

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

7-[4-(5,7-Dimethyl-1,8-naphthyridin-2yloxy)phenoxy]-2,4-dimethyl-1,8naphthyridine methanol disolvate

Shou-Wen Jin,^a* Da-Qi Wang^b and Yun Chen^a

^aFaculty of Science, ZheJiang Forestry University, Lin'An 311300, People's Republic of China, and ^bDepartment of Chemistry, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China Correspondence e-mail: jinsw@zjfc.edu.cn

Received 15 October 2007; accepted 4 December 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.004 Å; R factor = 0.052; wR factor = 0.163; data-to-parameter ratio = 13.6.

The title compound, $C_{26}H_{22}N_4O_2\cdot 2CH_3OH$, was synthesized and characterized by ¹H NMR spectroscopy and X-ray structure analysis. There is one half-molecule in the asymmetric unit with a centre of symmetry located at the centre of the benzene ring. The two bridged naphthyridine ring systems are in an antiparallel orientation. In the crystal structure, O– $H \cdots N$, C– $H \cdots O$ and C– $H \cdots N$ interactions define the packing.

Related literature

For related literature, see: Ferrarini *et al.* (2004); Goswami & Mukherjee (1997); Hoock *et al.* (1999); Jin, Liu & Chen (2007); Jin, Chen & Wang (2007); Nabanita *et al.* (2006); Nakatani *et al.* (2000); Nakataniz *et al.* (2001); Newkome *et al.* (1981); Stuk *et al.* (2003); Gavrilova & Bosnich (2004).

c = 10.239 (4) Å

 $\alpha = 78.679 \ (6)^{\circ}$

 $\beta = 79.653 \ (6)^{\circ}$

 $\gamma = 82.689 \ (6)^{\circ}$

V = 637.0 (4) Å³

Experimental

Crystal data

$C_{26}H_{22}N_4O_2 \cdot 2CH_4O$	
$M_r = 486.56$	
Triclinic, P1	
a = 7.009 (3) Å	
b = 9.244 (3) Å	

Z = 1Mo $K\alpha$ radiation $\mu = 0.09 \text{ mm}^{-1}$

Data collection

Bruker SMART APEX CCD Diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{min} = 0.977, T_{max} = 0.984$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.052$ $wR(F^2) = 0.163$ S = 1.032216 reflections

Table 1 Hydrogen-bond geometry (Å, °).

ingen oone geometry (iii,).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O2-H2\cdots N2$	0.82	2.06	2.882 (3)	178
$C6-H6\cdots O2^{i}$	0.93	2.53	3.414 (4)	159
$C10-H10A\cdots O2^{i}$	0.96	2.54	3.436 (4)	156
$C13-H13\cdots N2^{ii}$	0.93	2.61	3.450 (4)	151

Symmetry codes: (i) x, y - 1, z; (ii) x - 1, y, z.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SMART* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997*a*); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997*a*); molecular graphics: *SHELXTL* (Sheldrick, 1997*b*); software used to prepare material for publication: *SHELXTL*.

The authors thank the Zhejiang Forestry University Science Foundation for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2143).

References

- Bruker (1997). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Ferrarini, P. L., Betti, L., Cavallini, T., Giannaccini, G., Lucacchini, A., Manera, C., Martinelli, A., Ortore, G., Saccomanni, G. & Tuccinardi, T. (2004). J. Med. Chem. 47, 3019–3031.
- Gavrilova, A. L. & Bosnich, B. (2004). Chem. Rev. 104, 349-384.
- Goswami, S. & Mukherjee, R. (1997). Tetrahedron Lett. 38, 1619-1622.
- Hoock, C., Reichert, J. & Schmidtke, M. (1999). Molecules, 4, 264-271.
- Jin, S. W., Chen, W. Z. & Wang, D. Q. (2007). Chin. J. Inorg. Chem. 2, 270–274.
- Jin, S. W., Liu, B. & Chen, W. Z. (2007). Chin. J. Struct. Chem. 3, 287-290.
- Nabanita, S., Sanjib, K. P., Kasinath, S. & Jitendra, K. B. (2006). Organometallics, 25, 2914–2916.
- Nakatani, K., Sando, S. & Saito, I. (2000). J. Am. Chem. Soc. 122, 2172–2177. Nakataniz, K., Sando, S., Kumasawa, H., Kikuchi, J. & Saito, I. (2001). J. Am.
- Chem. Soc. 123, 12650–12657. Newkome, G. R., Garbis, S. J., Majestic, V. K., Fronczek, F. R. & Chiaril, G.
- (1981). J. Org. Chem. 46, 833–839.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS Inc., Madison Wisconsin, USA.
- Stuk, T. L., Assink. B. K., Jr. B. R. C., Erdman, D. T., Fedij, V., Jennings, S. M., Lassig. J. A., Smith. R. J. & Smith T. L. (2003). Org. Proc. Res. Dev. 7, 851– 855.

T = 298 (2) K

 $R_{\rm int} = 0.019$

163 parameters

 $\Delta \rho_{\text{max}} = 0.27 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.20 \text{ e } \text{\AA}^{-3}$

 $0.27 \times 0.24 \times 0.19 \text{ mm}$

3379 measured reflections 2216 independent reflections

1236 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

supporting information

Acta Cryst. (2008). E64, o249 [https://doi.org/10.1107/S160053680706549X]

7-[4-(5,7-Dimethyl-1,8-naphthyridin-2-yloxy)phenoxy]-2,4-dimethyl-1,8naphthyridine methanol disolvate

Shou-Wen Jin, Da-Qi Wang and Yun Chen

S1. Comment

Derivatives of 1.8-naphthyridine have been investigated over half a century because of their interesting complexation properties and medical uses. They can act as antimycobacterial and antimicrobial agents (Goswami et al., 1997; Nakatani et al., 2000; Ferrarini et al., 2004; Stuk et al., 2003) and as mono-nucleating and dinucleating ligands in coordination chemistry (Gavrilova & Bosnich, 2004). The deriatives of 1,8-naphthyridine have been widely utilized as molecular recognition receptors for urea, carboxylic acids and guanine (Goswami et al., 1997; Nakatani et al., 2000). Recently 1.8naphthyridine derivatives have been reported to be excellent fluorescent markers of nucleic acids (Hoock *et al.*, 1999) and probe molecules (Nakataniz et al., 2001). Many novel inorganic complexes have been synthesized using this kind of compounds as mono or bidentate ligands (Nabanita et al., 2006; Jin, Liu & Chen, 2007; Jin, Chen & Wang, 2007). However, only a few mono and disubstituted 2,7-naphthyridine derivatives have been prepared. The potential multinucleating abilities of 1,8-naphthyridine derivatives as ligands in preparations of functional metalloorganic compounds stimulated us to explore bridged 1,8-naphthyridine compounds. In this paper, we report the synthesis and structure characterization of 7-(4-(5,7-dimethyl-1,8-naphthyridin-2-yloxy)phenoxy)- 2,4-dimethyl-1,8-naphthyridine dimethanol solvate (I) (Fig. 1). The crystals of (I) were formed by slow evaporation of 7-(4-(5,7-dimethyl-1.8naphthyridin-2-vloxy)phenoxy)-2,4-dimethyl-1,8-naphthyridine from methanol solution. An X-ray diffraction analysis of (I) is in agreement with the HNMR results. Bond lengths and angles are in the usual range. The bond lengths N(1)—C(8)and N(2)—C(2) are 1.303 (3) and 1.322 (3) Å, respectively, and display double-bond character. The bond lengths N(1)— C(1) and N(2)—C(1), both are 1.361 (3) Å and reveal a single-bond character. The conformations of the two naphthyridine rings towards the benzene ring is described by the torsion angle C(13)—C(12)—O(1)—C(8) (126.06 (2) °); they adopt (+)-anticlinal and (-)-anticlinal conformations. The torsion angle C(7), C(8), O(1), C(12) of 175.56 (2) ° defines the anti-parallel orientation of the two naphthyridine rings being in accord with C_i molecular symmetry. The closest contact between two adjacent naphthyridine carbons (C2···C4ⁱ, symmetry code: i) 1 - x, -y, 2 - z.) is 3.512 Å, which is in the range of π ... π stacking interaction. The O—H..N, C—H...O and C—H...N interactions define the pcrystal packing (Table 1, Fig.2).

S2. Experimental

Chemicals were obtained from commercial suppliers and used without further purification. 5,7-Dimethyl-2-chloro-1,8naphthyridine was prepared according to (Newkome *et al.*, 1981). Reactions and product mixtures were routinely monitored by TLC on silica gel (precoated F254 Merck plates) with spot detection under UV light. NMR spectra were recorded on Bruker Avance-400 (400 MHz) spectrometer in deuterated chloroform. Chemical shifts (delta) are expressed in p.p.m. downfield to TMS at delta = 0 p.p.m. and coupling constants (J) are expressed in Hz. A Schlenck tube was charged with 15 ml DMF and 5,7-dimethyl-2-chloro-1,8-naphthyridine, 0.77 g (4 mmol), sodium carbonate 0.33 g (2.4 mmol), *p*-hydroquinone 0.22 g (2 mmol). were added. The Schlenck tube was capped, evacuated, and back-filled with Ar three times. While still under Ar, it was immersed into a 413 K– hetaed oil bath. After stirring for 48 h, the mixture was cooled, filtered over celite, and evaporated *in vacuo*. The residue was washed with sodium hydroxide, then washed with water till the washing is neutral, filtered, dried in vacuum. The product 7-(4-(5,7-dimethyl-1,8- naphthyridin-2-yloxy)phenoxy)-2,4-dimethyl-1,8-naphthyridine precipitated was recrystallized from methanol. Yield: 0.42 g, 49.8%. Anal. Calcd. for ($C_{26}H_{22}N_4O_2$): C, 73.92%, H, 5.25%, N, 13.26%. Found: C, 73.78%, H, 5.25%, N, 13.45%. 1H NMR (400 MHz, CDCl3): delta = 2.65(s, 6H), 2.67(s, 6H), 7.09(s, 2H), 7.20(d, 2H, J = 9 Hz), 7.32(s, 4H), 8.30(d, 2H, J = 9 Hz).

S3. Refinement

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93-0.97 Å and $U_{iso}(H)$ = 1.2Ueq(C). Hydrogen atoms bound to methanol molecules were located in the Fourier difference map, and their distances were fixed and subject to an O—H = 0.85 Å with deviation of positive and negative 0.01 Å restraint.

Figure 1

The structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Symmetry code to generate the molecule from an asymmetric unit (-x, 1 - y, 1 - z).

Figure 2 The crystal packing of (I).

7-[4-(5,7-Dimethyl-1,8-naphthyridin-2-yloxy)phenoxy]-2,4-dimethyl-\1,8-naphthyridine dimethanol solvate

Crystal data

 $C_{26}H_{22}N_4O_2 \cdot 2CH_4O M_r = 486.56$ Triclinic, *P*1 a = 7.009 (3) Å b = 9.244 (3) Å c = 10.239 (4) Å a = 78.679 (6)° $\beta = 79.653$ (6)° $\gamma = 82.689$ (6)° V = 637.0 (4) Å³

Data collection

Bruker SMART APEX CCD Diffractometer Radiation source: fine-focus sealed tube Graphite monochromator phi and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.977, T_{\max} = 0.984$ 3379 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.052$ $wR(F^2) = 0.163$ S = 1.032216 reflections 163 parameters 0 restraints Z = 1 F(000) = 258 $D_x = 1.268 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 \mathcal{A} Cell parameters from 877 reflections $\theta = 2.3 - 24.7^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 298 KBlock, colourless $0.27 \times 0.24 \times 0.19 \text{ mm}$

2216 independent reflections 1236 reflections with $I > 2\sigma(I)$ $R_{int} = 0.019$ $\theta_{max} = 25.0^{\circ}, \ \theta_{min} = 2.1^{\circ}$ $h = -8 \rightarrow 5$ $k = -10 \rightarrow 10$ $l = -11 \rightarrow 12$

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0658P)^{2} + 0.2468P] \qquad \Delta \rho_{max} = 0$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3 \qquad \Delta \rho_{min} = 0$ $(\Delta / \sigma)_{max} < 0.001$

 $\begin{array}{l} \Delta\rho_{\rm max}=0.27~{\rm e}~{\rm \AA}^{-3}\\ \Delta\rho_{\rm min}=-0.20~{\rm e}~{\rm \AA}^{-3} \end{array}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates	and isotropic or	equivalent isotropic	displacement	parameters ($(Å^2)$
				p	· /

_	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N1	0.3076 (3)	0.1993 (2)	0.6758 (2)	0.0483 (6)	
N2	0.5387 (3)	0.2103 (2)	0.8040 (2)	0.0496 (6)	
O1	0.0813 (3)	0.19512 (19)	0.5388 (2)	0.0619 (6)	
O2	0.3944 (3)	0.5192 (2)	0.7759 (3)	0.0967 (10)	
H2	0.4376	0.4317	0.7831	0.145*	
C1	0.4486 (4)	0.1239 (3)	0.7453 (3)	0.0430 (7)	
C2	0.6819 (4)	0.1463 (3)	0.8699 (3)	0.0529 (8)	
C3	0.7375 (4)	-0.0058 (3)	0.8838 (3)	0.0570 (8)	
Н3	0.8371	-0.0463	0.9328	0.068*	
C4	0.6492 (4)	-0.0972 (3)	0.8273 (3)	0.0521 (8)	
C5	0.4982 (4)	-0.0297 (3)	0.7537 (3)	0.0437 (7)	
C6	0.3930 (4)	-0.1050 (3)	0.6864 (3)	0.0530 (8)	
H6	0.4195	-0.2068	0.6903	0.064*	
C7	0.2544 (4)	-0.0296 (3)	0.6165 (3)	0.0557 (8)	
H7	0.1844	-0.0778	0.5719	0.067*	
C8	0.2194 (4)	0.1241 (3)	0.6135 (3)	0.0489 (7)	
C9	0.7853 (5)	0.2444 (4)	0.9283 (4)	0.0748 (10)	
H9A	0.7284	0.3448	0.9090	0.112*	
H9B	0.9206	0.2389	0.8892	0.112*	
H9C	0.7732	0.2123	1.0242	0.112*	
C10	0.7114 (5)	-0.2600 (3)	0.8422 (4)	0.0768 (11)	
H10A	0.6335	-0.3056	0.7965	0.115*	
H10B	0.6944	-0.3037	0.9362	0.115*	
H10C	0.8461	-0.2751	0.8035	0.115*	
C11	0.1900 (4)	0.4419 (3)	0.4653 (3)	0.0532 (8)	
H11	0.3177	0.4026	0.4418	0.064*	
C12	0.0463 (4)	0.3504 (3)	0.5222 (3)	0.0470 (7)	
C13	-0.1421 (4)	0.4064 (3)	0.5566 (3)	0.0498 (7)	
H13	-0.2379	0.3428	0.5947	0.060*	
C14	0.1928 (5)	0.5291 (4)	0.8034 (4)	0.0744 (10)	
H14A	0.1519	0.4905	0.8970	0.112*	
H14B	0.1452	0.4727	0.7488	0.112*	

supporting information

H14C	0.1418	0.	6310	0.7834	0.112*			
Atomic d	Atomic displacement parameters $(Å^2)$							
	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}		
N1	0.0538 (15)	0.0380 (13)	0.0556 (16)	-0.0017 (11)	-0.0224 (12)	-0.0039 (11)		
N2	0.0545 (15)	0.0452 (13)	0.0511 (15)	-0.0090 (11)	-0.0184 (12)	-0.0019 (11)		
01	0.0721 (14)	0.0400 (11)	0.0834 (16)	0.0003 (10)	-0.0463 (12)	-0.0069 (10)		
O2	0.0614 (16)	0.0542 (14)	0.176 (3)	-0.0057 (11)	-0.0178 (16)	-0.0239 (16)		
C1	0.0442 (16)	0.0406 (15)	0.0437 (17)	-0.0039 (12)	-0.0123 (13)	-0.0015 (12)		
C2	0.0496 (18)	0.0580 (19)	0.0515 (19)	-0.0095 (15)	-0.0141 (15)	-0.0026 (14)		
C3	0.0475 (18)	0.065 (2)	0.056 (2)	0.0036 (15)	-0.0188 (15)	-0.0011 (15)		
C4	0.0492 (18)	0.0499 (17)	0.0528 (19)	0.0061 (14)	-0.0097 (15)	-0.0040 (14)		
C5	0.0427 (16)	0.0400 (15)	0.0458 (17)	-0.0005 (12)	-0.0083 (13)	-0.0024 (12)		
C6	0.0608 (19)	0.0353 (15)	0.063 (2)	0.0006 (14)	-0.0152 (16)	-0.0075 (14)		
C7	0.064 (2)	0.0426 (16)	0.067 (2)	-0.0048 (15)	-0.0239 (17)	-0.0114 (14)		
C8	0.0507 (17)	0.0432 (16)	0.0535 (18)	-0.0017 (13)	-0.0204 (15)	-0.0014 (13)		
C9	0.078 (2)	0.078 (2)	0.079 (3)	-0.0178 (19)	-0.038 (2)	-0.0080 (19)		
C10	0.079 (2)	0.058 (2)	0.092 (3)	0.0232 (18)	-0.035 (2)	-0.0121 (18)		
C11	0.0488 (18)	0.0544 (18)	0.055 (2)	0.0034 (14)	-0.0140 (15)	-0.0070 (14)		
C12	0.0560 (19)	0.0397 (15)	0.0478 (18)	-0.0031 (14)	-0.0249 (15)	0.0005 (13)		
C13	0.0481 (18)	0.0493 (17)	0.0497 (19)	-0.0110 (14)	-0.0121 (14)	0.0051 (13)		
C14	0.070 (2)	0.074 (2)	0.084 (3)	-0.0051 (18)	-0.016 (2)	-0.0227 (19)		

Geometric parameters (Å, °)

1.303 (3)	C7—C8	1.406 (4)
1.361 (3)	С7—Н7	0.9300
1.322 (3)	С9—Н9А	0.9600
1.361 (3)	С9—Н9В	0.9600
1.364 (3)	С9—Н9С	0.9600
1.406 (3)	C10—H10A	0.9600
1.385 (4)	C10—H10B	0.9600
0.8200	C10—H10C	0.9600
1.407 (4)	C11—C12	1.372 (4)
1.396 (4)	C11—C13 ⁱ	1.383 (4)
1.498 (4)	C11—H11	0.9300
1.373 (4)	C12—C13	1.367 (4)
0.9300	C13—C11 ⁱ	1.383 (4)
1.418 (4)	С13—Н13	0.9300
1.499 (4)	C14—H14A	0.9600
1.416 (4)	C14—H14B	0.9600
1.350 (4)	C14—H14C	0.9600
0.9300		
117.3 (2)	С2—С9—Н9А	109.5
117.9 (2)	С2—С9—Н9В	109.5
119.3 (2)	Н9А—С9—Н9В	109.5
	$\begin{array}{c} 1.303 (3) \\ 1.361 (3) \\ 1.322 (3) \\ 1.361 (3) \\ 1.364 (3) \\ 1.364 (3) \\ 1.364 (3) \\ 1.385 (4) \\ 0.8200 \\ 1.407 (4) \\ 1.396 (4) \\ 1.498 (4) \\ 1.373 (4) \\ 0.9300 \\ 1.418 (4) \\ 1.499 (4) \\ 1.416 (4) \\ 1.350 (4) \\ 0.9300 \\ 117.3 (2) \\ 117.9 (2) \\ 119.3 (2) \end{array}$	$1.303(3)$ $C7C8$ $1.361(3)$ $C7H7$ $1.322(3)$ $C9H9A$ $1.361(3)$ $C9H9B$ $1.364(3)$ $C9H9C$ $1.406(3)$ $C10H10A$ $1.385(4)$ $C10H10B$ 0.8200 $C10H10C$ $1.407(4)$ $C11C12$ $1.396(4)$ $C11C13^i$ $1.498(4)$ $C11H11$ $1.373(4)$ $C12C13$ 0.9300 $C13C11^i$ $1.418(4)$ $C13H13$ $1.499(4)$ $C14H14A$ $1.499(4)$ $C14H14B$ $1.350(4)$ $C14H14C$ 0.9300 $C13C9H9A$ $117.3(2)$ $C2C9H9B$ $117.3(2)$ $C2C9H9B$ $119.3(2)$ $H9AC9H9B$

С14—О2—Н2	109.5	С2—С9—Н9С	109.5
N2-C1-N1	114.1 (2)	H9A—C9—H9C	109.5
N2—C1—C5	123.2 (2)	H9B—C9—H9C	109.5
N1—C1—C5	122.7 (2)	C4C10H10A	109.5
N2—C2—C3	122.1 (3)	C4C10H10B	109.5
N2—C2—C9	117.1 (3)	H10A-C10-H10B	109.5
C3—C2—C9	120.8 (3)	C4—C10—H10C	109.5
C4—C3—C2	121.9 (3)	H10A-C10-H10C	109.5
С4—С3—Н3	119.1	H10B-C10-H10C	109.5
С2—С3—Н3	119.1	C12-C11-C13 ⁱ	119.0 (3)
C3—C4—C5	116.8 (3)	C12—C11—H11	120.5
C3—C4—C10	121.3 (3)	C13 ⁱ —C11—H11	120.5
C5—C4—C10	122.0 (3)	C13—C12—C11	121.2 (2)
C1—C5—C6	116.9 (2)	C13—C12—O1	116.5 (2)
C1—C5—C4	118.2 (3)	C11—C12—O1	122.1 (3)
C6—C5—C4	124.9 (2)	C12-C13-C11 ⁱ	119.8 (3)
C7—C6—C5	120.2 (3)	С12—С13—Н13	120.1
С7—С6—Н6	119.9	C11 ⁱ —C13—H13	120.1
С5—С6—Н6	119.9	O2—C14—H14A	109.5
C6—C7—C8	117.9 (3)	O2—C14—H14B	109.5
С6—С7—Н7	121.1	H14A—C14—H14B	109.5
С8—С7—Н7	121.1	O2—C14—H14C	109.5
N1-C8-O1	119.7 (2)	H14A—C14—H14C	109.5
N1—C8—C7	124.9 (2)	H14B—C14—H14C	109.5
O1—C8—C7	115.3 (2)		
C2-N2-C1-N1	-177.8 (2)	C10—C4—C5—C6	-0.8 (5)
C2—N2—C1—C5	1.3 (4)	C1—C5—C6—C7	1.0 (4)
C8—N1—C1—N2	178.0 (2)	C4—C5—C6—C7	-178.5 (3)
C8—N1—C1—C5	-1.1 (4)	C5—C6—C7—C8	0.0 (5)
C1—N2—C2—C3	-2.0 (4)	C1—N1—C8—O1	-177.9 (2)
C1—N2—C2—C9	177.3 (3)	C1—N1—C8—C7	2.2 (4)
N2-C2-C3-C4	1.5 (5)	C12—O1—C8—N1	4.6 (4)
C9—C2—C3—C4	-177.8 (3)	C12—O1—C8—C7	-175.5 (3)
C2—C3—C4—C5	0.0 (4)	C6—C7—C8—N1	-1.7 (5)
C2-C3-C4-C10	179.5 (3)	C6C7C8O1	178.5 (3)
N2-C1-C5-C6	-179.4 (3)	C13 ⁱ —C11—C12—C13	0.3 (5)
N1—C1—C5—C6	-0.4 (4)	C13 ⁱ —C11—C12—O1	175.5 (2)
N2-C1-C5-C4	0.1 (4)	C8—O1—C12—C13	-126.0 (3)
N1-C1-C5-C4	179.1 (3)	C8-01-C12-C11	58.6 (4)
C3—C4—C5—C1	-0.7 (4)	C11—C12—C13—C11 ⁱ	-0.3 (5)
C10-C4-C5-C1	179.7 (3)	O1-C12-C13-C11 ⁱ	-175.7 (2)
C3—C4—C5—C6	178.8 (3)		

Symmetry code: (i) -x, -y+1, -z+1.

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O2—H2…N2	0.82	2.06	2.882 (3)	178
C6—H6…O2 ⁱⁱ	0.93	2.53	3.414 (4)	159
C10—H10A····O2 ⁱⁱ	0.96	2.54	3.436 (4)	156
C13—H13…N2 ⁱⁱⁱ	0.93	2.61	3.450 (4)	151

Hydrogen-bond geometry (Å, °)

Symmetry codes: (ii) *x*, *y*–1, *z*; (iii) *x*–1, *y*, *z*.