	0.2256	0.1428	0.039*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0100 (6)	0.0149 (6)	0.0111 (6)	0.0009 (5)	0.0003 (5)	0.0007 (5)
Col	0.00910 (11)	0.00863 (10)	0.01127 (10)	-0.00028 (8)	0.00087 (8)	-0.00067 (7)
Cl1	0.01429 (18)	0.01469 (17)	0.01983 (19)	-0.00287 (15)	0.00548 (15)	0.00055 (15)
Cl2	0.0190 (2)	0.01338 (18)	0.01734 (19)	-0.00129 (15)	-0.00002 (15)	-0.00514 (14)
Cl3	0.0213 (2)	0.01699 (19)	0.01728 (18)	-0.00885 (16)	-0.00267 (16)	0.00191 (15)
P1	0.0146 (2)	0.01225 (19)	0.0135 (2)	0.00196 (15)	-0.00023 (16)	0.00098 (14)
P2	0.0109 (2)	0.01100 (18)	0.0164 (2)	-0.00005 (15)	-0.00138 (15)	0.00015 (16)
C1	0.0133 (8)	0.0113 (7)	0.0116 (7)	0.0004 (6)	-0.0009 (6)	0.0013 (5)
C2	0.0153 (8)	0.0150 (7)	0.0173 (8)	-0.0011 (6)	0.0024 (6)	-0.0009 (6)

supporting information

C3	0.0200 (9)	0.0144 (7)	0.0166 (8)	0.0021 (7)	0.0016 (7)	-0.0038 (6)	
C4	0.0204 (9)	0.0113 (7)	0.0166 (8)	0.0007 (6)	-0.0037 (7)	-0.0025 (6)	
C5	0.0144 (8)	0.0116 (7)	0.0147 (7)	-0.0035 (6)	-0.0026 (6)	0.0020 (6)	
C6	0.0129 (8)	0.0123 (7)	0.0113 (7)	0.0006 (6)	-0.0019 (6)	0.0015 (6)	
C7	0.0115 (7)	0.0157 (7)	0.0116 (7)	-0.0008 (6)	-0.0010 (6)	0.0013 (6)	
C8	0.0164 (8)	0.0204 (8)	0.0153 (8)	-0.0002 (7)	0.0047 (6)	-0.0039 (6)	
C9	0.0352 (12)	0.0126 (8)	0.0296 (10)	0.0023 (8)	-0.0070 (9)	0.0045 (7)	
C10	0.0277 (10)	0.0263 (9)	0.0141 (8)	0.0070 (8)	-0.0023 (7)	-0.0008 (7)	
C11	0.0154 (9)	0.0350 (11)	0.0271 (10)	0.0054 (8)	-0.0009 (8)	0.0060 (8)	
C12	0.0231 (10)	0.0274 (9)	0.0224 (9)	0.0053 (8)	0.0013 (7)	0.0113 (7)	
C13	0.0226 (10)	0.0209 (9)	0.0444 (12)	-0.0048 (8)	-0.0165 (9)	0.0012 (8)	
C14	0.0260 (10)	0.0282 (10)	0.0239 (9)	0.0162 (8)	-0.0008 (8)	-0.0016 (7)	

Geometric parameters (Å, °)

N1—C7	1.288 (2)	C6—C7	1.437 (2)
N1—C8	1.465 (2)	С7—Н7А	0.9300
N1—Co1	1.9323 (15)	C8—H8A	0.9600
Co1—C1	1.9155 (17)	C8—H8B	0.9600
Co1—P1	2.2444 (6)	C8—H8C	0.9600
Co1—P2	2.2455 (5)	С9—Н9А	0.9600
Co1—Cl1	2.2742 (5)	С9—Н9В	0.9600
Co1—Cl2	2.3471 (6)	С9—Н9С	0.9600
Cl3—C5	1.7411 (18)	C10—H10A	0.9600
P1—C9	1.805 (2)	C10—H10B	0.9600
P1-C10	1.8105 (19)	C10—H10C	0.9600
P1-C11	1.818 (2)	C11—H11A	0.9600
P2—C13	1.801 (2)	C11—H11B	0.9600
P2C14	1.808 (2)	C11—H11C	0.9600
P2—C12	1.814 (2)	C12—H12A	0.9600
C1—C2	1.398 (2)	C12—H12B	0.9600
C1—C6	1.410 (2)	C12—H12C	0.9600
С2—С3	1.386 (2)	C13—H13A	0.9600
C2—H2A	0.9300	C13—H13B	0.9600
C3—C4	1.397 (3)	C13—H13C	0.9600
С3—НЗА	0.9300	C14—H14A	0.9600
C4—C5	1.379 (3)	C14—H14B	0.9600
C4—H4A	0.9300	C14—H14C	0.9600
C5—C6	1.403 (2)		
C7—N1—C8	117.90 (15)	C1—C6—C7	113.23 (15)
C7—N1—Co1	116.15 (12)	N1—C7—C6	115.12 (16)
C8—N1—Co1	125.91 (12)	N1—C7—H7A	122.4
C1—Co1—N1	82.74 (7)	С6—С7—Н7А	122.4
C1—Co1—P1	89.20 (5)	N1—C8—H8A	109.5
N1—Co1—P1	93.63 (5)	N1—C8—H8B	109.5
C1—Co1—P2	88.36 (5)	H8A—C8—H8B	109.5
N1—Co1—P2	92.88 (5)	N1—C8—H8C	109.5

P1—Co1—P2	172.71 (2)	H8A—C8—H8C	109.5
C1—Co1—Cl1	94.41 (5)	H8B—C8—H8C	109.5
N1—Co1—Cl1	177.13 (5)	Р1—С9—Н9А	109.5
P1—Co1—Cl1	86.64 (2)	Р1—С9—Н9В	109.5
P2—Co1—Cl1	86.69 (2)	H9A—C9—H9B	109.5
C1—Co1—Cl2	175.19 (5)	Р1—С9—Н9С	109.5
N1—Co1—Cl2	92.52 (5)	H9A—C9—H9C	109.5
P1—Co1—Cl2	91.91 (2)	H9B—C9—H9C	109.5
P2—Co1—Cl2	91.09 (2)	P1C10H10A	109.5
Cl1—Co1—Cl2	90.33 (2)	P1-C10-H10B	109.5
C9—P1—C10	102.64 (10)	H10A—C10—H10B	109.5
C9—P1—C11	102.83 (11)	P1-C10-H10C	109.5
C10—P1—C11	102.61 (10)	H10A—C10—H10C	109.5
C9—P1—Co1	114.36 (7)	H10B-C10-H10C	109.5
C10—P1—Co1	116.27 (7)	P1—C11—H11A	109.5
C11—P1—Co1	116.19 (7)	P1—C11—H11B	109.5
C13—P2—C14	101.64 (11)	H11A—C11—H11B	109.5
C13—P2—C12	102.05 (11)	P1—C11—H11C	109.5
C14—P2—C12	103.56 (11)	H11A—C11—H11C	109.5
C13—P2—Co1	115.30 (7)	H11B—C11—H11C	109.5
C14—P2—Co1	116.43 (7)	P2-C12-H12A	109.5
C12—P2—Co1	115.76 (7)	P2—C12—H12B	109.5
C2—C1—C6	118.00 (15)	H12A—C12—H12B	109.5
C2-C1-Co1	129.22 (13)	P2—C12—H12C	109.5
C6-C1-Co1	112.76 (12)	H12A—C12—H12C	109.5
C3—C2—C1	120.33 (17)	H12B—C12—H12C	109.5
C3—C2—H2A	119.8	P2-C13-H13A	109.5
C1—C2—H2A	119.8	Р2—С13—Н13В	109.5
C2—C3—C4	121.86 (17)	H13A—C13—H13B	109.5
С2—С3—НЗА	119.1	Р2—С13—Н13С	109.5
С4—С3—НЗА	119.1	H13A—C13—H13C	109.5
C5—C4—C3	118.20 (16)	H13B—C13—H13C	109.5
C5—C4—H4A	120.9	P2—C14—H14A	109.5
C3—C4—H4A	120.9	P2—C14—H14B	109.5
C4—C5—C6	120.97 (16)	H14A—C14—H14B	109.5
C4—C5—Cl3	119.07 (13)	P2—C14—H14C	109.5
C6—C5—Cl3	119.90 (14)	H14A—C14—H14C	109.5
C5—C6—C1	120.59 (16)	H14B—C14—H14C	109.5
C5—C6—C7	126.16 (16)		