organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2,3,10,11-Tetramethoxy-6,7,14,15tetrahydro-6,14-methanocycloocta-[1,2-*b*;5,6-*b*']diquinoline

Jason Ashmore, Roger Bishop,* Donald C. Craig and Marcia L. Scudder

School of Chemistry, University of New South Wales, Sydney, Australia 2052 Correspondence e-mail: r.bishop@unsw.edu.au

Received 18 November 2007; accepted 20 November 2007

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.006 Å; R factor = 0.050; wR factor = 0.053; data-to-parameter ratio = 5.4.

The racemic title compound, $C_{27}H_{26}N_2O_4$, crystallizes with its central carbon bridge on a twofold axis. It forms parallel chains of molecules utilizing aryl offset face-face interactions with an interplanar distance of about 3.5 Å. These chains associate further by means of pairs of $O-CH_2-H\cdots\pi$ (with H-ring distances ranging from 2.69 to 2.95 Å) and $O-CH_2-H\cdots\pi$ (with H-ring distances ranging from 2.69 to 2.95 Å) and $O-CH_2-H\cdots$ are coplanar with the aromatic rings to which they are attached. This is recognized as being common behaviour amongst aromatic methoxy compounds.

Related literature

Condensation of two equivalents of a 2-aminobenzaldehyde derivative with one of bicyclo[3.3.1]nonane-2,6-dione provides a V-shaped diquinoline adduct by means of the Friedländer condensation (Cheng & Yan, 1982). Substituted molecules of this general structural type frequently act as lattice inclusion hosts (Bishop, 2006). For related literature, see: Allen (2002); Desiraju & Gavezzotti (1989); Marjo *et al.* (1997); Pendrak *et al.* (1995); Schaefer & Honig (1968).

Experimental

Crystal data

$C_{27}H_{26}N_2O_4$	$a = 14.137 (7) \text{\AA}$
$M_r = 442.5$	b = 9.533 (6) Å
Monoclinic, C2/c	c = 16.551 (7) Å

 $\beta = 100.79 (3)^{\circ}$ $V = 2191 (2) \text{ Å}^3$ Z = 4Mo $K\alpha$ radiation

Data collection

Enraf–Nonius CAD-4 diffractometer Absorption correction: none 1999 measured reflections 1926 independent reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.050$ $wR(F^2) = 0.053$ S = 1.41803 reflections $\mu = 0.09 \text{ mm}^{-1}$ T = 294 K0.12 mm (radius)

n	
CAD-4 er rection: none reflections ent reflections	803 reflections with $I > 2\sigma(I)$ $R_{int} = 0.062$ 1 standard reflection frequency: 30 min intensity decay: none
= 0.050	150 parameters H-atom parameters not refined $\Delta \rho_{\text{max}} = 0.56 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\text{min}} = -0.48 \text{ e} \text{ Å}^{-3}$

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} C14-H3C14\cdots N1^{i}\\ C14-H3C14\cdots N1^{ii} \end{array}$	1.00 1.00	2.88 2.96	3.723 (5) 3.348 (5)	142 104
Symmetry codes: (i) $-x$ -	$+\frac{1}{2}, -v + \frac{1}{2}, -z$	$x + 1$; (ii) $x - \frac{1}{2}$,	$v = \frac{1}{2}, z.$	

Data collection: *CAD-4 Software* (Schagen *et al.*, 1989); cell refinement: *CAD-4 Software*; data reduction: Local program; program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1994); program(s) used to refine structure: *RAELS* (Rae, 2000); molecular graphics: *ORTEPII* (Johnson, 1976) and *CrystalMaker* (Crystal-Maker, 2005); software used to prepare material for publication: Local programs.

This research was supported by the UNSW Faculty Research Grants Program.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LN2008).

References

- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Bishop, R. (2006). Crystal Engineering of Halogenated Heteroaromatic Clathrate Systems. In Frontiers in Crystal Engineering, ch. 5, pp. 91–116, edited by E. R. T. Tiekink & J. J. Vittal. Chichester: Wiley.
- Cheng, C.-C. & Yan, S.-J. (1982). Org. React. 28, 37-201.
- CrystalMaker (2005). CrystalMaker. CrystalMaker Software, Bicester, Oxfordshire, England. http://www.crystalmaker.co.uk.
- Desiraju, G. R. & Gavezzotti, A. (1989). Acta Cryst. B45, 473-482.
- Johnson, C. K. (1976). ORTEPII, Oak Ridge National Laboratory, Tennessee, USA.
- Marjo, C. E., Scudder, M. L., Craig, D. C. & Bishop, R. (1997). J. Chem. Soc. Perkin Trans. 2, pp. 2099–2104.
- Pendrak, I., Wittrock, R. & Kingsbury, W. D. (1995). J. Org. Chem. 60, 2912– 2915.
- Rae, A. D. (2000). RAELS. Australian National University, Canberra.
- Schaefer, J. P. & Honig, L. M. (1968). J. Org. Chem. 33, 2655-2659.
- Schagen, J. D., Straver, L., van Meurs, F. & Williams, G. (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.

supporting information

Acta Cryst. (2008). E64, o48 [https://doi.org/10.1107/S1600536807061235]

2,3,10,11-Tetramethoxy-6,7,14,15-tetrahydro-6,14-methanocycloocta[1,2*b*;5,6-*b*']diquinoline

Jason Ashmore, Roger Bishop, Donald C. Craig and Marcia L. Scudder

S1. Comment

The asymmetric unit of the title compound, (1), contains half a molecule, with the central bridging carbon atom located on a twofold axis (Fig. 1).

Molecules of (1) form parallel chains along the *ac* diagonal (Fig. 2), associating by means of *exo*, *exo*-facial aryl offset face-face (OFF) interactions (Desiraju & Gavezzotti, 1989). The distance between the aromatic planes is about 3.5 Å. Complementary to the π ··· π interaction are a pair of associations between a methoxy group and a quinoline N atom (O—CH₂—H···N; d = 2.88 Å), and a pair between an aliphatic methylene and a methoxy group (C—H···O—CH₃, d = 2.84 Å). Adjacent chains interact in two ways: by means of a double centrosymmetric O—CH₂—H··· π interaction (utilizing the 3-methoxy group, with shortest C···C contacts of 3.57 and 3.82 Å) and an O—CH₂—H···N interaction (utilizing the 10-methoxy group with C···N of 3.35 Å).

It is noteworthy that the methoxy groups in this structure are co-planar with the aromatic rings to which they are attached. The Cambridge Structural Database (Allen *et al.*, 2002) reveals that this situation is commonplace amongst related compounds. The steric effects resulting from this co-planarity would be sufficient cause for the absence of centrosymmetric dimers utilizing the edge-edge aryl C—H…N supramolecular synthon which are found in the parent the non-methoxy diquinoline adduct (Marjo *et al.*, 1997).

S2. Experimental

2-Amino-4,5-dimethoxybenzaldehyde (Pendrak *et al.*, 1995) (1.20 g, 6.62 mmol) and bicyclo[3.3.1]nonane-2,6-dione (Schaefer & Honig, 1968) (0.38 g, 2.50 mol) were dissolved in hot ethanol (20 ml) and a solution of sodium hydroxide (0.49 g, 12.25 mmol) in ethanol (10 ml) was added. The mixture was refluxed for 5 h, allowed to cool, then kept at 273 K for 5 h. Filtration gave the product 1 (0.51 g, 46%) of m.p. 548–549 K. ¹³C NMR (75.5 MHz, CDCl₃) δ : 29.5 (CH₂), 36.6 (CH), 38.2 (CH₂), 56.2 (CH₃), 56.4 (CH₃), 104.6 (CH), 107.4 (CH), 123.3 (C), 126.8 (C), 134.7 (CH), 144.3 (C), 149.7 (C), 152.3 (C), 159.2 (C); ¹H NMR (300 MHz, CDCl₃) δ : 2.49 (br s, 2H), 3.25 & 3.32 (d, 2H, *J_{AB}* 16.6 Hz), 3.42 & 3.49 (dd, 2H, *J_{AB}* 16.6, *J_{BX}* 5.3 Hz), 3.70 (d, 2H, *J* 2.6 Hz), 3.91 (s, 6H), 3.99 (s, 6H), 6.79 (s, 2H), 7.32 (s, 2H), 7.50 (s, 2H). X-ray quality crystals were obtained from ethyl acetate solution.

S3. Refinement

All hydrogen atoms were placed geometrically with C—H = 1.0 Å and $U_{iso}(H) = U_{eq}(C)$.

Figure 1

Molecular structure of (1), with ellipsoids drawn at 30% probability level. Symmetry code: (i) 1 - x, y, 3/2 - z.

Figure 2

The chain of molecules of (1) with centrosymmetric OFF interactions between *exo*-surfaces of the aromatic wings. Adjacent molecules are of the opposite chirality.

Figure 3

The chain (top) interacts with adjacent chains in two ways: a double $CH_3 \cdots \pi$ interaction (pair of arrows at the bottom of the figure) and a $CH_3 \cdots N$ interaction (at the left of the figure).

2,3,10,11-Tetramethoxy-6,7,14,15-tetrahydro-6,14- methanocycloocta[1,2 - b;5,6-b]diquinoline

F(000) = 936.0

 $\theta = 10 - 11^{\circ}$

T = 294 K

 $\theta_{\text{max}} = 25^{\circ}$ $h = -16 \rightarrow 16$

 $k = 0 \rightarrow 11$

 $l = 0 \rightarrow 19$

 $\mu = 0.09 \text{ mm}^{-1}$

Irregular, colourless

intensity decay: none

0.12 mm (radius)

 $D_{\rm x} = 1.34 {\rm Mg} {\rm m}^{-3}$

Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å Cell parameters from 11 reflections

1 standard reflections every 30 min

Crystal data

 $\begin{array}{l} C_{27}H_{26}N_{2}O_{4}\\ M_{r}=442.5\\ \text{Monoclinic, } C2/c\\ a=14.137\ (7)\ \text{\AA}\\ b=9.533\ (6)\ \text{\AA}\\ c=16.551\ (7)\ \text{\AA}\\ \beta=100.79\ (3)^{\circ}\\ V=2191\ (2)\ \text{\AA}^{3}\\ Z=4 \end{array}$

Data collection

Enraf–Nonius CAD-4 diffractometer ω –2 θ scans 1999 measured reflections 1926 independent reflections 803 reflections with $I > 2\sigma(I)$ $R_{int} = 0.062$

Refinement

Refinement on F	0 restraints
$R[F^2 > 2\sigma(F^2)] = 0.050$	H-atom parameters not refined
$wR(F^2) = 0.053$	$w = 1/[\sigma^2(F) + 0.0004F^2]$
S = 1.41	$(\Delta/\sigma)_{max} = 0.001$
803 reflections	$\Delta\rho_{max} = 0.56 \text{ e} \text{ Å}^{-3}$
150 parameters	$\Delta \rho_{\rm min} = -0.48 \text{ e } \text{\AA}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
0.3447 (2)	-0.0160 (3)	0.3564 (2)	0.059(1)	
0.2109 (2)	-0.1040 (3)	0.4273 (2)	0.0559 (9)	
0.4643 (2)	0.2977 (4)	0.5789 (2)	0.047 (1)	
0.5320 (4)	0.4581 (5)	0.6853 (3)	0.055 (1)	
0.4554 (3)	0.3525 (4)	0.6509 (3)	0.043 (1)	
0.3824 (3)	0.3145 (5)	0.6937 (3)	0.045 (1)	
0.3736 (3)	0.3841 (5)	0.7746 (3)	0.054 (1)	
0.5000	0.5529 (7)	0.7500	0.062 (2)	
0.3986 (3)	0.1982 (4)	0.5451 (3)	0.041 (1)	
0.4076 (3)	0.1425 (5)	0.4682 (2)	0.042 (1)	
0.3440 (3)	0.0430 (5)	0.4314 (3)	0.043 (1)	
0.2697 (3)	-0.0039 (5)	0.4705 (3)	0.042 (1)	
0.2596 (3)	0.0469 (4)	0.5446 (3)	0.044 (1)	
0.3242 (3)	0.1518 (5)	0.5843 (2)	0.042 (1)	
0.3174 (3)	0.2147 (5)	0.6597 (3)	0.045 (1)	
0.4183 (4)	0.0306 (6)	0.3148 (3)	0.076 (2)	
0.1350 (3)	-0.1571 (5)	0.4654 (3)	0.061 (1)	
0.5453	0.5182	0.6392	0.055	
	x 0.3447 (2) 0.2109 (2) 0.4643 (2) 0.5320 (4) 0.4554 (3) 0.3824 (3) 0.3736 (3) 0.5000 0.3986 (3) 0.4076 (3) 0.3440 (3) 0.2596 (3) 0.3242 (3) 0.3174 (3) 0.4183 (4) 0.1350 (3) 0.5453	xy 0.3447 (2) -0.0160 (3) 0.2109 (2) -0.1040 (3) 0.4643 (2) 0.2977 (4) 0.5320 (4) 0.4581 (5) 0.4554 (3) 0.3525 (4) 0.3824 (3) 0.3145 (5) 0.3736 (3) 0.3841 (5) 0.5000 0.5529 (7) 0.3986 (3) 0.1982 (4) 0.4076 (3) 0.1425 (5) 0.3440 (3) 0.0430 (5) 0.2697 (3) -0.0039 (5) 0.2296 (3) 0.1469 (4) 0.3174 (3) 0.2147 (5) 0.4183 (4) 0.0306 (6) 0.1350 (3) -0.1571 (5) 0.5453 0.5182	xyz $0.3447(2)$ $-0.0160(3)$ $0.3564(2)$ $0.2109(2)$ $-0.1040(3)$ $0.4273(2)$ $0.4643(2)$ $0.2977(4)$ $0.5789(2)$ $0.5320(4)$ $0.4581(5)$ $0.6853(3)$ $0.4554(3)$ $0.3525(4)$ $0.6509(3)$ $0.3824(3)$ $0.3145(5)$ $0.6937(3)$ $0.3736(3)$ $0.3841(5)$ $0.7746(3)$ 0.5500 $0.5529(7)$ 0.7500 $0.3986(3)$ $0.1982(4)$ $0.5451(3)$ $0.4076(3)$ $0.1425(5)$ $0.4682(2)$ $0.3440(3)$ $0.0430(5)$ $0.4144(3)$ $0.2697(3)$ $-0.0039(5)$ $0.4705(3)$ $0.3242(3)$ $0.1518(5)$ $0.5843(2)$ $0.3174(3)$ $0.2147(5)$ $0.6597(3)$ $0.1350(3)$ $-0.1571(5)$ $0.4654(3)$ 0.5453 0.5182 0.6392	xyz U_{iso}^*/U_{eq} 0.3447 (2)-0.0160 (3)0.3564 (2)0.059 (1)0.2109 (2)-0.1040 (3)0.4273 (2)0.0559 (9)0.4643 (2)0.2977 (4)0.5789 (2)0.047 (1)0.5320 (4)0.4581 (5)0.6853 (3)0.055 (1)0.4554 (3)0.3525 (4)0.6509 (3)0.043 (1)0.3824 (3)0.3145 (5)0.6937 (3)0.045 (1)0.3736 (3)0.3841 (5)0.7746 (3)0.054 (1)0.50000.5529 (7)0.75000.062 (2)0.3986 (3)0.1982 (4)0.5451 (3)0.041 (1)0.4076 (3)0.1425 (5)0.4682 (2)0.042 (1)0.3440 (3)0.0430 (5)0.47105 (3)0.042 (1)0.2596 (3)0.0469 (4)0.5446 (3)0.044 (1)0.3242 (3)0.1518 (5)0.5843 (2)0.045 (1)0.3174 (3)0.2147 (5)0.6597 (3)0.045 (1)0.4183 (4)0.0306 (6)0.3148 (3)0.061 (1)0.54530.51820.63920.055

supporting information

H1C4	0.3577	0.3110	0.8132	0.054		
H2C4	0.3207	0.4552	0.7640	0.054		
H1C5	0.4451	0.6135	0.7235	0.062	0.5	
H2C5	0.5549	0.6135	0.7765	0.062	0.5	
HC7	0.4605	0.1755	0.4404	0.042		
HC10	0.2068	0.0110	0.5717	0.044		
HC12	0.2646	0.1863	0.6889	0.045		
H1C13	0.4120	-0.0191	0.2609	0.076		
H2C13	0.4118	0.1340	0.3051	0.076		
H3C13	0.4827	0.0098	0.3492	0.076		
H1C14	0.0972	-0.2287	0.4287	0.061		
H2C14	0.1634	-0.2014	0.5193	0.061		
H3C14	0.0917	-0.0783	0.4748	0.061		

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.058 (2)	0.066 (2)	0.055 (2)	-0.016 (2)	0.018 (2)	-0.021 (2)
02	0.050 (2)	0.057 (2)	0.060 (2)	-0.014 (2)	0.007 (2)	0.003 (2)
N1	0.049 (2)	0.050 (3)	0.040 (2)	-0.007 (2)	0.000 (2)	0.002 (2)
C1	0.067 (3)	0.050 (3)	0.044 (3)	-0.007 (3)	0.000 (3)	0.004 (3)
C2	0.049 (3)	0.039 (3)	0.040 (3)	0.005 (2)	0.001 (2)	0.004 (3)
C3	0.046 (3)	0.047 (3)	0.039 (3)	0.009 (2)	0.001 (2)	0.007 (2)
C4	0.060 (3)	0.060 (3)	0.039 (3)	0.020 (3)	-0.001 (2)	-0.006 (3)
C5	0.089 (6)	0.045 (5)	0.048 (4)	0.0000	-0.002 (4)	0.0000
C6	0.039 (3)	0.044 (3)	0.038 (3)	0.006 (2)	0.002 (2)	0.007 (2)
C7	0.036 (3)	0.054 (3)	0.039 (3)	-0.006 (2)	0.010 (2)	-0.003 (3)
C8	0.042 (3)	0.045 (3)	0.040 (3)	0.006 (2)	0.007 (2)	0.002 (3)
C9	0.036 (3)	0.041 (3)	0.047 (3)	-0.006 (2)	0.001 (2)	0.001 (3)
C10	0.038 (3)	0.043 (3)	0.051 (3)	-0.003 (2)	0.006 (2)	0.006 (2)
C11	0.042 (3)	0.044 (3)	0.040 (3)	0.006 (3)	0.007 (2)	0.013 (3)
C12	0.043 (3)	0.054 (3)	0.038 (3)	0.006 (3)	0.007 (2)	0.012 (2)
C13	0.074 (4)	0.106 (5)	0.056 (3)	-0.032 (3)	0.029 (3)	-0.029 (3)
C14	0.050 (3)	0.060 (3)	0.072 (3)	-0.017 (3)	0.004 (3)	0.008 (3)

Geometric parameters (Å, °)

01—C8	1.365 (4)	C6—C7	1.406 (5)	
O1-C13	1.421 (5)	C6—C11	1.407 (5)	
O2—C9	1.375 (5)	C7—C8	1.369 (5)	
O2—C14	1.434 (4)	С7—НС7	1.000	
N1-C2	1.328 (5)	C8—C9	1.406 (5)	
N1-C6	1.371 (5)	C9—C10	1.352 (5)	
C1—C2	1.510 (6)	C10—C11	1.428 (5)	
C1—C4 ⁱ	1.545 (6)	C10—HC10	1.000	
C1—C5	1.532 (5)	C11—C12	1.405 (5)	
C1—HC1	1.000	C12—HC12	1.000	
C2—C3	1.405 (5)	C13—H1C13	1.000	

supporting information

C3—C4	1.520 (5)	C13—H2C13	1.000
C3—C12	1.368 (5)	С13—Н3С13	1.000
C4—H1C4	1.000	C14—H1C14	1.000
C4—H2C4	1.000	C14—H2C14	1.000
C5—H1C5	1.000	C14—H3C14	1.000
C5—H2C5	1.000		
C8—O1—C13	116.3 (4)	C6—C7—C8	120.1 (4)
C9—O2—C14	116.5 (3)	С6—С7—НС7	119.9
C2—N1—C6	117.9 (4)	С8—С7—НС7	119.9
C2-C1-C4 ⁱ	111.0 (4)	O1—C8—C7	125.1 (4)
C2—C1—C5	111.9 (4)	O1—C8—C9	114.9 (4)
C2—C1—HC1	108.6	C7—C8—C9	120.0 (4)
C4 ⁱ —C1—C5	108.3 (3)	O2—C9—C8	114.4 (4)
C4 ⁱ —C1—HC1	108.6	O2—C9—C10	124.3 (4)
C5—C1—HC1	108.6	C8—C9—C10	121.3 (4)
N1-C2-C1	114.8 (4)	C9—C10—C11	120.0 (4)
N1—C2—C3	123.6 (4)	C9—C10—HC10	120.0
C1—C2—C3	121.6 (4)	C11—C10—HC10	120.0
C2—C3—C4	121.3 (4)	C6-C11-C10	118.5 (4)
C2—C3—C12	118.2 (4)	C6-C11-C12	117.2 (4)
C4—C3—C12	120.5 (4)	C10-C11-C12	124.3 (4)
C1 ⁱ —C4—C3	111.8 (4)	C3—C12—C11	120.7 (4)
C1 ⁱ —C4—H1C4	108.9	C3—C12—HC12	119.7
C1 ⁱ —C4—H2C4	108.9	C11—C12—HC12	119.7
C3—C4—H1C4	108.9	O1-C13-H1C13	109.5
C3—C4—H2C4	108.9	O1—C13—H2C13	109.5
H1C4—C4—H2C4	109.5	O1—C13—H3C13	109.5
C1C5C1 ⁱ	107.7 (5)	H1C13—C13—H2C13	109.5
C1—C5—H1C5	109.9	H1C13—C13—H3C13	109.5
C1—C5—H2C5	109.9	H2C13—C13—H3C13	109.5
C1 ⁱ —C5—H1C5	109.9	O2-C14-H1C14	109.5
C1 ⁱ —C5—H2C5	109.9	O2-C14-H2C14	109.5
H1C5—C5—H2C5	109.5	O2-C14-H3C14	109.5
N1—C6—C7	117.5 (4)	H1C14—C14—H2C14	109.5
N1—C6—C11	122.5 (4)	H1C14—C14—H3C14	109.5
C7—C6—C11	120.0 (4)	H2C14—C14—H3C14	109.5

Symmetry code: (i) -x+1, y, -z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
C14—H3C14···N1 ⁱⁱ	1.00	2.882	3.723 (5)	142
C14—H3 <i>C</i> 14····N1 ⁱⁱⁱ	1.00	2.958	3.348 (5)	104

Symmetry codes: (ii) -x+1/2, -y+1/2, -z+1; (iii) x-1/2, y-1/2, z.