

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2,2'-Bis(4-methoxyphenyl)-2,2'-bis(trimethylsilanyloxy)-2,2'-(ferrocene-1,1'diyl)diacetonitrile

Xiao-li Wang and Huaying Bao*

College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China

Correspondence e-mail: hxxwangxiaoli@163.com

Received 8 November 2007; accepted 29 November 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.007 Å; R factor = 0.063; wR factor = 0.204; data-to-parameter ratio = 17.2.

In the title compound, $[Fe(C_{17}H_{20}NO_2Si)_2]$, the Fe atom is situated on a crystallographic centre of inversion, leading to a perfectly staggered conformation of the Cp rings.

Related literature

For related literature, see: Evans & Truesdale (1973); Evans et al. (1974); Lidy & Sundermeyer (1973); Dunitz et al. (1956); Fischer & Hüning (1987); Fleming & Woolias (1979); Gassman & Talley (1978); Groutas & Felker (1980); Rasmussen & Heilmann (1978); Zhou (1989).

 $\gamma = 97.441 \ (6)^{\circ}$

Experimental

Crystal data

$[Fe(C_{17}H_{20}NO_2Si)_2]$	
$M_r = 652.71$	
Triclinic, P1	
a = 7.129 (2) Å	
b = 10.500 (4) Å	
c = 11.449 (4) Å	
$\alpha = 95.613 \ (5)^{\circ}$	
$\beta = 97.253 \ (6)^{\circ}$	

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS: Bruker, 1999) $T_{\min} = 0.822, T_{\max} = 1.000$ (expected range = 0.768-0.935)

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.063$ $wR(F^2) = 0.204$ S = 1.033367 reflections 196 parameters

V = 837.3 (5) Å³ Z = 1Mo $K\alpha$ radiation $\mu = 0.56 \text{ mm}^{-1}$ T = 293 (2) K $0.24 \times 0.14 \times 0.12 \text{ mm}$

4803 measured reflections 3367 independent reflections 2156 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.030$

21 restraints H-atom parameters constrained $\Delta \rho_{\rm max} = 0.98 \ {\rm e} \ {\rm \AA}^ \Delta \rho_{\rm min} = -0.43 \text{ e } \text{\AA}^{-3}$

Data collection: SMART (Bruker, 2001); cell refinement: SMART; data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL.

The authors thank the National Natural Science Foundation of China (grant No. 20062004) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2048).

References

Bruker (1999) SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2000). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

- Dunitz, J. D., Orgel, L. E. & Rich, A. (1956). Acta Cryst. 9, 373-375.
- Evans, D. A., Carroll, G. L. & Truesdale, L. K. (1974). J. Org. Chem. 39, 914-
- 917

Evans, D. A. & Truesdale, L. K. (1973). Tetrahedron Lett. 49, 4929-4932.

Fischer, K. & Hüning, S. (1987). J. Org. Chem. 52, 564-569.

Fleming, L. & Woolias, M. (1979). J. Chem. Soc. Perkin Trans. 1, pp. 829-837.

Gassman, P. G. & Talley, J. J. (1978). Tetrahedron Lett. 40, 3773-3776. Groutas, W. C. & Felker, D. (1980). Synthesis, pp. 861-868.

Lidy, W. & Sundermeyer, W. (1973). Chem. Ber. 106, 587-593.

- Rasmussen, J. K. & Heilmann, S. M. (1978). Synthesis, pp. 219-221.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

Zhou, G. D. (1989). Foundations of Structural Chemistry, 1st ed., p. 230. Beijing University Press.

supporting information

Acta Cryst. (2008). E64, m123 [https://doi.org/10.1107/S1600536807064513]

2,2'-Bis(4-methoxyphenyl)-2,2'-bis(trimethylsilanyloxy)-2,2'-(ferrocene-1,1'-diyl)diacetonitrile

Xiao-li Wang and Huaying Bao

S1. Comment

Cyanohydrin trimethylsilyl ethers are useful in organic synthesis as they serve not only for the protection of carbonyl groups (Rasmussen *et al.*, 1978; Groutas *et al.*, 1980; Fischer *et al.*, 1987) but also as versatile intermediates (Gassman *et al.*, 1978; Evans *et al.*, 1974; Fleming *et al.*, 1979) in the synthesis of cyanohydrins, α,β -unsaturated nitriles and β -aminoalcohols. The general method for the preparation of cyanohydrin trimethylsilyl ethers is the addition of trimethylsilyl cyanide (TMSCN) to carbonyl compounds with the aid of a catalyst including Lewis acids, such as ZnI₂ (Evans *et al.*, 1974) and AlCl₃ (Lidy *et al.*, 1973), as well as solubilized anionic species, such as K⁺CN⁻-18-Crown-6 and "Bu₄N⁺CN⁻ (Evans *et al.*, 1973).

The molecular structure of the title compound, (I), shows the Fe atom on a crystallographic center of inversion and two Cp ligands with a cyanohydrin ether substituents. Because of the inversion symmetry the Cp ligands show a staggered conformation. The central tetrahedral C(6) atom is bound to C=N, (CH₃)₃SiO and (CH₃O)C₆H₄ groups in compound and is therefore a new stereogenic center which is formed during the reaction sequence. Due to the internal symmetry of the molecule Figure 1 shows the *R*,*S* diastereomer. There is no evidence for the formation of *R*,*R*- or S,*S*-diastereomers even from NMR spectra of the crude reaction product. The bond angle of C(6)–C(7)–N(1) is 178.9 (6)° showing *sp* hybridization for the C=N carbon atom. The Si(1)—O(1)—C(6) bond angle measures to 131.6 (3)° which is significantly larger compared to that of a regular tetrahedron (109.5°). The influence of neighbouring Csp and Csp² atoms shorten the C(6)–C(1), C(6)–C(7) and C(6)–C(8) bond distances (1.511 (6) Å, 1.483 (7) Å and 1.531 (6), respectively) compared to normal C—C bond distances (app. 1.54 Å). It shows there may be a super conjugate effect in the molecule of the title compound.

S2. Experimental

Into a 100 ml 3-neck round-bottomed flask equipped with magnetic stirring bar, reflux condenser and CaCl₂ drying tube was placed 1.1 mmol (297 mg) bisacetylferrocene in 15 ml dry CH_2Cl_2 and 1 mmol (319 mg) ZnI₂. After stirring for 20 minutes, 4.4 mmol TMSCN (374 mg) were added and the was solution stirred for 10 h. During the reaction the progress of the reaction was monitored by TLC (benzene). After completion the solvent was evaporated under reduced pressure with the residue obtained being extracted with pentane. The solution was washed with saturated cold aqueous NaHSO₃ and dried over Na₂SO₄. Filtration and removal of the solvent under reduced pressure yielded the crude product which was recrystallized from ether/light petroleum (b.p. $60-90^\circ$) to obtain single crystals the title compound.

S3. Refinement

All the H atoms were positioned geometrically and refined using a riding model with C—H distances of 0.93–0.97° and $U_{iso}(H) = 1.2U_{eq}$ of the corresponding parent atom. The methyls at the terminal group have higher U_{eq} than silicon atom in

the central tetrahedral.

Figure 1

The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are represented by circles of arbitrary size.

2,2'-Bis(4-methoxyphenyl)-2,2'-bis(trimethylsilanyloxy)-2,2'-(ferrocene-1,1'- diyl)diacetonitrile

Crystal data

[Fe(C₁₇H₂₀NO₂Si)₂] $M_r = 652.71$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 7.129 (2) Å b = 10.500 (4) Å c = 11.449 (4) Å a = 95.613 (5)° $\beta = 97.253$ (6)° $\gamma = 97.441$ (6)° V = 837.3 (5) Å³

Data collection

Bruker SMART CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 1999) $T_{\min} = 0.822, T_{\max} = 1.000$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.063$ $wR(F^2) = 0.204$ S = 1.033367 reflections Z = 1 F(000) = 344 $D_x = 1.295 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 749 reflections $\theta = 2.5-25.4^{\circ}$ $\mu = 0.56 \text{ mm}^{-1}$ T = 293 KNeedle, yellow $0.24 \times 0.14 \times 0.12 \text{ mm}$

4803 measured reflections 3367 independent reflections 2156 reflections with $I > 2\sigma(I)$ $R_{int} = 0.030$ $\theta_{max} = 26.4^\circ, \theta_{min} = 1.8^\circ$ $h = -7 \rightarrow 8$ $k = -10 \rightarrow 13$ $l = -14 \rightarrow 14$

196 parameters21 restraintsPrimary atom site location: structure-invariant direct methodsSecondary atom site location: difference Fourier map

II. das son site la setient informed forme	$1/[-2/(E^2)] + (0.111D)^2 + 0.2097D$
Hydrogen site location: inferred from	$W = 1/[\sigma^2(F_0^2) + (0.111P)^2 + 0.298/P]$
neighbouring sites	where $P = (F_0^2 + 2F_c^2)/3$
H-atom parameters constrained	$(\Delta/\sigma)_{\rm max} < 0.001$
	$\Delta ho_{ m max} = 0.98 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.43 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Fe2	1.0000	0.0000	0.0000	0.0414 (3)
Si1	1.0979 (2)	0.43619 (14)	0.25558 (15)	0.0644 (5)
N1	0.6209 (8)	0.2641 (6)	0.0446 (5)	0.0789 (15)
01	1.0478 (5)	0.2772 (3)	0.2175 (3)	0.0539 (9)
O2	0.6132 (6)	0.1608 (4)	0.6498 (3)	0.0687 (11)
C1	0.9125 (6)	0.0596 (4)	0.1571 (4)	0.0410 (10)
C2	1.0873 (7)	0.0084 (5)	0.1784 (4)	0.0480 (11)
H2	1.2020	0.0520	0.2196	0.058*
C3	1.0536 (9)	-0.1225 (5)	0.1245 (4)	0.0597 (14)
H3	1.1433	-0.1794	0.1250	0.072*
C4	0.8633 (10)	-0.1509 (5)	0.0708 (4)	0.0635 (16)
H4	0.8054	-0.2297	0.0294	0.076*
C5	0.7750 (8)	-0.0411 (5)	0.0897 (4)	0.0532 (13)
Н5	0.6483	-0.0343	0.0630	0.064*
C6	0.8760 (6)	0.1923 (4)	0.2043 (4)	0.0423 (10)
C7	0.7336 (8)	0.2337 (5)	0.1153 (4)	0.0544 (13)
C8	0.7960 (6)	0.1835 (4)	0.3217 (4)	0.0416 (10)
C9	0.9140 (7)	0.1609 (5)	0.4202 (4)	0.0521 (12)
H9	1.0403	0.1511	0.4138	0.063*
C10	0.8494 (7)	0.1524 (5)	0.5273 (4)	0.0538 (12)
H10	0.9319	0.1371	0.5924	0.065*
C11	0.6624 (7)	0.1664 (5)	0.5393 (4)	0.0492 (12)
C12	0.5414 (7)	0.1855 (5)	0.4407 (4)	0.0543 (12)
H12	0.4139	0.1919	0.4462	0.065*
C13	0.6097 (7)	0.1950 (5)	0.3340 (4)	0.0503 (12)
H13	0.5272	0.2096	0.2686	0.060*
C14	0.4225 (9)	0.1780 (7)	0.6651 (5)	0.0824 (19)
H14A	0.4054	0.1719	0.7463	0.124*
H14B	0.3345	0.1121	0.6148	0.124*
H14C	0.3989	0.2615	0.6446	0.124*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C15	1.2315 (13)	0.4614 (8)	0.4056 (7)	0.122 (3)	
H15A	1.3430	0.4189	0.4066	0.183*	
H15B	1.1520	0.4262	0.4598	0.183*	
H15C	1.2695	0.5523	0.4291	0.183*	
C16	0.8845 (10)	0.5181 (7)	0.2564 (7)	0.098 (2)	
H16A	0.8091	0.4851	0.3136	0.146*	
H16B	0.8101	0.5025	0.1792	0.146*	
H16C	0.9232	0.6094	0.2770	0.146*	
C17	1.2491 (13)	0.4952 (9)	0.1477 (8)	0.133 (3)	
H17A	1.3593	0.4512	0.1500	0.200*	
H17B	1.2894	0.5865	0.1671	0.200*	
H17C	1.1776	0.4788	0.0695	0.200*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
Fe2	0.0614 (7)	0.0322 (5)	0.0294 (5)	-0.0005 (4)	0.0117 (4)	0.0011 (3)
Si1	0.0751 (11)	0.0402 (8)	0.0728 (10)	-0.0016 (7)	0.0095 (8)	-0.0043 (7)
N1	0.084 (4)	0.087 (4)	0.070 (3)	0.018 (3)	0.012 (3)	0.025 (3)
01	0.055 (2)	0.0387 (17)	0.066 (2)	-0.0051 (14)	0.0222 (16)	-0.0050 (15)
O2	0.083 (3)	0.082 (3)	0.050(2)	0.017 (2)	0.0323 (19)	0.0128 (19)
C1	0.049 (3)	0.040 (2)	0.034 (2)	0.0011 (19)	0.0119 (19)	0.0049 (18)
C2	0.066 (3)	0.049 (3)	0.030(2)	0.012 (2)	0.007 (2)	0.0025 (19)
C3	0.099 (5)	0.047 (3)	0.042 (3)	0.025 (3)	0.025 (3)	0.011 (2)
C4	0.113 (5)	0.034 (3)	0.042 (3)	-0.008 (3)	0.026 (3)	0.003 (2)
C5	0.061 (3)	0.050 (3)	0.042 (2)	-0.016 (2)	0.012 (2)	0.003 (2)
C6	0.046 (3)	0.039 (2)	0.040(2)	-0.0013 (19)	0.014 (2)	-0.0024 (18)
C7	0.069 (3)	0.054 (3)	0.048 (3)	0.017 (3)	0.023 (3)	0.017 (2)
C8	0.048 (3)	0.038 (2)	0.038 (2)	0.0016 (19)	0.009 (2)	-0.0005 (18)
C9	0.045 (3)	0.060 (3)	0.054 (3)	0.012 (2)	0.015 (2)	0.002 (2)
C10	0.060 (3)	0.061 (3)	0.042 (3)	0.013 (2)	0.009 (2)	0.004 (2)
C11	0.062 (3)	0.044 (3)	0.043 (2)	0.003 (2)	0.023 (2)	0.000 (2)
C12	0.047 (3)	0.063 (3)	0.057 (3)	0.013 (2)	0.019 (2)	0.007 (2)
C13	0.042 (3)	0.062 (3)	0.047 (3)	0.008 (2)	0.008 (2)	0.007 (2)
C14	0.092 (5)	0.092 (5)	0.076 (4)	0.016 (4)	0.053 (4)	0.018 (3)
C15	0.136 (5)	0.096 (4)	0.122 (5)	0.017 (4)	-0.015 (4)	-0.007 (4)
C16	0.101 (4)	0.079 (4)	0.112 (4)	0.022 (3)	0.012 (3)	-0.001 (3)
C17	0.141 (5)	0.118 (5)	0.143 (5)	-0.004(4)	0.045 (4)	0.023 (4)

Geometric parameters (Å, °)

Fe2—C5	2.034 (5)	C4—H4	0.9300	
Fe2—C5 ⁱ	2.034 (5)	С5—Н5	0.9300	
Fe2—C4	2.042 (5)	C6—C7	1.483 (7)	
Fe2—C4 ⁱ	2.042 (5)	C6—C8	1.531 (6)	
Fe2—C1	2.044 (4)	C8—C13	1.373 (6)	
Fe2—C1 ⁱ	2.044 (4)	C8—C9	1.379 (6)	
Fe2—C3	2.045 (5)	C9—C10	1.370 (6)	

supporting information

	2.045(5)	C0 110	0.0200
Fe2—C3	2.045 (5)	C9—H9	0.9300
Fe2—C2	2.048 (4)		1.382 (7)
Fe2—C2 ⁴	2.048 (4)	C10—H10	0.9300
Sil—Ol	1.663 (3)	C11—C12	1.378 (7)
Si1—C15	1.833 (7)	C12—C13	1.378 (6)
Sil—C17	1.841 (8)	C12—H12	0.9300
Sil—C16	1.842 (7)	С13—Н13	0.9300
N1—C7	1.164 (7)	C14—H14A	0.9600
O1—C6	1.401 (5)	C14—H14B	0.9600
O2—C11	1.360 (5)	C14—H14C	0.9600
O2—C14	1.425 (7)	C15—H15A	0.9600
C1—C2	1.422 (7)	C15—H15B	0.9600
C1—C5	1,433 (6)	C15—H15C	0.9600
C1-C6	1 511 (6)	C16—H16A	0.9600
$C_2 - C_3$	1.311(0) 1.428(7)	C16_H16B	0.9600
C2 H2	0.0300		0.9000
$C_2 = C_4$	1,200 (8)		0.9000
$C_3 = U_2$	1.399 (8)		0.9600
C3—H3	0.9300		0.9600
C4—C5	1.395 (8)	CI/—HI/C	0.9600
C5_Fe2_C5 ⁱ	180.0 (3)	$C4-C3-Fe^2$	69.9(3)
$C_5 = F_{e2} = C_4$	40.0(2)	$C^2 = C^3 = Fe^2$	60.7(3)
$C_{5} = 102 = C_{4}$	140.0(2)	$C_2 = C_3 = 1C_2$	125 7
$C_5 = C_2 = C_4$	140.0(2)	C_{1}	125.7
C_{3} F_{e2} C_{4}	140.0(2)		125.7
C_{3} —Fe2—C4	40.0 (2)	Fe2—C3—H3	120.3
C4—Fe2—C4 ¹	180.0 (3)	C5—C4—C3	108.5 (4)
C5—Fe2—C1	41.15 (17)	C5—C4—Fe2	69.7 (3)
$C5^{1}$ —Fe2—C1	138.85 (17)	C3—C4—Fe2	70.1 (3)
C4—Fe2—C1	68.36 (18)	C5—C4—H4	125.8
$C4^{i}$ —Fe2—C1	111.64 (18)	C3—C4—H4	125.8
C5—Fe2—C1 ⁱ	138.85 (17)	Fe2—C4—H4	126.0
C5 ⁱ —Fe2—C1 ⁱ	41.15 (17)	C4—C5—C1	108.5 (5)
C4—Fe2—C1 ⁱ	111.64 (18)	C4—C5—Fe2	70.3 (3)
$C4^{i}$ —Fe2—C1 ⁱ	68.36 (18)	C1—C5—Fe2	69.8 (2)
C1—Fe2—C1 ⁱ	180.00 (11)	С4—С5—Н5	125.8
C5—Fe2—C3	67.6 (2)	С1—С5—Н5	125.8
$C5^{i}$ —Fe2—C3	112.4(2)	Fe2—C5—H5	125.7
$C4 - Fe^2 - C3$	400(2)	01 - C6 - C7	109.7(4)
$C4^{i}$ Fe2 C3	140.0(2)	01 - C6 - C1	109.7(4) 108.4(4)
$C_1 = C_2 = C_3$	(40.0(2))	C7 C6 C1	100.7(7)
C1 - Fe2 - C3	111.77(10)	C = C = C	107.5(4)
C1 - Fe2 - C3	111.77(19)	$01 - c_0 - c_8$	112.2(3)
C_{2} F_{2} C_{2}	112.4 (2)		110.0 (4)
C5—Fe2—C3 ¹	67.6 (2)	C1—C6—C8	108.9 (4)
C4—Fe2—C3 ¹	140.0 (2)	N1—C7—C6	178.9 (6)
$C4^{i}$ —Fe2—C3 ⁱ	40.0 (2)	C13—C8—C9	117.6 (4)
C1—Fe2—C3 ⁱ	111.77 (19)	C13—C8—C6	123.2 (4)
$C1^{i}$ —Fe2—C3 ⁱ	68.23 (19)	C9—C8—C6	119.2 (4)
C3—Fe2—C3 ⁱ	180.0 (4)	С10—С9—С8	121.5 (4)

C5—Fe2—C2	68.5 (2)	С10—С9—Н9	119.3
C5 ⁱ —Fe2—C2	111.5 (2)	С8—С9—Н9	119.3
C4—Fe2—C2	68.3 (2)	C9—C10—C11	120.5 (5)
C4 ⁱ —Fe2—C2	111.7 (2)	C9—C10—H10	119.8
C1—Fe2—C2	40.67 (18)	C11—C10—H10	119.8
C1 ⁱ —Fe2—C2	139.33 (18)	O2—C11—C12	125.1 (5)
C3—Fe2—C2	40.83 (19)	O2—C11—C10	116.2 (5)
C3 ⁱ —Fe2—C2	139.17 (19)	C12—C11—C10	118.7 (4)
C5—Fe2—C2 ⁱ	111.5 (2)	C13—C12—C11	120.0 (4)
$C5^{i}$ —Fe2— $C2^{i}$	68.5 (2)	C13—C12—H12	120.0
$C4$ — $Fe2$ — $C2^i$	111.7 (2)	C11—C12—H12	120.0
$C4^{i}$ —Fe2—C2 ⁱ	68.3 (2)	C8-C13-C12	121.8 (5)
$C1$ —Fe2— $C2^{i}$	139.33 (18)	C8-C13-H13	119.1
$C1^{i}$ —Fe2— $C2^{i}$	40.67 (18)	С12—С13—Н13	119.1
$C3$ — $Fe2$ — $C2^i$	139.17 (19)	02—C14—H14A	109.5
$C3^{i}$ —Fe2— $C2^{i}$	40.83 (19)	O2-C14-H14B	109.5
$C2$ —Fe2— $C2^{i}$	180.00 (7)	H14A—C14—H14B	109.5
01 - Si1 - C15	107.0(3)	Ω^2 —C14—H14C	109.5
01—Si1—C17	105.0 (3)	H14A— $C14$ — $H14C$	109.5
C15— $Si1$ — $C17$	110 9 (4)	H14B— $C14$ — $H14C$	109.5
01—Si1—C16	113.7 (3)	Sil—C15—H15A	109.5
C15— $Si1$ — $C16$	108 6 (4)	Sil—C15—H15B	109.5
C17— $S11$ — $C16$	111 7 (4)	H15A—C15—H15B	109.5
C6-O1-Si1	131.6 (3)	Sil—C15—H15C	109.5
$C_{11} = 0^{2} = C_{14}$	1174(4)	H15A - C15 - H15C	109.5
$C_2 - C_1 - C_5$	107 2 (4)	H15B-C15-H15C	109.5
$C_2 - C_1 - C_6$	1261(4)	Sil—Cl6—Hl6A	109.5
C_{5} C_{1} C_{6}	126.6 (4)	Sil—C16—H16B	109.5
C^2 — C^1 —Fe ²	69.8 (2)	H_{16A} $-C_{16}$ $-H_{16B}$	109.5
C_{5} C_{1} F_{e2}	69.0(2)	Sil—Cl6—Hl6C	109.5
$C6-C1-Fe^2$	1295(3)	H_{16A} $-C_{16}$ $-H_{16C}$	109.5
$C_1 - C_2 - C_3$	129.3(3) 107.2(4)	H_{16B} C_{16} H_{16C}	109.5
$C1 - C2 - Fe^2$	695(2)	Sil—C17—H17A	109.5
C_{3} C_{2} $F_{e^{2}}$	69.5 (<u>2</u>)	Sil—C17—H17B	109.5
$C_1 - C_2 - H_2$	126.4	H17A - C17 - H17B	109.5
C_{3} C_{2} H_{2}	126.4	Sil—C17—H17C	109.5
$E_{2} = C_{2} = H_{2}$	126.4	H17A - C17 - H17C	109.5
C_{4} C_{3} C_{2}	108.6 (5)	H17B-C17-H17C	109.5
CT-CJ-C2	100.0 (5)		107.5
C15 - Si1 - O1 - C6	108 2 (5)	$C4^{i}$ —Fe2—C4—C5	17(100)
$C_{17} = S_{11} = O_{11} = C_{01}$	-1340(5)	$C1 - Fe^2 - C4 - C5$	381(3)
$C_{16} = S_{11} = O_{1} = C_{0}$	-116(5)	$C1^{i}$ Fe ² C4 C5	-1419(3)
C_{5} E_{e}^{2} C_{1} C_{2}^{2}	11.0(3) 1186(4)	$C_{1} = 102 = C_{1} = 0.05$	1196(4)
$C5^{i}$ Fe ² C1 C2	-61 4 (4)	$C3^{i}$ Fe ² C4 C5	-604(4)
$C4-Fe^{2}-C1-C^{2}$	81 5 (3)	C_{2} F_{e}^{2} C_{4} C_{5}	82 0 (3)
$C_{4} = 102 = 01 = 02$ $C_{4} = 102 = 01 = 02$	-98 5 (3)	C^{2i} Fe ² C4 C5	-980(3)
$C1^{i}$ Fe ² $C1^{-}C2$	-51 (100)	$C_{2} = C_{2} = C_{4} = C_{3}$	-1196(3)
$C_1 - C_2 - C_1 - C_2$ $C_3 = E_{a}^2 - C_1 - C_2$	38 2 (3)	C_{3} C_{4} C_{5} C_{5} C_{5} C_{6} C_{7} C_{7} C_{7} C_{7}	60.4.(4)
C_{3}	30.2 (3)	03 - 102 - 04 - 03	00.4 (4)

C3 ⁱ —Fe2—C1—C2	-141.8 (3)	C4 ⁱ —Fe2—C4—C3	-102 (100)
$C2^{i}$ —Fe2—C1—C2	180.0	C1—Fe2—C4—C3	-81.5 (3)
C5 ⁱ —Fe2—C1—C5	180.0	C1 ⁱ —Fe2—C4—C3	98.5 (3)
C4—Fe2—C1—C5	-37.1 (3)	C3 ⁱ —Fe2—C4—C3	180.0
$C4^{i}$ —Fe2—C1—C5	142.9 (3)	C2—Fe2—C4—C3	-37.6(3)
C1 ⁱ —Fe2—C1—C5	-170 (100)	$C2^{i}$ —Fe2—C4—C3	142.4 (3)
C3—Fe2—C1—C5	-80.3 (3)	C3—C4—C5—C1	0.0 (5)
C3 ⁱ —Fe2—C1—C5	99.7 (3)	Fe2—C4—C5—C1	-59.6 (3)
C2—Fe2—C1—C5	-118.6 (4)	C3—C4—C5—Fe2	59.6 (3)
C2 ⁱ —Fe2—C1—C5	61.4 (4)	C2—C1—C5—C4	0.3 (5)
C5—Fe2—C1—C6	-120.8(5)	C6—C1—C5—C4	-175.9(4)
C5 ⁱ —Fe2—C1—C6	59.2 (5)	Fe2—C1—C5—C4	59.9 (3)
C4—Fe2—C1—C6	-157.9(5)	C2-C1-C5-Fe2	-59.6(3)
$C4^{i}$ —Fe2—C1—C6	22.1 (5)	C6-C1-C5-Fe2	124.3 (4)
$C1^{i}$ —Fe2—C1—C6	69 (100)	$C5^{i}$ —Fe2—C5—C4	-170(100)
C_{3} —Fe2—C1—C6	158.9 (5)	$C4^{i}$ —Fe2—C5—C4	180.0
$C3^{i}$ —Fe2—C1—C6	-21.1(5)	$C1 - Fe^2 - C5 - C4$	-119.4 (4)
$C^2 - Fe^2 - C1 - C6$	120.7(5)	$C1^{i}$ Fe ² C5 C4	60.6 (4)
$C2^{i}$ Fe2—C1—C6	-593(5)	$C_3 - F_{e^2} - C_5 - C_4$	-37.2(3)
$C_{2} = C_{1} = C_{2} = C_{3}$	-0.4(5)	$C3^{i}$ Fe ² C5 C4	$142 \ 8 \ (3)$
C6-C1-C2-C3	175 8 (4)	$C_{2} = Fe_{2} = C_{2} = C_{4}$	-814(3)
$Fe^2 - C^1 - C^2 - C^3$	-595(3)	$C2^{i}$ Fe2 C5 C4	98.6 (3)
$C_{2} = C_{1} = C_{2} = F_{2}$	59.1 (3)	$C5^{i}$ Fe ² C5 C1	-50(100)
$C6-C1-C2-Fe^{2}$	-1247(4)	$C4 - Fe^2 - C5 - C1$	1194(4)
C_{5} $F_{e^{2}}$ C_{2} C_{1}	-384(3)	$C4^{i}$ Fe2 C5 C1	-60.6(4)
$C5^{i}$ Fe ² C ² C ¹	1416(3)	$C1^{i}$ Fe ² C5 C1	180.0
$C4 - Fe^2 - C^2 - C^1$	-816(3)	C_{3} $F_{e^{2}}$ C_{5} C_{1}	82 1 (3)
$C4^{i}$ Fe ² C ² C ¹	98.4(3)	C_{3}^{i} Fe ² C ₅ C ¹	-97.9(3)
$C1^{i}$ Fe ² C ² C ¹	180.0	$C_{2} = F_{e^{2}} = C_{2} = C_{1}$	380(3)
C_{3} $F_{e^{2}}$ C_{2} C_{1}	-1185(4)	$C2^{i}$ Fe2 C5 C1	-1420(3)
$C3^{i}$ Fe ² C ² C ¹	61 5 (4)	$S_{1} = 01 = 06 = 07$	580(5)
$C_{2^{i}} = Fe^{2} = C_{2}^{i} = C_{1}^{i}$	22(100)	Si1 - O1 - C6 - C1	174.9(3)
$C_{2} = F_{02} = C_{2} = C_{3}$	80 1 (3)	Si1 - O1 - C6 - C8	-64.7(5)
$C_{5}^{i} - F_{e}^{2} - C_{2}^{i} - C_{3}^{i}$	-999(3)	$C_{2}^{-}C_{1}^{-}C_{6}^{-}O_{1}^{-}$	30.2 (6)
$C4 - Fe^2 - C^2 - C^3$	36.9.(3)	$C_{2} = C_{1} = C_{0} = O_{1}$	-1544(4)
$C4^{i} - Fe^{2} - C^{2} - C^{3}$	-143 1 (3)	F_{e^2} C_1 C_6 O_1	-625(5)
$C1 - Fe^2 - C^2 - C^3$	145.1(5) 118 5 (4)	$C_{2}^{2} = C_{1}^{2} = C_{0}^{2} = C_{1}^{2}$	148.7(4)
$C1^{i}$ E_{e}^{2} $C2^{i}$ $C3^{i}$	-61.5(4)	$C_2 = C_1 = C_0 = C_7$	-35.9(6)
$C_1 = C_2 = C_2 = C_3$	180.0	$E_{2} = C_{1} = C_{0} = C_{7}$	56.0 (5)
$C_3 - C_2 - C_2 - C_3$	140(100)	$C_{2}^{-} = C_{1}^{-} = C_{0}^{-} = C_{1}^{-}$	-02.2(5)
$C_2 - C_2 - C_2 - C_3$	140(100)	$C_2 - C_1 - C_0 - C_8$	92.2(3)
$E_1 = C_2 = C_3 = C_4$	-50.2(3)	$E_{3} = C_{1} = C_{0} = C_{8}$	33.2(3)
$C_{1} = C_{2} = C_{3} = C_{4}$	59.2 (5) 50.6 (3)	162 - 01 - 00 - 08	175.1(3)
$C_1 - C_2 - C_3 - C_4$	37.2 (3)	$C_1 - C_0 - C_7 - N_1$	19 (29)
C_{5} C_{2} C_{3} C_{4}	-1428(3)	$C_1 = C_0 = C_1 = 1$	-00 (20)
C_{4} C_{4	142.0 (3)	$01 C6 C8 C1^2$	77 (27) 131 () (5)
$C_{1} = C_{2} = C_{3} = C_{4}$	21 Q (2)	$C_1 - C_0 - C_0 - C_{13}$	85(6)
$C_1 = Fe_2 = C_3 = C_4$	01.0(3)	$C_1 = C_0 = C_0 = C_{12}$	0.3 (0)
UI-rez-U3-U4	-98.2 (3)	UI-U0-U8-U13	-109.0(3)

C3 ⁱ —Fe2—C3—C4	127 (100)	O1—C6—C8—C9	-50.2 (6)
C2—Fe2—C3—C4	119.9 (4)	C7—C6—C8—C9	-172.7 (4)
C2 ⁱ —Fe2—C3—C4	-60.1 (4)	C1—C6—C8—C9	69.9 (5)
C5—Fe2—C3—C2	-82.7 (3)	C13—C8—C9—C10	-1.2 (7)
C5 ⁱ —Fe2—C3—C2	97.3 (3)	C6—C8—C9—C10	179.9 (4)
C4—Fe2—C3—C2	-119.9 (4)	C8—C9—C10—C11	0.1 (8)
C4 ⁱ —Fe2—C3—C2	60.1 (4)	C14—O2—C11—C12	-1.0 (8)
C1—Fe2—C3—C2	-38.1 (3)	C14—O2—C11—C10	178.6 (5)
C1 ⁱ —Fe2—C3—C2	141.9 (3)	C9—C10—C11—O2	-177.9 (5)
C3 ⁱ —Fe2—C3—C2	7 (100)	C9-C10-C11-C12	1.8 (7)
C2 ⁱ —Fe2—C3—C2	180.0	O2-C11-C12-C13	177.2 (5)
C2—C3—C4—C5	-0.2 (5)	C10-C11-C12-C13	-2.4 (8)
Fe2—C3—C4—C5	-59.3 (3)	C9—C8—C13—C12	0.5 (7)
C2-C3-C4-Fe2	59.1 (3)	C6—C8—C13—C12	179.4 (4)
C5 ⁱ —Fe2—C4—C5	180.0	C11—C12—C13—C8	1.3 (8)

Symmetry code: (i) -x+2, -y, -z.