metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Aqua(3-methylisoquinoline-*kN*)silver(I) 4-aminobenzenesulfonate

Yong-Mei Zhang,* Dong-Yan Hou, Tie-Chun Li and Guang Xin

Department of Chemistry, Anshan Normal University, Anshan 114007, People's Republic of China Correspondence e-mail: yongmeizhang@yahoo.cn

Received 6 November 2007; accepted 22 November 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.009 Å; Hatom completeness 95%; R factor = 0.046; wR factor = 0.117; data-to-parameter ratio = 17.7.

In the title compound, $[Ag(C_{10}H_9N)(H_2O)](C_6H_6NO_3S)$, the Ag^I atom is two-coordinated by one N atom from a 3methylisoquinoline ligand and one water molecule. The 4aminobenzenesulfonate counter-anion does not show any bonding interactions with the Ag^I atom. The compound exhibits a three-dimensional supramolecular structure constructed by hydrogen bonds. Adjacent isoquinoline groups form $\pi - \pi$ interactions, with a centroid–centroid distance of 3.54 (1) Å. The crystal studied was an inversion twin.

Related literature

For related literature, see: Atria et al. (1994); Cai et al. (2003); Li et al. (2006).

Experimental

Crystal data [Ag(C10H9N)(H2O)](C6H6NO3S) $M_{\rm w} = 441.25$ Orthorhombic, P212121 a = 6.779 (1) Åb = 13.997 (3) Å c = 18.076 (4) Å

V = 1715.2 (6) Å ³
Z = 4
Mo $K\alpha$ radiation
$\mu = 1.32 \text{ mm}^{-1}$
T = 293 (2) K
$0.47 \times 0.09 \times 0.06$ mm

Data collection

Rigaku R-AXIS RAPID
diffractometer
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
$T_{\min} = 0.529, \ T_{\max} = 0.911$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.046$	H atoms treated by a mixture of
$wR(F^2) = 0.117$	independent and constrained
S = 0.97	refinement
3904 reflections	$\Delta \rho_{\rm max} = 0.35 \text{ e } \text{\AA}^{-3}$
221 parameters	$\Delta \rho_{\rm min} = -0.49 \text{ e} \text{ Å}^{-3}$
1 restraint	Absolute structure: Flack (1983),
	1646 Friedel pairs
	Flack parameter: 0.46 (6)

7289 measured reflections

 $R_{\rm int} = 0.069$

3904 independent reflections 2458 reflections with $I > 2\sigma(I)$

Table 1

Selected geometric parameters (A, °).				
Ag1-N1	2.137 (4)	Ag1–O1W	2.138 (5)	
$N1 - A\sigma 1 - O1W$	178 7 (2)			

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N2-H2A\cdotsO1^{i}$ $N2-H2B\cdotsO3^{ii}$ $O1W-H36\cdotsO2^{i}$	0.86 0.86 0.86 (4)	2.37 2.18 2.25 (3)	3.092 (6) 3.005 (7) 3.027 (8)	142 160 150 (6)
Symmetry codes: (i) - x	± 1 $\nu \pm 1$ -7	\pm^{3} (ii) $-x \pm 2$	$n \pm 1 = \pi \pm 3$	

Symmetry codes: (i) -x + 1, $y + \frac{1}{2}$, $-z + \frac{3}{2}$; (ii) -x + 2, $y + \frac{1}{2}$, $-z + \frac{3}{2}$

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/ MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus (Siemens, 1990); software used to prepare material for publication: SHELXL97.

The authors thank Anshan Normal University for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2101).

References

Atria, A. M., Baggio, R. F., Garland, M. T. & Spodine, E. (1994). Acta Cryst. C50 864-866

Cai, J. W., Zhou, J. S. & Lin, M. L. (2003). J. Mater. Chem. 13, 1806-1811. Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

Li, F. F., Ma, J. F., Song, S. Y. & Yang, J. (2006). Cryst. Growth Des. 6, 209-215. Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.

Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Siemens (1990). SHELXTL-Plus. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

supporting information

Acta Cryst. (2008). E64, m224 [https://doi.org/10.1107/S1600536807061983]

Aqua(3-methylisoquinoline-κN)silver(I) 4-aminobenzenesulfonate

Yong-Mei Zhang, Dong-Yan Hou, Tie-Chun Li and Guang Xin

S1. Comment

Sulfonate group can adopt various bridging coordination modes. Silver, a d¹⁰ metal, has no crystal field stabilization energy and hence no dominant geometrical preferences (Li *et al.*, 2006). In this paper, we report the synthesis and crystal structure of a new silver(I) complex with a 4-aminobenzenesulfonate as a counter anion.

As shown in Fig. 1, the sulfonate group in the title compound does not show any bonding interactions with Ag^I atom. Ag^I atom is two-coordinated by one N atom from a neutral 3-methylisoquinoline ligand and one water molecule. Ag1, N1 and O1W are almost co-linear and the N1—Ag1—O1W angle is 179.2 (2)°. The bond distances and angles are normal (Atria *et al.*, 1994; Cai *et al.*, 2003). Furthermore, the compound shows a three-dimensional supramolecular structure constructed by hydrogen bonds. Adjacent isoquinoline groups form π - π interactions with a centroid-to-centroid distance of 3.54 (1) Å.

S2. Experimental

A mixture of $AgNO_3$ (0.170 g, 1 mmol), NaOH (0.040 g, 1 mmol) and 4-aminobenzenesulfonic acid (0.173 g, 1 mmol) in water (15 ml) was stirring for 10 min at room temperature. Then 3-methylisoquinoline (0.143 g, 1 mmol) was added to the solution with stirring for 30 min and a white precipitate was obtained. The precipitate was dissolved by dropwise addition of ammonia (5 *M*). Green single crystals were obtained by slow evaporation of the solution at room temperature.

S3. Refinement

H atoms on C and N atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for aromatic ring, C—H = 0.96Å and $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl group, and N—H = 0.86Å and $U_{iso}(H) = 1.2U_{eq}(N)$ for amino group. One of H atoms of the water molecule was located in a difference Fourier map and refined with $U_{iso}(H) = 1.2U_{eq}(O)$, and the other one was not located.

Figure 1

The structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms of the water molecule are not shown.

Aqua(3-methylisoquinoline-κN)silver(I) 4-aminobenzenesulfonate

Crystal data

$[Ag(C_{10}H_9N)(H_2O)](C_6H_6NO_3S)$	F(000) = 888
$M_r = 441.25$	$D_{\rm x} = 1.709 {\rm ~Mg} {\rm ~m}^{-3}$
Orthorhombic, $P2_12_12_1$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: P 2ac 2ab	Cell parameters from 3904 reflec
a = 6.779 (1) Å	$\theta = 2.5 - 27.5^{\circ}$
b = 13.997(3) Å	$\mu = 1.32 \text{ mm}^{-1}$
c = 18.076 (4) Å	T = 293 K
V = 1715.2 (6) Å ³	Prism, colorless
Z = 4	$0.47\times0.09\times0.06~mm$
Data collection	
Rigaku R-AXIS RAPID	7289 measured reflections
diffractometer	3904 independent reflections
Radiation source: rotation anode	2458 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.069$
ω scan	$\theta_{\rm max} = 27.5^{\circ}, \theta_{\rm min} = 1.8^{\circ}$
Absorption correction: multi-scan	$h = 0 \rightarrow 8$
<u> </u>	

(*ABSCOR*; Higashi, 1995) $T_{min} = 0.529, T_{max} = 0.911$

ctions

 $k = -18 \longrightarrow 18$ $l = -23 \rightarrow 23$

Refinement

Refinement on F^2 Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.046$ wR(F^2) = 0.117	H atoms treated by a mixture of independent and constrained refinement
S = 0.97	$w = 1/[\sigma^2(F_o^2) + (0.0513P)^2]$
3904 reflections	where $P = (F_o^2 + 2F_c^2)/3$
221 parameters	$(\Delta/\sigma)_{\rm max} = 0.001$
1 restraint	$\Delta \rho_{\rm max} = 0.35 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	$\Delta \rho_{\min} = -0.49 \text{ e} \text{ Å}^{-3}$ Absolute structure: Flack (1983), 1646 Friedel
Secondary atom site location: difference Fourier map	pairs Absolute structure parameter: 0.46 (6)

|--|

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Agl	0.70457 (8)	0.50911 (3)	1.00258 (3)	0.06244 (18)	
CI	0.7687 (8)	0.2835 (3)	0.7059 (3)	0.0348 (12)	
C2	0.9238 (9)	0.3384 (4)	0.7295 (4)	0.0427 (14)	
H2	1.0520	0.3204	0.7176	0.051*	
C3	0.8914 (10)	0.4213 (4)	0.7712 (4)	0.0460 (15)	
H3	0.9976	0.4579	0.7872	0.055*	
C4	0.6990 (10)	0.4487 (3)	0.7887 (3)	0.0399 (12)	
C5	0.5426 (8)	0.3942 (4)	0.7618 (4)	0.0448 (15)	
Н5	0.4134	0.4130	0.7711	0.054*	
C6	0.5789 (8)	0.3121 (4)	0.7212 (4)	0.0442 (15)	
H6	0.4734	0.2759	0.7040	0.053*	
C7	0.7119 (9)	0.3173 (4)	1.0899 (3)	0.0461 (13)	
C8	0.7113 (9)	0.2190 (4)	1.0960 (3)	0.0491 (14)	
H8	0.7116	0.1919	1.1430	0.059*	
C9	0.7104 (9)	0.1581 (4)	1.0341 (3)	0.0434 (13)	
C10	0.7105 (10)	0.0559 (4)	1.0380 (4)	0.0566 (16)	
H10	0.7098	0.0257	1.0838	0.068*	
C11	0.7118 (10)	0.0041 (4)	0.9762 (4)	0.0633 (17)	
H11	0.7126	-0.0622	0.9796	0.076*	
C12	0.7120 (11)	0.0471 (4)	0.9061 (4)	0.0596 (16)	
H12	0.7111	0.0091	0.8639	0.072*	
C13	0.7136 (9)	0.1444 (4)	0.8992 (4)	0.0515 (14)	
H13	0.7153	0.1729	0.8528	0.062*	
C14	0.7124 (8)	0.2006 (4)	0.9637 (3)	0.0400 (12)	
C15	0.7111 (9)	0.3032 (4)	0.9614 (3)	0.0443 (13)	
H15	0.7102	0.3326	0.9153	0.053*	
C16	0.7102 (11)	0.3833 (5)	1.1546 (4)	0.0719 (19)	
H16A	0.7096	0.4482	1.1374	0.108*	
H16B	0.8256	0.3725	1.1842	0.108*	
H16C	0.5944	0.3718	1.1838	0.108*	
N1	0.7112 (7)	0.3582 (3)	1.0203 (3)	0.0427 (11)	
N2	0.6671 (7)	0.5272 (3)	0.8343 (3)	0.0530 (13)	

supporting information

H2A	0.5489	0.5431	0.8465	0.064*	
H2B	0.7656	0.5599	0.8504	0.064*	
01	0.7523 (6)	0.0984 (2)	0.7042 (3)	0.0573 (13)	
O2	0.6892 (9)	0.1821 (3)	0.5914 (2)	0.0673 (13)	
03	1.0187 (7)	0.1748 (3)	0.6393 (3)	0.0701 (15)	
O1W	0.7047 (8)	0.6603 (3)	0.9857 (3)	0.0828 (15)	
S1	0.8103 (2)	0.17638 (8)	0.65704 (8)	0.0415 (3)	
H36	0.593 (5)	0.685 (4)	0.974 (4)	0.099*	

)
)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ag1	0.0663 (3)	0.0474 (2)	0.0736 (4)	-0.0021 (2)	0.0064 (3)	-0.0002 (3)
C1	0.040 (3)	0.030 (2)	0.035 (3)	0.000 (2)	-0.001 (2)	0.0032 (19)
C2	0.039 (3)	0.048 (3)	0.041 (4)	0.004 (3)	-0.001 (3)	0.000 (3)
C3	0.049 (3)	0.038 (3)	0.051 (4)	-0.005 (3)	-0.010 (3)	-0.005 (3)
C4	0.053 (3)	0.038 (2)	0.029 (3)	0.003 (3)	0.001 (3)	0.000 (2)
C5	0.037 (3)	0.048 (3)	0.050 (4)	0.002 (3)	0.006 (3)	0.001 (3)
C6	0.040 (3)	0.039 (3)	0.053 (4)	-0.005 (3)	-0.003 (3)	-0.003 (3)
C7	0.033 (3)	0.072 (3)	0.034 (3)	0.000 (3)	-0.001 (3)	0.002 (3)
C8	0.044 (3)	0.069 (3)	0.034 (3)	0.003 (3)	0.001 (3)	0.015 (3)
C9	0.033 (2)	0.048 (3)	0.049 (4)	0.003 (3)	-0.002 (3)	0.015 (2)
C10	0.053 (3)	0.052 (3)	0.065 (5)	0.000 (4)	-0.002 (4)	0.022 (3)
C11	0.058 (3)	0.046 (3)	0.086 (5)	0.000 (4)	-0.001 (4)	0.005 (3)
C12	0.059 (4)	0.061 (3)	0.059 (5)	0.002 (4)	-0.004 (4)	-0.015 (3)
C13	0.042 (3)	0.065 (3)	0.048 (4)	0.000 (3)	-0.003 (4)	0.001 (3)
C14	0.028 (2)	0.050 (3)	0.041 (3)	-0.002 (3)	-0.005 (3)	0.007 (2)
C15	0.041 (3)	0.048 (3)	0.043 (4)	-0.005 (3)	0.000 (3)	0.014 (3)
C16	0.066 (4)	0.094 (4)	0.056 (5)	0.001 (4)	0.007 (5)	-0.030 (4)
N1	0.033 (2)	0.053 (2)	0.041 (3)	-0.003 (2)	-0.002 (3)	0.0053 (19)
N2	0.061 (3)	0.047 (2)	0.051 (3)	-0.001 (2)	0.009 (3)	-0.015 (2)
01	0.082 (4)	0.0380 (17)	0.052 (3)	-0.0009 (19)	0.004 (2)	0.0096 (16)
O2	0.108 (4)	0.051 (2)	0.043 (3)	0.007 (3)	-0.021 (3)	-0.0049 (18)
03	0.057 (3)	0.054 (2)	0.099 (5)	0.002 (2)	0.030 (3)	-0.018 (2)
O1W	0.104 (4)	0.065 (2)	0.080 (4)	0.010 (3)	-0.009 (4)	-0.014 (3)
S1	0.0534 (8)	0.0328 (6)	0.0383 (8)	0.0019 (7)	0.0015 (8)	-0.0011 (5)

Geometric parameters (Å, °)

Ag1—N1	2.137 (4)	C10—C11	1.331 (9)
Ag1—O1W	2.138 (5)	C10—H10	0.9300
C1—C2	1.370 (7)	C11—C12	1.403 (9)
C1—C6	1.376 (8)	C11—H11	0.9300
C1—S1	1.762 (5)	C12—C13	1.367 (8)
С2—С3	1.402 (8)	C12—H12	0.9300
С2—Н2	0.9300	C13—C14	1.406 (8)
C3—C4	1.396 (9)	C13—H13	0.9300
С3—Н3	0.9300	C14—C15	1.437 (7)

supporting information

C4—N2	1.390 (6)	C15—N1	1.312 (7)
C4—C5	1.393 (8)	С15—Н15	0.9300
C5—C6	1.386 (8)	C16—H16A	0.9600
С5—Н5	0.9300	C16—H16B	0.9600
С6—Н6	0.9300	C16—H16C	0.9600
C7—C8	1.380 (7)	N2—H2A	0.8600
C7—N1	1.383 (7)	N2—H2B	0.8600
C7—C16	1.490 (8)	01-81	1.440 (4)
C8—C9	1.406 (8)	02-81	1.445 (5)
C8—H8	0.9300	03-81	1.449 (5)
C9—C14	1 405 (8)	01W—H36	0.86(4)
C9—C10	1.102(0) 1 431(7)		0.00 (1)
0, 010	1.101 (7)		
N1—Ag1—O1W	178.7 (2)	C12—C11—H11	119.2
C2-C1-C6	119.4 (5)	C13—C12—C11	120.7 (6)
C2—C1—S1	120.7 (4)	C13—C12—H12	119.7
C6—C1—S1	119.9 (4)	C11—C12—H12	119.7
C1—C2—C3	120.8 (5)	C12—C13—C14	118.8 (6)
C1—C2—H2	119.6	С12—С13—Н13	120.6
С3—С2—Н2	119.6	C14—C13—H13	120.6
C4—C3—C2	119.7 (5)	C9—C14—C13	120.9 (5)
С4—С3—Н3	120.1	C9—C14—C15	116.7 (5)
С2—С3—Н3	120.1	C13—C14—C15	122.4 (5)
N2—C4—C5	121.4 (6)	N1—C15—C14	124.2 (5)
N2—C4—C3	119.8 (5)	N1—C15—H15	117.9
C5—C4—C3	118.7 (5)	С14—С15—Н15	117.9
C6—C5—C4	120.3 (5)	C7—C16—H16A	109.5
С6—С5—Н5	119.9	C7—C16—H16B	109.5
С4—С5—Н5	119.9	H16A—C16—H16B	109.5
C1—C6—C5	120.9 (5)	C7—C16—H16C	109.5
С1—С6—Н6	119.5	H16A—C16—H16C	109.5
С5—С6—Н6	119.5	H16B—C16—H16C	109.5
C8—C7—N1	119.0 (5)	C15—N1—C7	119.7 (4)
C8—C7—C16	123.8 (6)	C15—N1—Ag1	117.3 (4)
N1—C7—C16	117.2 (5)	C7—N1—Ag1	123.0 (4)
C7—C8—C9	122.8 (5)	C4—N2—H2A	120.0
С7—С8—Н8	118.6	C4—N2—H2B	120.0
С9—С8—Н8	118.6	H2A—N2—H2B	120.0
C14—C9—C8	117.6 (4)	Ag1—O1W—H36	116 (4)
C14—C9—C10	117.8 (6)	01—\$1—02	111.9 (3)
C8—C9—C10	124.6 (6)	O1—S1—O3	112.7 (3)
C11—C10—C9	120.2 (6)	O2—S1—O3	111.9 (4)
C11—C10—H10	119.9	O1—S1—C1	107.7 (2)
C9—C10—H10	119.9	O2—S1—C1	105.9 (2)
C10—C11—C12	121.5 (5)	O3—S1—C1	106.3 (2)
C10—C11—H11	119.2		~ /
C6—C1—C2—C3	2.4 (9)	C10-C9-C14-C13	0.3 (9)

S1—C1—C2—C3	-177.1 (5)	C8—C9—C14—C15	-1.3 (9)
C1—C2—C3—C4	-0.4 (9)	C10-C9-C14-C15	179.7 (6)
C2-C3-C4-N2	175.7 (5)	C12—C13—C14—C9	0.2 (10)
C2—C3—C4—C5	-2.3 (9)	C12—C13—C14—C15	-179.1 (6)
N2-C4-C5-C6	-175.1 (6)	C9-C14-C15-N1	1.1 (10)
C3—C4—C5—C6	2.8 (9)	C13—C14—C15—N1	-179.6 (6)
C2-C1-C6-C5	-1.9 (9)	C14—C15—N1—C7	-0.2 (9)
S1—C1—C6—C5	177.7 (5)	C14—C15—N1—Ag1	-179.1 (5)
C4—C5—C6—C1	-0.8 (9)	C8—C7—N1—C15	-0.4 (9)
N1C7C8C9	0.1 (10)	C16—C7—N1—C15	-179.5 (7)
C16—C7—C8—C9	179.1 (6)	C8—C7—N1—Ag1	178.4 (4)
C7—C8—C9—C14	0.8 (10)	C16—C7—N1—Ag1	-0.7 (8)
C7—C8—C9—C10	179.7 (7)	C2-C1-S1-O1	111.1 (5)
C14—C9—C10—C11	-0.3 (10)	C6-C1-S1-O1	-68.4 (5)
C8—C9—C10—C11	-179.2 (7)	C2-C1-S1-O2	-129.0 (5)
C9—C10—C11—C12	-0.3 (11)	C6-C1-S1-O2	51.5 (6)
C10-C11-C12-C13	0.9 (11)	C2-C1-S1-O3	-9.8 (6)
C11—C12—C13—C14	-0.8 (11)	C6-C1-S1-O3	170.7 (5)
C8—C9—C14—C13	179.4 (6)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
N2—H2A····O1 ⁱ	0.86	2.37	3.092 (6)	142
N2—H2 <i>B</i> ···O3 ⁱⁱ	0.86	2.18	3.005 (7)	160
O1 <i>W</i> —H36····O2 ⁱ	0.86 (4)	2.25 (3)	3.027 (8)	150 (6)

Symmetry codes: (i) -x+1, y+1/2, -z+3/2; (ii) -x+2, y+1/2, -z+3/2.