Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N^2 , $N^{2'}$ -Bis(2,2-dimethylpropanoyl)benzene-1,3-dicarbohydrazide

Hoong-Kun Fun,^a* Suchada Chantrapromma,^b‡ Subrata Jana,^c Anita Hazra^c and Shyamaprosad Goswami^c

^aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, ^bDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and ^cDepartment of Chemistry, Bengal Engineering and Science University, Shibpur, Howrah, 711 103 India

Correspondence e-mail: hkfun@usm.my

Received 17 November 2007: accepted 26 November 2007

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.055; wR factor = 0.141; data-to-parameter ratio = 20.6.

In the molecular structure of the title hydrazide derivative, $C_{18}H_{26}N_4O_4$, the conformations of the two units of 2-(2,2dimethyl-1-oxopropyl)hydrazide substituents are not planar; these two units are attached axially to the benzene ring with C(ortho) - C - C(=O) - N torsion angles of 28.1 (2) and $31.0 (2)^{\circ}$ [where C(*ortho*) is the C atom at position 4 of the benzene ring relative to the substituent at position 3 or the C atom at position 6 of the benzene ring relative to the substituent at position 1, as appropriate]. The dihedral angles between the hydrazide units and the benzene ring are 62.66 (7) and 63.84 (7)°. In the crystal structure, molecules are arranged in an anti-parallel manner and are linked by N- $H \cdots O$ intermolecular hydrogen bonds and weak $C - H \cdots O$ intermolecular interactions into a three-dimensional network. The structure is further stabilized by a weak C-H···N intramolecular interaction.

Related literature

For values of bond lengths, see: Allen et al. (1987). For related literature on the applications and bioactivities of hydrazide derivatives, see for example: Feng et al. (2006); Fernández et al. (2004); Hołtra et al. (2007); Imramovský et al. (2007); Kim et al. (2007); Lemay et al. (2007); Liu et al. (2006); Nica et al. (2007); Raveendran & Pal (2007); Rivero & Buchwald (2007); Sicardi et al. (1980); Yang et al. (2007).

Experimental

Crystal data

$C_{18}H_{26}N_4O_4$	V = 1826.65 (9) Å ³
$M_r = 362.43$	Z = 4
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 7.1853 (2) Å	$\mu = 0.10 \text{ mm}^{-1}$
b = 14.8928 (4) Å	T = 100.0 (1) K
c = 17.1656 (5) Å	$0.56 \times 0.10 \times 0.08$
$\beta = 96.050 \ (2)^{\circ}$	

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2005) $T_{\min} = 0.949, \ T_{\max} = 0.993$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.055$ $wR(F^2) = 0.141$ S = 1.065301 reflections 257 parameters

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1N1 \cdots O3^{i}$ $N2 - H1N2 \cdots O4^{ii}$ $N3 - H1N3 \cdots O1^{iii}$ $N4 - H1N4 \cdots O2^{iv}$ $C1 - H1A \cdots O4^{ii}$ $C3 - H3A \cdots O1^{iii}$ $C12 - H12C \cdots O3^{i}$	0.90 (2) 0.845 (18) 0.876 (18) 0.878 (19) 0.93 0.93 0.96	2.12 (2) 1.993 (19) 1.969 (18) 2.059 (19) 2.48 2.56 2.52 2.61	3.0193 (16) 2.8262 (17) 2.8307 (16) 2.9320 (16) 3.1879 (17) 3.2854 (17) 3.433 (2) 2.9347 (10)	176.7 (16) 169 (2) 167.3 (16) 172.3 (19) 133 135 159
ero moe m	0.90	2.01	2.5517 (15)	100

Symmetry codes: (i) $x, -y + \frac{1}{2}, z - \frac{1}{2}$; (ii) -x, -y, -z + 1; (iii) -x + 1, -y, -z + 1; (iv) $x, -y + \frac{1}{2}, z + \frac{1}{2}$

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 1998); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

SJ, AH and SG acknowledge the DST [SR/S1/OC-13/2005] and CSIR [01(1913)/04/EMR-II], Government of India, for financial support. SJ and AH thank the CSIR, Government of India, for research fellowships. SC thanks Prince of Songkla University for support. The authors also thank the Malaysian Government and Universiti Sains Malaysia for the Scientific Advancement Grant Allocation (SAGA) grant No. 304/ PFIZIK/653003/A118.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2255).

 $0.10 \times 0.08 \text{ mm}$

34290 measured reflections

 $R_{\rm int} = 0.071$

refinement $\Delta \rho_{\rm max} = 0.46 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.28 \text{ e } \text{\AA}^{-3}$

5301 independent reflections

3858 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

independent and constrained

[‡] Additional correspondence author, email: suchada.c@psu.ac.th

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
- Bruker (2005). APEX2 (Version 1.27), SAINT (Version V7.12a) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.
- Feng, D.-J., Wang, P., Li, X.-Q. & Li, Z.-T. (2006). Chin. J. Chem. 24, 1200–1208.
 Fernández, R., Ferrete, A., Llera, J. M., Magriz, A., Martín-Zamora, E., Díez, E. & Lassaletta, J. M. (2004). Chem. Eur. J. 10, 737–745.

Hołtra, A., Drożdżewski, P. & Kubiak, M. (2007). *Polyhedron*, **26**, 2786–2794. Imramovský, A., Polanc, S., Vinšová, J., Kočevar, M., Jampílek, J., Rečková, Z.

- & Kaustová, J. (2007). Bioorg. Med. Chem. 15, 2551–2559.
- Kim, H.-Y., Lee, W.-J., Kang, H.-M. & Cho, C.-G. (2007). Org. Lett. 9, 3185– 3186.

Lemay, M., Trant, J. & Ogilvie, W. W. (2007). *Tetrahedron*, **63**, 11644–11655. Liu, F., Stephen, A. G., Adamson, C. S., Gousset, K., Aman, M. J., Freed, E. O.,

- Fisher, R. J. & Burke, T. R. Jr (2006). Org. Lett. 8, 5165–5168.
- Nica, S., Rudolph, M., Görls, H. & Plass, W. (2007). Inorg. Chim. Acta, 360, 1743–1752.
- Raveendran, R. & Pal, S. (2007). J. Organomet. Chem. 692, 824-830.
- Rivero, M. R. & Buchwald, S. L. (2007). Org. Lett. 9, 973-976.
- Sheldrick, G. M. (1998). *SHELXTL*. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sicardi, S. M., Vega, C. M. & Cimijotti, E. B. (1980). J. Med. Chem. 23, 1139– 1142.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Yang, Y., Hu, H.-Y. & Chen, C.-F. (2007). Tetrahedron Lett. 48, 3505-3509.

supporting information

Acta Cryst. (2008). E64, o175–o176 [https://doi.org/10.1107/S1600536807063210]

N^2 , N^2 '-Bis(2,2-dimethylpropanoyl)benzene-1,3-dicarbohydrazide

Hoong-Kun Fun, Suchada Chantrapromma, Subrata Jana, Anita Hazra and Shyamaprosad Goswami

S1. Comment

Hydrazide derivatives of different compounds are very important units in *host–guest* chemistry due to their special arrangement of donor-acceptors (Feng *et al.*, 2006; Yang *et al.*, 2007). These types of compounds are also important for the metal coordinations and related studies (Hołtra *et al.*, 2007; Nica *et al.*, 2007; Raveendran & Pal, 2007). Hydrazide-based compounds are also involved in different synthetic applications (Fernández *et al.*, 2004; Lemay *et al.*, 2007; Kim *et al.*, 2007; Rivero & Buchwald, 2007) as well as in medicinal activities (Imramovský *et al.*, 2007; Liu *et al.*, 2006; Sicardi *et al.*, 1980). We synthesized the title compound for being a host of *host–guest* complexes syntheses. The single-crystal X-ray structural study of the title compound was undertaken in order to establish the three-dimensional structure and to gain more details of conformations of the various groups.

In the molecular structure of the title compound (Fig. 1), the conformations of the two units of 2-(2,2-dimethyl-1-oxopropyl)hydrazide substituents are not planar which can be indicated by the dihedral angles between the mean planes of C6/C7/O2/N2 and O1/N1/N2/C8/C9 = 87.77 (8)° and C4/C13/O3/N3 and O4/N3/N4/C14/C15 = 87.90 (8)°. These two units are axially attached to the benzene ring with the torsion angles C1-C6-C7-N2 = 28.1 (2)° and C3-C4-C13-N3 =31.0 (2)°. The orientations of the two hydrazide moieties with respect to the benzene ring can be indicated by the dihedral angles between the mean planes of N1/N2/C8/C9 and N3/N4/C14/C15 and the benzene ring being 62.66 (7) and 63.84 (7)°, respectively. The torsion angles of N1-N2-C7-C6 = -165.58 (12)° and N4-N3-C13-C14 = -160.69 (12)° indicate that the two substituents are in (-)-anti-periplanar conformations. All bond lengths and angles are in normal values (Allen *et al.*, 1987).

In the crystal packing in Fig. 2, the molecules are arranged in an anti-parallel manner and linked by N—H···O intermolecular hydrogen bonds and weak C—H···O intermolecular interactions (Table 1) into three dimensional networks. The crystal is further stabilized by a weak C—H···N intramolecular interaction.

S2. Experimental

Initially isophthalic acid was converted to its methyl ester under refluxing condition with methanol and a catalytic amount of concentrated sulfuric acid. This ester was then refluxed with excess hydrazine hydrate and ethanol for three hours. After completion of the reaction, excess ethanol was evaporated out and the solid substance was washed well with water and dried under reduced pressure. The properly dried intermediate compound was treated with pivalic anhydride at 353 K for seven hours. The crude compound was extracted with chloroform after neutralizing the reaction mixture with aqueous sodium bicarbonate solution. The title compound was purified by column chromatography (Silica gel 100–200 mesh) using ethyl acetate as eluent to afford an off-white colored solid compound. Single crystals were grown by slow evaporation of $CHCl_3/MeOH$ solution (ν/ν 1:1) (m.p. over 523 K).

S3. Refinement

Hydrazide H atoms were located in a difference map and isotropically refined. The remaining H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å for aromatic and 0.96 Å for CH₃. The U_{iso} values were constrained to be $1.5U_{eq}$ of the carrier atom for methyl H atoms and $1.2U_{eq}$ for the remaining H atoms. A rotating group model was used for the methyl groups.

Figure 1

The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering.

Figure 2

The crystal packing of the title compound. Hydrogen bonds were shown as dash lines.

 N^2 , N^2 — Bis(2,2-dimethylpropanoyl)benzene-1,3-dicarbohydrazide

Crystal data

C₁₈H₂₆N₄O₄ $M_r = 362.43$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 7.1853 (2) Å b = 14.8928 (4) Å c = 17.1656 (5) Å $\beta = 96.050$ (2)° V = 1826.65 (9) Å³ Z = 4

Data collection

Bruker SMART APEXII CCD area-detector
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
Detector resolution: 8.33 pixels mm ⁻¹
ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
$T_{\min} = 0.949, \ T_{\max} = 0.993$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.055$	Hydrogen site location: inferred from
$wR(F^2) = 0.141$	neighbouring sites
S = 1.06	H atoms treated by a mixture of independent
5301 reflections	and constrained refinement
257 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0619P)^2 + 0.4134P]$
0 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta ho_{ m max} = 0.46 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.28 \text{ e} \text{ Å}^{-3}$

F(000) = 776

 $\theta = 2.4 - 30.0^{\circ}$

 $\mu = 0.10 \text{ mm}^{-1}$

Needle, colorless

 $0.56 \times 0.10 \times 0.08$ mm

 $\theta_{\rm max} = 30.0^\circ, \ \theta_{\rm min} = 2.4^\circ$

34290 measured reflections 5301 independent reflections 3858 reflections with $I > 2\sigma(I)$

T = 100 K

 $R_{\rm int} = 0.071$

 $h = -10 \rightarrow 10$ $k = -20 \rightarrow 20$ $l = -24 \rightarrow 24$

 $D_x = 1.318 \text{ Mg m}^{-3}$ Melting point: over 523 K

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 5301 reflections

Special details

Experimental. The data was collected with the Oxford Cyrosystem Cobra low-temperature attachment. **Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional	atomic	coordinates	and i	isotropi	ic or e	quivalent	isotroj	pic dis	placement	parameters	$(Å^2)$)
						1			1		· /	

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
O1	0.60769 (16)	0.05613 (7)	0.25206 (6)	0.0237 (3)
O2	0.38220 (15)	0.21786 (7)	0.36444 (6)	0.0184 (2)

O3	0.11704 (15)	0.22624 (7)	0.62797 (6)	0.0187 (2)
O4	-0.10708 (16)	0.07187 (7)	0.73429 (6)	0.0240 (3)
N1	0.33903 (19)	0.13157 (8)	0.22251 (7)	0.0184 (3)
N2	0.27315 (19)	0.09916 (9)	0.29066 (7)	0.0184 (3)
N3	0.23552 (18)	0.11418 (8)	0.70784 (7)	0.0172 (3)
N4	0.15571 (19)	0.14796 (8)	0.77239(7)	0.0173(3)
C1	0.2816(2)	-0.00484(9)	0.43413(8)	0.0159(3)
HIA	0.3021	-0.0379	0 3899	0.019*
C2	0.2495(2)	-0.04858(9)	0.50312 (8)	0.0171(3)
H2A	0.2474	-0.1110	0.5046	0.021*
C3	0.2474 0.2207 (2)	0.00018 (0)	0.56966 (8)	0.021 0.0157 (3)
НЗА	0.2207 (2)	-0.0295	0.50900 (8)	0.0137 (3)
IIJA C4	0.1330 0.2221 (2)	0.0295	0.0150 0.56750(7)	0.019°
C4	0.2231(2) 0.25445(10)	0.09390(9) 0.13760(0)	0.30739(7)	0.0142(3)
	0.25445 (19)	0.13709(9)	0.49647(7)	0.0130 (3)
H5A	0.2563	0.2001	0.4969	0.018*
C6	0.2831 (2)	0.08878(9)	0.43155 (/)	0.0143 (3)
C7	0.3208 (2)	0.14076 (9)	0.36016 (8)	0.0152 (3)
C8	0.5108 (2)	0.10397 (9)	0.20601 (8)	0.0177 (3)
C9	0.5743 (2)	0.13472 (10)	0.12760 (9)	0.0219 (3)
C10	0.7443 (3)	0.07870 (14)	0.11231 (11)	0.0404 (5)
H10A	0.8442	0.0897	0.1529	0.061*
H10B	0.7840	0.0950	0.0625	0.061*
H10C	0.7118	0.0162	0.1119	0.061*
C11	0.6266 (3)	0.23490 (11)	0.13166 (10)	0.0281 (4)
H11A	0.7375	0.2430	0.1673	0.042*
H11B	0.5257	0.2687	0.1496	0.042*
H11C	0.6494	0.2555	0.0805	0.042*
C12	0.4177 (3)	0.11974 (11)	0.06080 (9)	0.0270 (4)
H12A	0.3870	0.0570	0.0573	0.040*
H12B	0.4593	0.1394	0.0123	0.040*
H12C	0.3090	0.1534	0.0711	0.040*
C13	0.1843 (2)	0.15065 (9)	0.63621 (8)	0.0151 (3)
C14	-0.0226(2)	0.12316 (9)	0.78142 (8)	0.0166 (3)
C15	-0.1087(2)	0.16126 (10)	0.85232 (8)	0.0185 (3)
C16	-0.2991(3)	0.11803 (12)	0.85580 (10)	0.0298 (4)
H16A	-0.2844	0.0542	0.8613	0.045*
H16B	-0.3778	0.1312	0.8085	0.045*
H16C	-0.3554	0 1414	0.8999	0.045*
C17	-0.1340(2)	0.26337(10)	0.84314(9)	0.013 0.0242(3)
U17 H17A	-0.2175	0.2759	0.7970	0.0212(5)
H17R	-0.0148	0.2755	0.8384	0.036*
	-0.1853	0.2908	0.8883	0.036*
	0.1033	0.2871 0.14110 (12)	0.0005	0.030°
	0.0197(2)	0.14110(12)	0.92700 (8)	0.0239 (4)
1110A 1110D	0.0200	0.0774	0.9337	0.039
	-0.0301	0.1090	0.9714	0.039*
	0.1420	0.1043	0.9228	0.039*
HINI	0.269 (3)	0.1/24 (13)	0.1938 (11)	0.032 (5)*
H1N2	0.235 (3)	0.0455 (12)	0.2878 (10)	0.019 (4)*

supporting information

H1N3	0.276 (3)	0.0588 (12)	0.7132 (10)	0.023 (5)*
H1N4	0.215 (3)	0.1885 (12)	0.8028 (11)	0.025 (5)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
01	0.0249 (6)	0.0224 (5)	0.0232 (5)	0.0051 (4)	-0.0001 (5)	0.0054 (4)
O2	0.0197 (6)	0.0175 (5)	0.0182 (5)	-0.0023 (4)	0.0031 (4)	0.0015 (4)
03	0.0208 (6)	0.0174 (5)	0.0184 (5)	0.0020 (4)	0.0041 (4)	0.0004 (4)
O4	0.0255 (6)	0.0245 (5)	0.0217 (5)	-0.0061 (5)	0.0013 (5)	-0.0053 (4)
N1	0.0213 (7)	0.0212 (6)	0.0133 (5)	0.0034 (5)	0.0050 (5)	0.0042 (5)
N2	0.0246 (7)	0.0188 (6)	0.0127 (5)	-0.0039 (5)	0.0057 (5)	0.0006 (4)
N3	0.0217 (7)	0.0184 (6)	0.0123 (5)	0.0038 (5)	0.0049 (5)	-0.0008 (4)
N4	0.0192 (7)	0.0203 (6)	0.0131 (5)	-0.0009 (5)	0.0050 (5)	-0.0044 (4)
C1	0.0166 (7)	0.0180 (6)	0.0133 (6)	0.0001 (5)	0.0024 (5)	-0.0026 (5)
C2	0.0183 (7)	0.0148 (6)	0.0183 (6)	-0.0005 (5)	0.0020 (5)	0.0001 (5)
C3	0.0157 (7)	0.0176 (6)	0.0139 (6)	-0.0008 (5)	0.0021 (5)	0.0008 (5)
C4	0.0113 (7)	0.0180 (6)	0.0132 (6)	0.0003 (5)	0.0012 (5)	-0.0015 (5)
C5	0.0142 (7)	0.0151 (6)	0.0155 (6)	-0.0009 (5)	0.0015 (5)	-0.0002 (5)
C6	0.0116 (7)	0.0177 (6)	0.0133 (6)	-0.0011 (5)	0.0005 (5)	0.0006 (5)
C7	0.0123 (7)	0.0179 (6)	0.0157 (6)	0.0018 (5)	0.0025 (5)	0.0008 (5)
C8	0.0215 (8)	0.0157 (6)	0.0160 (6)	-0.0003 (5)	0.0024 (5)	-0.0004 (5)
C9	0.0231 (8)	0.0247 (7)	0.0192 (7)	0.0043 (6)	0.0078 (6)	0.0055 (6)
C10	0.0371 (12)	0.0497 (11)	0.0387 (10)	0.0206 (9)	0.0236 (9)	0.0158 (9)
C11	0.0261 (9)	0.0297 (8)	0.0287 (8)	-0.0028 (7)	0.0037 (7)	0.0079 (7)
C12	0.0373 (10)	0.0286 (8)	0.0157 (7)	-0.0005 (7)	0.0059 (6)	0.0005 (6)
C13	0.0126 (7)	0.0172 (6)	0.0158 (6)	-0.0019 (5)	0.0026 (5)	-0.0003 (5)
C14	0.0197 (8)	0.0153 (6)	0.0148 (6)	-0.0008 (5)	0.0028 (5)	0.0010 (5)
C15	0.0183 (8)	0.0201 (7)	0.0180 (6)	-0.0006 (6)	0.0061 (5)	-0.0014 (5)
C16	0.0243 (9)	0.0319 (9)	0.0350 (9)	-0.0069 (7)	0.0121 (7)	-0.0048 (7)
C17	0.0245 (9)	0.0225 (7)	0.0265 (7)	0.0012 (6)	0.0067 (6)	-0.0031 (6)
C18	0.0290 (9)	0.0340 (9)	0.0155 (7)	0.0056 (7)	0.0057 (6)	-0.0006 (6)

Geometric parameters (Å, °)

01—C8	1.2252 (17)	С8—С9	1.536 (2)
O2—C7	1.2295 (17)	C9—C10	1.525 (2)
O3—C13	1.2273 (17)	C9—C12	1.536 (2)
O4—C14	1.2261 (17)	C9—C11	1.538 (2)
N1—C8	1.359 (2)	C10—H10A	0.9600
N1—N2	1.3935 (16)	C10—H10B	0.9600
N1—H1N1	0.90 (2)	C10—H10C	0.9600
N2—C7	1.3559 (17)	C11—H11A	0.9600
N2—H1N2	0.844 (18)	C11—H11B	0.9600
N3—C13	1.3592 (17)	C11—H11C	0.9600
N3—N4	1.3942 (16)	C12—H12A	0.9600
N3—H1N3	0.876 (18)	C12—H12B	0.9600
N4—C14	1.357 (2)	C12—H12C	0.9600

N4H1N4	0 879 (19)	C14-C15	1 5314 (19)
C1 - C2	1.3920(18)	C15-C16	1.5314(17) 1.519(2)
C1 - C6	1 3951 (19)	C15 - C18	1.519(2) 1.536(2)
C1—H1A	0.9300	C_{15} C_{17}	1.538(2)
$C^2 - C^3$	1 3874 (19)	C16—H16A	0.9600
$C_2 - H_2 A$	0.9300	C16—H16B	0.9600
$C_2 - C_4$	1 3973 (19)	C_{16} -H16C	0.9600
C3—H3A	0.9300	C17—H17A	0.9600
C4-C5	1 3926 (18)	C17—H17B	0.9600
C4-C13	1 4990 (19)	C17 - H17C	0.9600
C5-C6	1 3937 (18)	C18 - H18A	0.9600
C5—H5A	0.9300	C18—H18B	0.9600
C6—C7	1 4979 (19)	C18 - H18C	0.9600
00 01	1.4777 (17)		0.9000
C8—N1—N2	117.82 (12)	C9—C10—H10C	109.5
C8—N1—H1N1	123.8 (13)	H10A—C10—H10C	109.5
N2—N1—H1N1	118.3 (13)	H10B—C10—H10C	109.5
C7—N2—N1	120.25 (12)	C9—C11—H11A	109.5
C7—N2—H1N2	122.2 (12)	C9—C11—H11B	109.5
N1—N2—H1N2	114.5 (12)	H11A—C11—H11B	109.5
C13—N3—N4	118.68 (12)	С9—С11—Н11С	109.5
C13—N3—H1N3	121.8 (12)	H11A—C11—H11C	109.5
N4—N3—H1N3	114.6 (12)	H11B—C11—H11C	109.5
C14—N4—N3	117.68 (12)	C9—C12—H12A	109.5
C14—N4—H1N4	121.6 (12)	C9—C12—H12B	109.5
N3—N4—H1N4	120.4 (12)	H12A—C12—H12B	109.5
C2—C1—C6	119.81 (12)	C9—C12—H12C	109.5
C2—C1—H1A	120.1	H12A—C12—H12C	109.5
C6—C1—H1A	120.1	H12B—C12—H12C	109.5
C3—C2—C1	120.54 (13)	O3—C13—N3	122.45 (12)
C3—C2—H2A	119.7	O3—C13—C4	121.99 (12)
C1—C2—H2A	119.7	N3—C13—C4	115.51 (12)
C2—C3—C4	119.93 (12)	O4—C14—N4	120.13 (13)
С2—С3—НЗА	120.0	O4—C14—C15	122.80 (14)
С4—С3—НЗА	120.0	N4—C14—C15	117.07 (12)
C5—C4—C3	119.52 (12)	C16—C15—C14	108.38 (12)
C5—C4—C13	117.80 (12)	C16—C15—C18	110.34 (13)
C3—C4—C13	122.63 (12)	C14—C15—C18	109.82 (12)
C4—C5—C6	120.60 (13)	C16—C15—C17	109.03 (13)
C4—C5—H5A	119.7	C14—C15—C17	109.77 (12)
С6—С5—Н5А	119.7	C18—C15—C17	109.48 (12)
C5—C6—C1	119.60 (12)	С15—С16—Н16А	109.5
C5—C6—C7	117.34 (12)	C15—C16—H16B	109.5
C1—C6—C7	123.03 (12)	H16A—C16—H16B	109.5
O2—C7—N2	122.34 (12)	C15—C16—H16C	109.5
O2—C7—C6	121.90 (12)	H16A—C16—H16C	109.5
N2—C7—C6	115.66 (12)	H16B—C16—H16C	109.5
O1—C8—N1	120.54 (13)	C15—C17—H17A	109.5

O1—C8—C9	122.55 (14)	С15—С17—Н17В	109.5
N1—C8—C9	116.91 (12)	H17A—C17—H17B	109.5
C10—C9—C12	109.22 (14)	С15—С17—Н17С	109.5
C10—C9—C8	107.75 (13)	H17A—C17—H17C	109.5
C12—C9—C8	110.45 (13)	H17B—C17—H17C	109.5
C10—C9—C11	109.98 (15)	C15—C18—H18A	109.5
C12—C9—C11	109.34 (12)	C15-C18-H18B	109.5
C8—C9—C11	110.08 (12)	H18A-C18-H18B	109.5
C9—C10—H10A	109.5	C15-C18-H18C	109.5
C9—C10—H10B	109.5	H18A-C18-H18C	109.5
H10A—C10—H10B	109.5	H18B—C18—H18C	109.5
C8—N1—N2—C7	85.19 (17)	O1—C8—C9—C10	13.0 (2)
C13—N3—N4—C14	76.61 (17)	N1-C8-C9-C10	-166.35 (14)
C6—C1—C2—C3	-0.6 (2)	O1—C8—C9—C12	132.24 (15)
C1—C2—C3—C4	0.2 (2)	N1-C8-C9-C12	-47.12 (17)
C2—C3—C4—C5	0.0 (2)	O1—C8—C9—C11	-106.92 (16)
C2—C3—C4—C13	177.12 (13)	N1-C8-C9-C11	73.72 (17)
C3—C4—C5—C6	0.1 (2)	N4—N3—C13—O3	21.9 (2)
C13—C4—C5—C6	-177.15 (13)	N4—N3—C13—C4	-160.69 (12)
C4—C5—C6—C1	-0.5 (2)	C5—C4—C13—O3	25.5 (2)
C4—C5—C6—C7	-178.47 (13)	C3—C4—C13—O3	-151.62 (15)
C2-C1-C6-C5	0.7 (2)	C5-C4-C13-N3	-151.89 (13)
C2-C1-C6-C7	178.61 (13)	C3—C4—C13—N3	31.0 (2)
N1—N2—C7—O2	17.9 (2)	N3—N4—C14—O4	0.9 (2)
N1—N2—C7—C6	-165.58 (12)	N3—N4—C14—C15	-179.64 (12)
C5—C6—C7—O2	22.5 (2)	O4—C14—C15—C16	5.10 (19)
C1—C6—C7—O2	-155.42 (14)	N4-C14-C15-C16	-174.36 (13)
C5—C6—C7—N2	-154.00 (13)	O4—C14—C15—C18	125.70 (15)
C1C6C7N2	28.1 (2)	N4-C14-C15-C18	-53.76 (17)
N2—N1—C8—O1	-3.9 (2)	O4—C14—C15—C17	-113.89 (16)
N2—N1—C8—C9	175.47 (12)	N4—C14—C15—C17	66.65 (16)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D^{\dots}A$	D—H···A
N1—H1N1···O3 ⁱ	0.90 (2)	2.12 (2)	3.0193 (16)	176.7 (16)
N2—H1 <i>N</i> 2····O4 ⁱⁱ	0.845 (18)	1.993 (19)	2.8262 (17)	169 (2)
N3—H1 <i>N</i> 3····O1 ⁱⁱⁱ	0.876 (18)	1.969 (18)	2.8307 (16)	167.3 (16)
N4—H1 N 4····O2 ^{iv}	0.878 (19)	2.059 (19)	2.9320 (16)	172.3 (19)
C1—H1A····O4 ⁱⁱ	0.93	2.48	3.1879 (17)	133
C3—H3A···O1 ⁱⁱⁱ	0.93	2.56	3.2854 (17)	135
C12—H12 <i>C</i> ···O3 ⁱ	0.96	2.52	3.433 (2)	159
C18—H18C···N4	0.96	2.61	2.9347 (19)	100

Symmetry codes: (i) x, -y+1/2, z-1/2; (ii) -x, -y, -z+1; (iii) -x+1, -y, -z+1; (iv) x, -y+1/2, z+1/2.