

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

[(1-Azulenvl)methanethiolato- κ S]-(1,4,8,12-tetraazacyclopentadecane- $\kappa^4 N$ zinc(II) perchlorate

Helmar Görls,^a Johannes Notni^b and Ernst Anders^b*

^aInstitut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Lessingstrasse 8, 07743 Jena, Germany, and ^bInstitut für Organische Chemie und Makromolekulare Chemie, Friedrich-Schiller-Universität Jena, Humboldtstrasse 10. 07743 lena. Germany

Correspondence e-mail: goerls@xa.nlwl.uni-jena.de

Received 12 September 2007; accepted 27 September 2007

Key indicators: single-crystal X-ray study; T = 183 K; mean σ (C–C) = 0.008 Å; disorder in solvent or counterion; R factor = 0.049; wR factor = 0.138; data-toparameter ratio = 19.9.

In the title compound, $[Zn(C_{11}H_{26}N_4)(C_{11}H_9S)]ClO_4$, the Zn^{II} atom is five-coordinated by four N atoms from a neutral 1,4,8,12-tetraazacyclopentadecane aza-macrocycle molecule, and one S atom from an azulenylmethanethiolate ligand. Only monomers are found in the crystal. The coordination geometry can be described as trigonal bipyramidal, with the thiolate group in an equatorial position. The Zn-N and Zn-S distances are in the usual ranges for this type of complex.

Related literature

For related literature, see: Notni, Görls et al. (2006); Notni, Schenk et al. (2006); Notni et al. (2007); Salter et al. (2005); Schenk et al. (2006).

Experimental

Crystal data

[Zn(C11H26N4)(C11H9S)]ClO4 $M_r = 552.42$

Orthorhombic, $P2_12_12_1$ a = 8.0795 (1) Å

b = 13.7163 (3) Å c = 23.0913 (5) Å V = 2559.00 (8) Å³ Z = 4

Data collection

Nonius KappaCCD diffractometer Absorption correction: none 18270 measured reflections

Refinement

 $\Delta \rho_{\rm max} = 0.73 \ {\rm e} \ {\rm \AA}^{-3}$ $R[F^2 > 2\sigma(F^2)] = 0.049$ $wR(F^2) = 0.138$ $\Delta \rho_{\rm min} = -0.65 \ {\rm e} \ {\rm \AA}^{-3}$ S = 1.04Absolute structure: Flack (1983), 5858 reflections 2541 Friedel pairs 295 parameters Flack parameter: 0.002 (16) H-atom parameters constrained

Table 1 Selected geometric parameters (Å, °).

Zn-N4	2.134 (4)	Zn-N1	2.272 (4)
Zn-N2	2.139 (4)	Zn-S	2.2804 (10)
Zn-N3	2.235 (3)		
N4-Zn-N2	130.42 (16)	N3-Zn-N1	159.70 (15)
N4-Zn-N3	86.95 (15)	N4-Zn-S	118.88 (11)
N2-Zn-N3	85.81 (17)	N2-Zn-S	110.70 (12)
N4-Zn-N1	91.17 (15)	N3-Zn-S	99.13 (10)
N2-Zn-N1	80.05 (17)	N1-Zn-S	99.46 (11)

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Siemens, 1990); software used to prepare material for publication: SHELXL97.

The authors gratefully acknowledge financial support from the Deutsche Forschungsgemeinschaft, SFB 436 'Metal Mediated Reactions Modelled after Nature'.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2083).

References

- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Notni, J., Görls, H. & Anders, E. (2006). Eur. J. Inorg. Chem. pp. 1444-1455.
- Notni, J., Günther, W. & Anders, E. (2007). Eur. J. Inorg. Chem. pp. 985-993.
- Notni, J., Schenk, S., Roth, A., Plass, W., Görls, H., Uhlemann, U., Walter, A., Schmitt, M., Popp, J., Chatzipapadopoulos, S., Emmler, T., Breitzke, H., Leppert, J., Buntkowsky, G., Kempe, K. & Anders, E. (2006). Eur. J. Inorg. Chem. pp. 2783-2791.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.
- Salter, M. H., Reibenspiess, J. H. & Jones, S. B. (2005). Inorg. Chem. 44, 2791-2797.
- Schenk, S., Notni, J., Köhn, U., Wermann, K. & Anders, E. (2006). Dalton Trans. pp. 4191-4206.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen Germany
- Siemens (1990). SHELXTL. Version 4.2. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Mo $K\alpha$ radiation

 $0.06 \times 0.06 \times 0.05 \text{ mm}$

5858 independent reflections

4978 reflections with $I > 2\sigma(I)$

 $\mu = 1.18 \text{ mm}^{-1}$

T = 183 (2) K

 $R_{\rm int} = 0.060$

supporting information

Acta Cryst. (2008). E64, m203 [https://doi.org/10.1107/S1600536807047514]

[(1-Azulenyl)methanethiolato- κ S](1,4,8,12-tetraazacyclopentadecane- κ^4 N)zinc(II) perchlorate

Helmar Görls, Johannes Notni and Ernst Anders

S1. Comment

The title compound belongs to a series of zinc thiolate complexes with azamacrocyclic ligands (Notni, Görls *et al.*, 2006), which are potent model systems for a number of zinc enzymes (Schenk *et al.*, 2006). These compounds possess nucleophilic *p*-methylthiolate or phenylmethylthiolate residues, the nucleophilicity of which is influenced by the nature of the macrocyclic ligand (Notni, Schenk *et al.*, 2006; Notni *et al.*, 2007). In order to gain insight into the electronic properties of the sulfur atom, azulenylmethyl derivatives were believed to allow a qualitative estimation of electron density at the thiolate sulfur employing VIS spectroscopy. However, the project failed since most of the desired complexes were elusive due to degradation processes during synthesis.

In crystalline form, the title compound is air-stable for several months. The crystal structure of the title compound contains a monovalent zinc(II) complex cation and a discrete perchlorate anion as shown in Fig. 1. Within the cation, the Zn^{II} atom is coordinated by four N atoms and one S atom. Whether the coordination polyhedron can be assigned to tetragonal-pyramidal or trigonal-bipyramidal type is a question, which has been discussed in detail before (Notni, Görls *et al.*, 2006). Following the argumentation given therein, we consider the title structure being trigonal-bipyramidal since pairs of opposing short Zn—N bond lengths [2.134 (4) and 2.139 (4) Å] as well as long Zn—N bond lengths [2.235 (3) and 2.272 (4) Å] are found. This is the largest difference between short and long Zn—N bond distances found for this type of zinc complexes (Notni, Görls *et al.*, 2006; Salter *et al.*, 2005). The pair of long N—Zn—N bonds is considered the axis of the trigonal bipyramid, the thiolate group thus being found in the equatorial position. The Zn—S bond length of 2.280 (1)Å is within the usual range for this kind of compounds (2.27–2.32 Å). The N atoms in these complexes of 1,4,8,12-tetraazacyclopentadecane, the N-bound H atoms are found in (+ – – –) positions ('+' denotes the H atom being positioned at the thiolate side of the macrocycle and '-' at the opposite side).

S2. Experimental

The title compound was prepared according to the published procedure (Notni, Görls *et al.*, 2006). A solution of zinc perchlorate hexahydrate (0.750 g, 2 mmol) and 1,4,8,12,tetraazacyclopentadecane (0.430 g, 2 mmol) in methanol (20 ml) was heated for 15 min. Then a solution of potassium hydroxide (0.112 g, 2 mmol) and 1-azulenylmethylthiol (0.350 g, 2 mmol) in methanol (5 ml) was added dropwise, whereupon a fine-crystalline precipitate of potassium perchlorate was obtained. This was filtered off, and from the remaining deep-blue solution, blue needle crystals of the title compound precipitated after 5 min which were collected on a filter funnel and dried in vacuum. Yield 66% (0.731 g). m. p. 473.5–475.5 K. Analysis, calculated for $C_{22}H_{35}CIN_4O_4SZn$: C 47.83, H 6.39, N 10.14, S 5.80, Cl 6.42%; Found: C 47.81, H 6.42, N 9.94, S 5.70, Cl 6.49%.

S3. Refinement

H atoms were positioned geometrically and refined as riding, with C—H = 0.95Å (CH) and 0.99Å (CH₂), and N—H = 0.93Å and $U_{iso}(H) = 1.2U_{eq}(C, N)$. O atoms of the perchlorate group are disordered and they were refined isotropically.

Figure 1

Molecular structure of the title compound. Displacement ellipsoids are drawn at the 40% probability level. The perchlorate anion was omitted for clarity. H atoms have been omitted except those attached to N atoms.

[(1-Azulenyl)methanethiolato- κ S](1,4,8,12-tetraazacyclopentadecane-\k⁴N)zinc(II) perchlorate

Crystal data

[Zn(C ₁₁ H ₂₆ N ₄)(C ₁₁ H ₉ S)]ClO ₄
$M_r = 552.42$
Orthorhombic, $P2_12_12_1$
Hall symbol: P 2ac 2ab
a = 8.0795 (1) Å
<i>b</i> = 13.7163 (3) Å
c = 23.0913 (5) Å
$V = 2559.00 (8) \text{ Å}^3$
Z = 4

Data collection

Nonius KappaCCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans 18270 measured reflections 5858 independent reflections F(000) = 1160 $D_x = 1.434 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 18270 reflections $\theta = 2.3-27.5^{\circ}$ $\mu = 1.18 \text{ mm}^{-1}$ T = 183 KPrism, blue $0.06 \times 0.06 \times 0.05 \text{ mm}$

4978 reflections with $I > 2\sigma(I)$ $R_{int} = 0.060$ $\theta_{max} = 27.5^{\circ}, \ \theta_{min} = 2.3^{\circ}$ $h = -10 \rightarrow 9$ $k = -17 \rightarrow 17$ $l = -28 \rightarrow 29$ Refinement

-	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.049$	H-atom parameters constrained
$wR(F^2) = 0.138$	$w = 1/[\sigma^2(F_o^2) + (0.0822P)^2 + 1.0799P]$
S = 1.04	where $P = (F_o^2 + 2F_c^2)/3$
5858 reflections	$(\Delta/\sigma)_{\rm max} = 0.038$
295 parameters	$\Delta ho_{ m max} = 0.73 \ { m e} \ { m \AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.65 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), 2541 Friedel pairs
Secondary atom site location: difference Fourier	Absolute structure parameter: 0.002 (16)
map	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
Zn	0.54052 (5)	0.85174 (3)	0.645222 (17)	0.03886 (13)	
S	0.38553 (14)	0.73185 (7)	0.60351 (5)	0.0489 (2)	
N1	0.5011 (5)	0.8137 (3)	0.74001 (15)	0.0618 (11)	
H1C	0.4144	0.7691	0.7400	0.074*	
N2	0.3875 (5)	0.9714 (3)	0.67100 (19)	0.0631 (10)	
H2C	0.4580	1.0237	0.6779	0.076*	
N3	0.5965 (5)	0.9402 (3)	0.56637 (15)	0.0554 (9)	
H3C	0.6522	0.9965	0.5776	0.067*	
N4	0.8012 (4)	0.8308 (3)	0.65356 (15)	0.0541 (9)	
H4C	0.8461	0.8926	0.6589	0.065*	
C1	0.4320 (9)	0.9025 (4)	0.7666 (2)	0.084 (2)	
H1A	0.5223	0.9492	0.7751	0.100*	
H1B	0.3767	0.8858	0.8035	0.100*	
C2	0.3087 (8)	0.9488 (5)	0.7257 (3)	0.0865 (19)	
H2A	0.2152	0.9035	0.7191	0.104*	
H2B	0.2643	1.0093	0.7432	0.104*	
C3	0.2676 (7)	1.0040 (6)	0.6259 (3)	0.095 (2)	
H3A	0.1984	1.0567	0.6423	0.113*	
H3B	0.1934	0.9488	0.6164	0.113*	
C4	0.3464 (8)	1.0407 (5)	0.5699 (3)	0.0880 (19)	
H4A	0.2574	1.0656	0.5444	0.106*	
H4B	0.4193	1.0964	0.5795	0.106*	
C5	0.4450 (8)	0.9681 (4)	0.5367 (2)	0.0724 (14)	
H5A	0.3767	0.9092	0.5301	0.087*	
H5B	0.4734	0.9959	0.4984	0.087*	
C6	0.7047 (7)	0.8838 (4)	0.5260 (2)	0.0691 (14)	
H6A	0.7189	0.9214	0.4897	0.083*	
H6B	0.6495	0.8216	0.5161	0.083*	
C7	0.8750 (7)	0.8621 (5)	0.5518 (2)	0.0780 (16)	
H7A	0.9470	0.8363	0.5206	0.094*	
H7B	0.9242	0.9241	0.5652	0.094*	
C8	0.8765 (7)	0.7925 (4)	0.6002 (2)	0.0718 (14)	

H8A	0.9925	0.7738	0.6084	0.086*	
H8B	0.8163	0.7329	0.5884	0.086*	
С9	0.8607 (6)	0.7707 (5)	0.7035 (2)	0.0704 (14)	
H9A	0.9831	0.7722	0.7043	0.084*	
H9B	0.8259	0.7023	0.6976	0.084*	
C10	0.7948 (7)	0.8062 (5)	0.7619 (2)	0.0766 (16)	
H10A	0.8712	0.7847	0.7929	0.092*	
H10B	0.7929	0.8784	0.7620	0.092*	
C11	0.6270 (9)	0.7697 (5)	0.7749 (2)	0.0811 (17)	
H11A	0.6247	0.6982	0.7688	0.097*	
H11B	0.6020	0.7821	0.8162	0.097*	
C12	0.4652 (7)	0.6230 (3)	0.6411 (2)	0.0608 (11)	
H12A	0.5863	0.6294	0.6465	0.073*	
H12B	0.4135	0.6182	0.6799	0.073*	
C13	0.4289 (5)	0.5323 (3)	0.60742 (18)	0.0495 (10)	
C14	0.2793 (5)	0.4818 (3)	0.60754 (16)	0.0422 (8)	
C15	0.1353 (6)	0.5078 (3)	0.63574 (18)	0.0547 (10)	
H15A	0.1418	0.5657	0.6582	0.066*	
C16	-0.0175 (7)	0.4616 (4)	0.6360 (2)	0.0653 (12)	
H16A	-0.1021	0.4942	0.6571	0.078*	
C17	-0.0651 (7)	0.3740 (4)	0.6098 (2)	0.0698 (13)	
H17A	-0.1756	0.3537	0.6169	0.084*	
C18	0.0282 (8)	0.3127 (4)	0.5746 (2)	0.0692 (13)	
H18A	-0.0273	0.2558	0.5614	0.083*	
C19	0.1875 (7)	0.3225 (4)	0.5565 (2)	0.0665 (13)	
H19A	0.2266	0.2723	0.5317	0.080*	
C20	0.2998 (6)	0.3947 (3)	0.5689 (2)	0.0546 (10)	
C21	0.4628 (8)	0.4009 (4)	0.5486 (3)	0.0780 (16)	
H21A	0.5143	0.3556	0.5232	0.094*	
C22	0.5374 (7)	0.4838 (4)	0.5715 (3)	0.0699 (13)	
H22A	0.6474	0.5042	0.5635	0.084*	
Cl	0.79877 (18)	0.11964 (9)	0.68485 (6)	0.0683 (3)	
O41	0.8208 (14)	0.2153 (8)	0.7006 (5)	0.091 (3)*	0.575 (13)
O42	0.6918 (15)	0.0533 (10)	0.7147 (5)	0.114 (4)*	0.575 (13)
O43	0.918 (3)	0.0559 (17)	0.6803 (12)	0.221 (9)*	0.575 (13)
O44	0.8335 (15)	0.0986 (8)	0.6292 (5)	0.122 (4)*	0.575 (13)
O41A	0.823 (3)	0.2011 (15)	0.7194 (9)	0.126 (7)*	0.425 (13)
O42A	0.6508 (15)	0.0964 (10)	0.7185 (5)	0.082 (3)*	0.425 (13)
O43A	0.961 (2)	0.0861 (11)	0.7227 (7)	0.120 (5)*	0.425 (13)
O44A	0.7107 (19)	0.1457 (11)	0.6300 (6)	0.116 (5)*	0.425 (13)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn	0.0422 (2)	0.0405 (2)	0.0338 (2)	-0.00398 (19)	-0.00309 (18)	-0.00221 (17)
S	0.0618 (6)	0.0410 (5)	0.0440 (5)	-0.0080 (4)	-0.0168 (5)	-0.0002 (4)
N1	0.079 (3)	0.069 (2)	0.0373 (17)	-0.025 (2)	0.0085 (17)	-0.0057 (17)
N2	0.054 (2)	0.056 (2)	0.079 (3)	-0.0016 (19)	0.008 (2)	-0.015 (2)

Acta Cryst. (2008). E64, m203

supporting information

N3	0.071 (2)	0.059 (2)	0.0365 (17)	-0.0173 (19)	-0.0119 (16)	0.0113 (15)
N4	0.0449 (16)	0.069 (2)	0.0479 (19)	-0.0047 (17)	0.0017 (15)	-0.0041 (17)
C1	0.114 (5)	0.085 (4)	0.052 (3)	-0.037 (4)	0.032 (3)	-0.025 (3)
C2	0.070 (3)	0.094 (4)	0.096 (5)	-0.003 (3)	0.027 (3)	-0.033 (4)
C3	0.055 (3)	0.107 (5)	0.121 (5)	0.022 (3)	-0.019 (3)	-0.033 (4)
C4	0.089 (4)	0.080 (4)	0.095 (5)	0.007 (3)	-0.035 (4)	0.015 (3)
C5	0.085 (4)	0.073 (3)	0.059 (3)	0.001 (3)	-0.017 (3)	0.018 (2)
C6	0.083 (3)	0.088 (4)	0.037 (2)	-0.004 (3)	0.014 (2)	0.003 (2)
C7	0.066 (3)	0.117 (5)	0.051 (3)	-0.017 (3)	0.015 (2)	-0.014 (3)
C8	0.062 (3)	0.089 (4)	0.064 (3)	-0.005 (3)	0.012 (2)	-0.008 (3)
C9	0.054 (3)	0.082 (3)	0.075 (3)	0.003 (3)	-0.024 (2)	0.008 (3)
C10	0.083 (4)	0.092 (4)	0.055 (3)	0.003 (3)	-0.032 (3)	0.001 (3)
C11	0.111 (5)	0.086 (4)	0.047 (3)	-0.019 (4)	-0.007 (3)	0.014 (3)
C12	0.086 (3)	0.044 (2)	0.053 (2)	-0.009 (2)	-0.025 (3)	0.0027 (18)
C13	0.057 (2)	0.0449 (19)	0.046 (2)	-0.0006 (18)	-0.0149 (18)	0.0022 (17)
C14	0.055 (2)	0.0375 (18)	0.0337 (17)	0.0030 (17)	-0.0042 (16)	0.0017 (15)
C15	0.075 (3)	0.050 (2)	0.038 (2)	0.008 (2)	0.002 (2)	0.0029 (18)
C16	0.067 (3)	0.075 (3)	0.054 (3)	0.004 (3)	0.012 (2)	0.005 (2)
C17	0.065 (3)	0.077 (3)	0.067 (3)	-0.011 (3)	0.007 (2)	0.017 (3)
C18	0.083 (3)	0.059 (3)	0.066 (3)	-0.022 (3)	-0.007 (3)	-0.002 (2)
C19	0.075 (3)	0.052 (2)	0.073 (3)	-0.007 (2)	-0.004 (3)	-0.012 (2)
C20	0.068 (3)	0.044 (2)	0.052 (2)	0.001 (2)	0.001 (2)	-0.0080 (18)
C21	0.064 (3)	0.067 (3)	0.103 (4)	-0.006 (3)	0.016 (3)	-0.032 (3)
C22	0.056 (2)	0.068 (3)	0.086 (3)	-0.005 (3)	-0.003 (3)	-0.005 (3)
Cl	0.0732 (7)	0.0494 (6)	0.0825 (8)	-0.0190 (5)	0.0227 (7)	-0.0145 (6)

Geometric parameters (Å, °)

Zn—N4	2.134 (4)	C9—C10	1.530 (8)	
Zn—N2	2.139 (4)	С9—Н9А	0.9900	
Zn—N3	2.235 (3)	С9—Н9В	0.9900	
Zn—N1	2.272 (4)	C10—C11	1.476 (9)	
Zn—S	2.2804 (10)	C10—H10A	0.9900	
S—C12	1.843 (4)	C10—H10B	0.9900	
N1-C11	1.431 (8)	C11—H11A	0.9900	
N1-C1	1.474 (7)	C11—H11B	0.9900	
N1—H1C	0.9300	C12—C13	1.496 (6)	
N2-C2	1.448 (8)	C12—H12A	0.9900	
N2—C3	1.491 (8)	C12—H12B	0.9900	
N2—H2C	0.9300	C13—C22	1.379 (7)	
N3—C5	1.454 (7)	C13—C14	1.393 (6)	
N3—C6	1.494 (7)	C14—C15	1.380 (6)	
N3—H3C	0.9300	C14—C20	1.500 (6)	
N4—C8	1.472 (6)	C15—C16	1.388 (7)	
N4—C9	1.496 (6)	C15—H15A	0.9500	
N4—H4C	0.9300	C16—C17	1.400 (8)	
C1—C2	1.512 (10)	C16—H16A	0.9500	
C1—H1A	0.9900	C17—C18	1.390 (8)	

C1—H1B	0.9900	C17—H17A	0.9500
C2—H2A	0.9900	C18—C19	1.360 (8)
C2—H2B	0.9900	C18—H18A	0.9500
C3—C4	1.527 (10)	C19—C20	1.374 (7)
С3—НЗА	0.9900	С19—Н19А	0.9500
С3—Н3В	0.9900	C20—C21	1.401 (8)
C4—C5	1.488 (10)	C21—C22	1.392 (7)
C4—H4A	0.9900	C21—H21A	0.9500
C4—H4B	0.9900	C22—H22A	0.9500
C5—H5A	0.9900	Cl—O43	1.31 (2)
С5—Н5В	0.9900	Cl—O44	1.345 (12)
C6—C7	1.529 (8)	Cl—O41	1.373 (11)
С6—Н6А	0.9900	Cl—O41A	1.39 (2)
С6—Н6В	0.9900	Cl—O42	1.432 (12)
C7—C8	1.469 (8)	C1—042A	1.461 (11)
С7—Н7А	0.9900	C1—044A	1.496 (15)
С7—Н7В	0.9900	C1—O43A	1.640 (16)
C8—H8A	0.9900	043-044	1.48 (3)
C8—H8B	0.9900		
N4—Zn—N2	130.42 (16)	N4—C9—H9A	109.0
N4—Zn—N3	86.95 (15)	С10—С9—Н9А	109.0
N2—Zn—N3	85.81 (17)	N4—C9—H9B	109.0
N4— Zn — $N1$	91.17 (15)	С10—С9—Н9В	109.0
N2— Zn — $N1$	80.05 (17)	H9A—C9—H9B	107.8
N3—Zn—N1	159.70 (15)	C11—C10—C9	113.0 (5)
N4—Zn—S	118.88 (11)	C11—C10—H10A	109.0
N2—Zn—S	110.70 (12)	C9—C10—H10A	109.0
N3—Zn—S	99.13 (10)	C11—C10—H10B	109.0
N1—Zn—S	99.46 (11)	C9—C10—H10B	109.0
C12—S—Zn	101.15 (14)	H10A-C10-H10B	107.8
C11—N1—C1	112.6 (5)	N1—C11—C10	113.3 (4)
C11—N1—Zn	122.7 (3)	N1—C11—H11A	108.9
C1—N1—Zn	105.3 (3)	C10—C11—H11A	108.9
C11—N1—H1C	104.9	N1—C11—H11B	108.9
C1—N1—H1C	104.9	C10—C11—H11B	108.9
Zn—N1—H1C	104.9	H11A—C11—H11B	107.7
C2—N2—C3	112.8 (5)	C13—C12—S	111.1 (3)
C2—N2—Zn	109.4 (4)	C13—C12—H12A	109.4
C3—N2—Zn	114.3 (4)	S—C12—H12A	109.4
C2—N2—H2C	106.6	C13—C12—H12B	109.4
C3—N2—H2C	106.6	S—C12—H12B	109.4
Zn—N2—H2C	106.6	H12A—C12—H12B	108.0
C5—N3—C6	109.5 (4)	C22—C13—C14	108.2 (4)
C5—N3—Zn	110.9 (3)	C22—C13—C12	126.1 (4)
C6—N3—Zn	110.2 (3)	C14—C13—C12	125.7 (4)
C5—N3—H3C	108.7	C15—C14—C13	127.1 (4)
C6—N3—H3C	108.7	C15—C14—C20	125.4 (4)

Zn—N3—H3C	108.7	C13—C14—C20	107.4 (4)
C8—N4—C9	108.4 (4)	C14—C15—C16	129.4 (4)
C8—N4—Zn	112.4 (3)	C14—C15—H15A	115.3
C9—N4—Zn	117.4 (3)	C16—C15—H15A	115.3
C8—N4—H4C	105.9	$C_{15} - C_{16} - C_{17}$	129 3 (5)
C9—N4—H4C	105.9	C15—C16—H16A	115.3
7n - N4 - H4C	105.9	C17 - C16 - H16A	115.3
N1-C1-C2	109.7 (4)	C18 - C17 - C16	128.6 (5)
N1 - C1 - H1A	109.7 (4)	C_{18} C_{17} H_{17A}	115 7
$C_2 C_1 H_{1A}$	109.7	C_{16} C_{17} H_{17A}	115.7
N1 C1 H1P	109.7	C_{10} C_{17} C_{17} C_{17}	120.3 (5)
$C_2 C_1 H_1 B_1$	109.7	$C_{19} = C_{18} = C_{17}$	129.5 (5)
	109.7	C17 C18 H18A	115.4
MA = C1 = MB	110.2 (5)	C18 C19 C20	113.4 120.2(5)
$N_2 = C_2 = C_1$	110.2 (3)	C18 - C19 - C20	129.2 (3)
$N_2 - C_2 - H_2 A$	109.0	C10—C19—H19A	115.4
C1 - C2 - H2A	109.0	C10 C20 C21	113.4
$N_2 = C_2 = H_2 B$	109.6	C19 - C20 - C21	120.5 (5)
C1 - C2 - H2B	109.6	C19 - C20 - C14	128.7 (5)
$H_2A - C_2 - H_2B$	108.1	$C_{21} = C_{20} = C_{14}$	104.8 (4)
N2-C3-C4	114.8 (5)	C22—C21—C20	109.2 (5)
N2—C3—H3A	108.6	С22—С21—Н21А	125.4
C4—C3—H3A	108.6	С20—С21—Н21А	125.4
N2—C3—H3B	108.6	C13—C22—C21	110.4 (5)
C4—C3—H3B	108.6	C13—C22—H22A	124.8
НЗА—СЗ—НЗВ	107.5	C21—C22—H22A	124.8
C5—C4—C3	116.0 (5)	O43—C1—O44	68.0 (13)
C5—C4—H4A	108.3	O43—C1—O41	124.5 (12)
C3—C4—H4A	108.3	O44—C1—O41	115.5 (7)
C5—C4—H4B	108.3	O43—C1—O41A	119.0 (15)
C3—C4—H4B	108.3	O44—C1—O41A	133.9 (10)
H4A—C4—H4B	107.4	O41—C1—O41A	19.9 (9)
N3—C5—C4	112.5 (5)	O43—C1—O42	93.4 (11)
N3—C5—H5A	109.1	O44—C1—O42	116.7 (7)
С4—С5—Н5А	109.1	O41—C1—O42	123.9 (8)
N3—C5—H5B	109.1	O41A—C1—O42	108.6 (11)
C4—C5—H5B	109.1	O43—C1—O42A	120.1 (11)
H5A—C5—H5B	107.8	O44—C1—O42A	129.2 (7)
N3—C6—C7	112.6 (4)	O41—C1—O42A	100.0 (8)
N3—C6—H6A	109.1	O41A—Cl—O42A	89.0 (11)
С7—С6—Н6А	109.1	O42—C1—O42A	27.3 (6)
N3—C6—H6B	109.1	043—C1—044A	116.3 (14)
С7—С6—Н6В	109.1	044—C1—044A	48.9 (6)
H6A—C6—H6B	107.8	041—C1—044A	93.2 (8)
C8—C7—C6	115.5 (5)	041A—Cl—O44A	111.1 (11)
С8—С7—Н7А	108.4	042—C1—044A	105.8 (7)
С6—С7—Н7А	108.4	O42A - C1 - O44A	96.5 (7)
C8—C7—H7B	108.4	O43 - C1 - O43A	42.8 (11)
C6—C7—H7B	108.4	044—Cl—O43A	106 4 (8)
	100.1		10011(0)

supporting information

H7A—C7—H7B	107.5	O41—Cl—O43A	91.3 (8)
C7—C8—N4	113.7 (5)	O41A—Cl—O43A	78.9 (11)
С7—С8—Н8А	108.8	O42—C1—O43A	92.7 (7)
N4—C8—H8A	108.8	O42A—Cl—O43A	107.9 (7)
С7—С8—Н8В	108.8	O44A—Cl—O43A	154.0 (8)
N4—C8—H8B	108.8	ClO43O44	57.3 (11)
H8A—C8—H8B	107.7	ClO44O43	54.7 (10)
N4—C9—C10	113.1 (5)		