metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

[*N*-(5-Chloro-2-oxidobenzylidene)valinato- $\kappa^3 O$,*N*,*O*']dicyclohexyltin(IV)

Jin-Ping Li and Lai-Jin Tian*

Department of Chemistry, Qufu Normal University, Qufu 273165, People's Republic of China

Correspondence e-mail: laijintian@163.com

Received 23 November 2007; accepted 29 November 2007

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.007 Å; disorder in main residue; R factor = 0.047; wR factor = 0.104; data-to-parameter ratio = 16.6.

The tin atom of the title compound, $[Sn(C_6H_{11})_2-(C_{12}H_{12}CINO_3)]$, adopts a distorted $SnNC_2O_2$ trigonalbipyramidal geometry, and forms five- and six-membered chelate rings with the tridentate ligand.

Related literature

For related literature, see: Beltran *et al.* (2003); Dakternieks *et al.* (1998); Tian *et al.* (2004, 2005, 2006, 2007).

Experimental

Crystal data $[Sn(C_6H_{11})_2(C_{12}H_{12}CINO_3)]$ $M_r = 538.66$

Monoclinic, $P2_1/n$ a = 9.9830 (18) Å b = 10.7284 (19) Å c = 22.705 (4) Å $\beta = 91.759 (3)^{\circ}$ $V = 2430.6 (7) \text{ Å}^{3}$ Z = 4

Data collection

Bruker SMART APEX area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2002) $T_{\rm min} = 0.881, T_{\rm max} = 0.943$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.047$ $wR(F^2) = 0.104$ S = 1.044754 reflections 287 parameters Mo K α radiation $\mu = 1.19 \text{ mm}^{-1}$ T = 295 (2) K $0.11 \times 0.08 \times 0.05 \text{ mm}$

17254 measured reflections 4754 independent reflections 3608 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.063$

24 restraints H-atom parameters constrained $\Delta \rho_{max} = 0.62$ e Å⁻³ $\Delta \rho_{min} = -0.80$ e Å⁻³

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97*.

The authors thank the Science Foundation of Shandong Province and Qufu Normal University for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HJ2007).

References

Beltran, H. I., Zamudio-Rivera, L. S., Mancilla, T., Santillan, R. & Farfan, N. (2003). Chem. Eur. J. 9, 2291–2306.

Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

Dakternieks, D., Basu Baul, T. S., Dutta, S. & Tiekink, E. R. T. (1998). Organometallics, 17, 3058–3062.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Tian, L., Liu, X., Shang, Z., Li, D. & Yu, Q. (2004). Appl. Organomet. Chem. 18, 483–484.

Tian, L., Qian, B., Sun, Y., Zheng, X., Yang, M., Li, H. & Liu, X. (2005). Appl. Organomet. Chem. 19, 980–987.

Tian, L., Shang, Z., Zheng, X., Sun, Y., You, Y., Qian, B. & Liu, X. (2006). Appl. Organomet. Chem. 19, 74–80.

Tian, L., Sun, Y., Zheng, X., Liu, X., You, Y., Liu, X. & Qian, B. (2007). *Chin. J. Chem.* **25**, 312–318.

supporting information

Acta Cryst. (2008). E64, m98 [https://doi.org/10.1107/S1600536807064471]

[N-(5-Chloro-2-oxidobenzylidene)valinato- $\kappa^3 O$,N,O']dicyclohexyltin(IV)

Jin-Ping Li and Lai-Jin Tian

S1. Comment

The organotin complexes with Schiff bases derived from α -amino acids continue to receives attention due to their biological activities (Beltran *et al.*, 2003; Dakternieks *et al.*, 1998; Tian *et al.*, 2005, 2006, 2007). The structures of two dicyclohexyltin complexes with the Schiff base ligand, [*N*-(5-chloro-2-oxidophenylmethylene)isoleucinato]dicyclohexyltin (Tian *et al.*, 2004) and [*N*-(3,5-dibromo-2-oxidophenylmethylene)alaninato]dicyclohexyltin (Tian *et al.*, 2007) have been reported. As a continuation of these studies, the structure of the title compound, (I), is now described.

The coordination geometry about the tin atom in (I) is that of a distorted trigonal bipyramid with two cyclohexyl groups and the imino N1 atom occupying the equatorial positions and the axial positions being occupied by phenoxide O1 atom and a unidentate carboxylate O2 atom (Fig. 1). The bond length of Sn—O1 was shorter than that of Sn—O2 and the bond angle O1—Sn—O2 was 155.75 (12) °. The monodentate mode of coordination of carboxylate is reflected in the disparate C9—O2 and C9—O3 bond lengths of 1.282 (5) and 1.221 (6) Å, respectively. The distances of bonds around the tin atom were comparable to those observed in the dicyclohexyltin complexes mentioned above.

S2. Experimental

The title compound was synthesized by the reaction of dicyclohexyltin dichloride (0.71 g, 2 mmol) with potassium *N*-(5-chlorosalicylidene)valinate (0.59 g, 2 mmol) in the presence of Et₃N (0.20 g, 2 mmol) in 40 ml me thanol. The reaction mixture was refluxed for 3 h and filtered. The yellow solid obtained, (I), by removal of solvent under reduce pressure was recrystallized from dichloromethane-petroleum ether (60–90) (1:1, V/V) and crystals of (I) were obtained from chloroform-hexane (1:1, V/V) by slow evaporation at room temperature (yield 67%, m.p. 439–440 K).

S3. Refinement

One cyclohexyl group (C19–C24) is disordered over two positions. The site occupancy factors were refined with sum constrained to 1, converging to 0.708 (10) for atoms C19–C24 and 0.292 (10) for atoms C19'–C24'. For the cyclohexyl rings, the carbon-carbon distance was constrained to 1.52 (1) Å and 1,3-related distance to 2.50 (2) Å. The C19 and C19' atoms were constrained to occupy the same position, and the temperature factors for each pair of atoms were set to equal. H atoms were placed at calculated positions and were included in the refinement in the riding-model approximation, with C—H = 0.93 Å and $U_{iso}(H) = 1.2Ueq(C)$ for aromatic H atoms, C—H = 0.96 Å and $U_{iso}(H) = 1.5Ueq(C)$ for methyl H atoms, and C—H = 0.98 Å and $U_{iso}(H) = 1.2Ueq(C)$ for methine H atoms.

Figure 1

The structure of (I) with displacement ellipsoids are drawn at the 30% probability level. For cyclohexyl group C19–C24, the minor disordered component has been omitted for clarity.

[*N*-(5-Chloro-2-oxidobenzylidene)valinato- $\kappa^3 O, N, O'$]dicyclohexyltin(IV)

Crystal data

```
F(000) = 1104
[Sn(C_6H_{11})_2(C_{12}H_{12}CINO_3)]
                                                                             D_{\rm x} = 1.472 {\rm Mg} {\rm m}^{-3}
M_r = 538.66
Monoclinic, P2_1/n
                                                                             Mo K\alpha radiation, \lambda = 0.71073 Å
Hall symbol: -P 2yn
                                                                             Cell parameters from 2430 reflections
a = 9.9830 (18) \text{ Å}
                                                                             \theta = 2.6 - 19.8^{\circ}
b = 10.7284 (19) Å
                                                                             \mu = 1.19 \text{ mm}^{-1}
                                                                             T = 295 \text{ K}
c = 22.705 (4) Å
\beta = 91.759 (3)^{\circ}
                                                                             Prism, yellow
V = 2430.6 (7) Å<sup>3</sup>
                                                                             0.11\times0.08\times0.05~mm
Z = 4
Data collection
Bruker SMART APEX detector
                                                                             17254 measured reflections
   diffractometer
                                                                             4754 independent reflections
Radiation source: fine-focus sealed tube
                                                                             3608 reflections with I > 2\sigma(I)
Graphite monochromator
                                                                             R_{\rm int} = 0.063
\varphi and \omega scans
                                                                             \theta_{\rm max} = 26.0^{\circ}, \ \theta_{\rm min} = 1.8^{\circ}
Absorption correction: multi-scan
                                                                             h = -12 \rightarrow 12
   (SADABS; Bruker, 2002)
                                                                             k = -13 \rightarrow 13
T_{\rm min} = 0.881, T_{\rm max} = 0.943
                                                                             l = -27 \rightarrow 27
```

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.047$	Hydrogen site location: inferred from
$wR(F^2) = 0.104$	neighbouring sites
S = 1.04	H-atom parameters constrained
4754 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0425P)^2 + 0.1331P]$
287 parameters	where $P = (F_o^2 + 2F_c^2)/3$
24 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.62 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta ho_{ m min} = -0.80 \ m e \ m \AA^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Sn1	1.12598 (3)	0.20087 (3)	0.854731 (14)	0.03571 (12)	
N1	1.1870 (3)	0.3911 (3)	0.83569 (15)	0.0337 (8)	
01	1.0335 (3)	0.2897 (3)	0.92506 (14)	0.0471 (8)	
O2	1.2493 (3)	0.1893 (3)	0.77824 (14)	0.0482 (8)	
O3	1.3868 (4)	0.2863 (3)	0.71861 (15)	0.0581 (10)	
C11	0.75627 (17)	0.76889 (14)	0.93223 (7)	0.0752 (5)	
C1	0.9725 (5)	0.3979 (4)	0.9241 (2)	0.0399 (11)	
C2	0.8670 (5)	0.4189 (4)	0.9628 (2)	0.0472 (12)	
H2	0.8410	0.3548	0.9875	0.057*	
C3	0.8021 (5)	0.5305 (5)	0.9648 (2)	0.0512 (13)	
Н3	0.7324	0.5419	0.9905	0.061*	
C4	0.8407 (5)	0.6271 (4)	0.9284 (2)	0.0478 (13)	
C5	0.9418 (5)	0.6126 (4)	0.8906 (2)	0.0454 (12)	
Н5	0.9671	0.6788	0.8669	0.054*	
C6	1.0087 (4)	0.4973 (4)	0.88714 (18)	0.0342 (10)	
C7	1.1167 (4)	0.4896 (4)	0.84753 (19)	0.0382 (11)	
H7	1.1392	0.5626	0.8281	0.046*	
C8	1.3004 (4)	0.4043 (4)	0.79714 (19)	0.0386 (11)	
H8	1.2814	0.4732	0.7699	0.046*	
С9	1.3146 (5)	0.2848 (4)	0.7611 (2)	0.0407 (11)	
C10	1.4318 (5)	0.4346 (4)	0.8325 (2)	0.0462 (12)	
H10	1.5042	0.4359	0.8043	0.055*	
C11	1.4686 (5)	0.3373 (5)	0.8786 (2)	0.0574 (14)	
H11A	1.4726	0.2567	0.8603	0.086*	
H11B	1.4022	0.3364	0.9083	0.086*	

11110		0.0.551	0.006	0.00 ct	
HIIC	1.5545	0.3571	0.8965	0.086*	
C12	1.4268 (5)	0.5636 (5)	0.8605 (2)	0.0634 (16)	
H12A	1.4041	0.6243	0.8308	0.095*	
H12B	1.5128	0.5833	0.8781	0.095*	
H12C	1.3604	0.5645	0.8902	0.095*	
C13	1.2432 (4)	0.0796 (4)	0.9097 (2)	0.0391 (11)	
H13	1.3021	0.1314	0.9349	0.047*	
C14	1.3322 (5)	-0.0079 (4)	0.8743 (2)	0.0499 (13)	
H14A	1.2764	-0.0575	0.8476	0.060*	
H14B	1.3925	0.0412	0.8510	0.060*	
C15	1.4130 (6)	-0.0934(5)	0.9149 (3)	0.0662 (16)	
H15A	1.4647	-0.1505	0.8915	0.079*	
H15B	1.4754	-0.0440	0.9388	0.079*	
C16	1.3243 (6)	-0.1665(5)	0.9545 (3)	0.0728 (18)	
H16A	1 3794	-0.2163	0 9814	0.087*	
H16R	1 2690	-0.2229	0.9308	0.087*	
C17	1 2343 (6)	-0.0816(5)	0.9898(2)	0.0666 (16)	
U17A	1.2343 (0)	-0.1310	1.0125	0.0000 (10)	
	1.1739	-0.0222	1.0123	0.080*	
1117D	1.2009	0.0323	1.01/1	0.080°	
	1.1340 (3)	0.0037 (4)	0.9497 (2)	0.0302 (13)	
HI8A	1.1019	0.0600	0.9733	0.060*	
HI8B	1.0920	-0.0455	0.9256	0.060*	0.700 (10)
C19	0.9504 (4)	0.1411 (5)	0.8079 (2)	0.0554 (14)	0.708 (10)
H19A	0.9779	0.0674	0.7858	0.066*	0.708 (10)
C20	0.8944 (8)	0.2290 (7)	0.7624 (4)	0.055 (2)	0.708 (10)
H20A	0.9633	0.2479	0.7346	0.066*	0.708 (10)
H20B	0.8700	0.3062	0.7815	0.066*	0.708 (10)
C21	0.7723 (9)	0.1776 (11)	0.7290 (4)	0.077 (3)	0.708 (10)
H21A	0.7344	0.2422	0.7037	0.092*	0.708 (10)
H21B	0.7996	0.1091	0.7042	0.092*	0.708 (10)
C22	0.6677 (9)	0.1328 (13)	0.7698 (6)	0.081 (3)	0.708 (10)
H22A	0.5976	0.0910	0.7468	0.098*	0.708 (10)
H22B	0.6279	0.2043	0.7886	0.098*	0.708 (10)
C23	0.7204 (8)	0.0447 (10)	0.8168 (4)	0.072 (3)	0.708 (10)
H23A	0.7417	-0.0346	0.7988	0.087*	0.708 (10)
H23B	0.6509	0.0301	0.8449	0.087*	0.708 (10)
C24	0.8441 (8)	0.0943 (10)	0.8492 (4)	0.071 (3)	0.708 (10)
H24A	0 8824	0.0287	0.8739	0.085*	0 708 (10)
H24R	0.8183	0.1621	0.8748	0.085*	0.708 (10)
C19′	0.9504(4)	0.1411(5)	0.8079(2)	0.0554(14)	0.292 (10)
U10P	0.9304 (4)	0.1411 (5)	0.0079(2)	0.0554 (14)	0.292(10)
C20/	0.9823	0.1101 0.2401 (12)	0.7702	0.000	0.292(10)
	0.0300 (13)	0.2491(12)	0.7912 (9)	0.055 (2)	0.292(10)
	0.0209	0.2003	0.02/0	0.000	0.292(10)
П20D	0.9090	0.212 (2)	0.7520 (10)	0.000*	0.292(10)
	0.737(2)	0.212 (2)	0.7539 (10)	0.077(3)	0.292 (10)
H2IC	0.6/69	0.2824	0.7495	0.092*	0.292 (10)
H21D	0.7649	0.1876	0.7150	0.092*	0.292 (10)
C22′	0.6640 (17)	0.105 (2)	0.7817 (17)	0.081 (3)	0.292 (10)

supporting information

H22C	0.6241	0.1332	0.8177	0.098*	0.292 (10)
H22D	0.5921	0.0771	0.7551	0.098*	0.292 (10)
C23′	0.7553 (19)	-0.0043 (17)	0.7958 (12)	0.072 (3)	0.292 (10)
H23C	0.7850	-0.0405	0.7593	0.087*	0.292 (10)
H23D	0.7055	-0.0675	0.8164	0.087*	0.292 (10)
C24′	0.8766 (18)	0.0332 (17)	0.8333 (10)	0.071 (3)	0.292 (10)
H24C	0.8479	0.0552	0.8724	0.085*	0.292 (10)
H24D	0.9369	-0.0374	0.8372	0.085*	0.292 (10)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sn1	0.0373 (2)	0.02864 (17)	0.04125 (19)	0.00125 (14)	0.00194 (13)	-0.00021 (15)
N1	0.035 (2)	0.033 (2)	0.034 (2)	0.0053 (16)	0.0086 (16)	0.0009 (16)
01	0.056 (2)	0.0334 (18)	0.053 (2)	0.0095 (15)	0.0164 (17)	0.0055 (15)
O2	0.063 (2)	0.0366 (19)	0.046 (2)	-0.0013 (16)	0.0115 (17)	-0.0090 (15)
O3	0.071 (3)	0.057 (2)	0.048 (2)	0.0110 (19)	0.0197 (19)	-0.0038 (18)
C11	0.0850 (11)	0.0588 (9)	0.0823 (11)	0.0411 (8)	0.0093 (9)	-0.0086 (8)
C1	0.043 (3)	0.034 (3)	0.043 (3)	0.002 (2)	-0.001 (2)	-0.003 (2)
C2	0.048 (3)	0.041 (3)	0.053 (3)	-0.003 (2)	0.018 (2)	-0.001 (2)
C3	0.045 (3)	0.055 (3)	0.055 (3)	0.005 (2)	0.012 (2)	-0.015 (3)
C4	0.048 (3)	0.042 (3)	0.052 (3)	0.016 (2)	-0.006 (3)	-0.007 (2)
C5	0.052 (3)	0.039 (3)	0.045 (3)	0.007 (2)	-0.002 (2)	-0.002 (2)
C6	0.038 (3)	0.031 (2)	0.034 (2)	0.0065 (19)	0.004 (2)	-0.0007 (19)
C7	0.043 (3)	0.029 (2)	0.042 (3)	0.000 (2)	0.001 (2)	0.002 (2)
C8	0.043 (3)	0.034 (2)	0.039 (3)	-0.001 (2)	0.009 (2)	0.005 (2)
C9	0.047 (3)	0.040 (3)	0.035 (3)	0.012 (2)	-0.001 (2)	-0.002 (2)
C10	0.041 (3)	0.044 (3)	0.054 (3)	-0.007 (2)	0.011 (2)	-0.005 (2)
C11	0.052 (3)	0.056 (3)	0.063 (4)	-0.002 (3)	-0.007 (3)	0.002 (3)
C12	0.067 (4)	0.050 (3)	0.073 (4)	-0.012 (3)	0.003 (3)	-0.009 (3)
C13	0.043 (3)	0.027 (2)	0.047 (3)	0.001 (2)	-0.001 (2)	0.001 (2)
C14	0.047 (3)	0.051 (3)	0.052 (3)	0.010 (2)	0.012 (2)	0.005 (2)
C15	0.059 (4)	0.059 (4)	0.082 (4)	0.026 (3)	0.015 (3)	0.008 (3)
C16	0.087 (5)	0.052 (3)	0.079 (4)	0.027 (3)	0.009 (4)	0.018 (3)
C17	0.085 (4)	0.054 (3)	0.062 (4)	0.016 (3)	0.014 (3)	0.014 (3)
C18	0.054 (3)	0.039 (3)	0.058 (3)	0.008 (2)	0.016 (3)	0.009 (2)
C19	0.040 (3)	0.063 (3)	0.063 (4)	-0.007 (3)	-0.006 (3)	-0.006 (3)
C20	0.059 (5)	0.072 (5)	0.033 (5)	-0.011 (4)	-0.009 (4)	0.005 (4)
C21	0.075 (6)	0.097 (8)	0.055 (7)	-0.017 (5)	-0.026 (5)	0.011 (5)
C22	0.049 (4)	0.109 (8)	0.086 (8)	-0.004 (4)	-0.016 (4)	0.002 (6)
C23	0.050 (5)	0.081 (8)	0.085 (8)	-0.019 (5)	-0.004 (5)	0.006 (5)
C24	0.050 (5)	0.086 (8)	0.076 (6)	-0.020 (5)	-0.015 (4)	0.028 (6)
C19′	0.040 (3)	0.063 (3)	0.063 (4)	-0.007 (3)	-0.006 (3)	-0.006 (3)
C20′	0.059 (5)	0.072 (5)	0.033 (5)	-0.011 (4)	-0.009 (4)	0.005 (4)
C21′	0.075 (6)	0.097 (8)	0.055 (7)	-0.017 (5)	-0.026 (5)	0.011 (5)
C22′	0.049 (4)	0.109 (8)	0.086 (8)	-0.004 (4)	-0.016 (4)	0.002 (6)
C23′	0.050 (5)	0.081 (8)	0.085 (8)	-0.019 (5)	-0.004 (5)	0.006 (5)
C24′	0.050 (5)	0.086 (8)	0.076 (6)	-0.020 (5)	-0.015 (4)	0.028 (6)

Geometric parameters (Å, °)

Sn1—O1	2.098 (3)	C15—H15A	0.9700
Sn1—C19	2.122 (4)	C15—H15B	0.9700
Sn1—C13	2.128 (4)	C16—C17	1.525 (7)
Sn1—O2	2.163 (3)	C16—H16A	0.9700
Sn1—N1	2.177 (4)	C16—H16B	0.9700
N1—C7	1.301 (5)	C17—C18	1.504 (6)
N1—C8	1.459 (5)	C17—H17A	0.9700
01—C1	1.311 (5)	C17—H17B	0.9700
О2—С9	1.282 (5)	C18—H18A	0.9700
О3—С9	1.221 (6)	C18—H18B	0.9700
Cl1—C4	1.742 (5)	C19—C20	1.494 (7)
C1—C2	1.409 (6)	C19—C24	1.524 (7)
C1—C6	1.411 (6)	C19—H19A	0.9800
C2—C3	1.363 (6)	C20—C21	1.519 (7)
С2—Н2	0.9300	C20—H20A	0.9700
C3—C4	1.387 (7)	C20—H20B	0.9700
С3—Н3	0.9300	C21—C22	1.496 (8)
C4—C5	1.354 (6)	C21—H21A	0.9700
C5—C6	1.410 (6)	C21—H21B	0.9700
С5—Н5	0.9300	C22—C23	1.509 (8)
C6—C7	1.428 (6)	C22—H22A	0.9700
С7—Н7	0.9300	C22—H22B	0.9700
С8—С9	1.530 (6)	C23—C24	1.515 (7)
C8—C10	1.552 (6)	С23—Н23А	0.9700
С8—Н8	0.9800	C23—H23B	0.9700
C10-C11	1.516 (7)	C24—H24A	0.9700
C10-C12	1.525 (6)	C24—H24B	0.9700
C10—H10	0.9800	C20′—C21′	1.515 (9)
C11—H11A	0.9600	C20'—H20C	0.9700
C11—H11B	0.9600	C20′—H20D	0.9700
C11—H11C	0.9600	C21′—C22′	1.510 (10)
C12—H12A	0.9600	C21′—H21C	0.9700
C12—H12B	0.9600	C21′—H21D	0.9700
C12—H12C	0.9600	C22′—C23′	1.510 (10)
C13—C18	1.527 (6)	C22′—H22C	0.9700
C13—C14	1.535 (6)	C22'—H22D	0.9700
С13—Н13	0.9800	C23'—C24'	1.513 (10)
C14—C15	1.516 (6)	C23'—H23C	0.9700
C14—H14A	0.9700	C23'—H23D	0.9700
C14—H14B	0.9700	C24′—H24C	0.9700
C15—C16	1.502 (7)	C24'—H24D	0.9700
O1—Sn1—C19	98.23 (17)	H15A—C15—H15B	108.0
O1—Sn1—C13	94.51 (15)	C15—C16—C17	111.7 (5)
C19—Sn1—C13	122.71 (18)	C15—C16—H16A	109.3
O1—Sn1—O2	155.75 (12)	C17—C16—H16A	109.3

C19—Sn1—O2	93.54 (17)	C15—C16—H16B	109.3
C13—Sn1—O2	96.83 (15)	C17—C16—H16B	109.3
O1—Sn1—N1	81.80 (12)	H16A—C16—H16B	107.9
C19—Sn1—N1	114.56 (16)	C18—C17—C16	110.9 (5)
C13—Sn1—N1	122.50 (15)	С18—С17—Н17А	109.5
O2— $Sn1$ — $N1$	74.02 (12)	С16—С17—Н17А	109.5
C7—N1—C8	118.6 (4)	C18—C17—H17B	109.5
C7-N1-Sn1	1243(3)	C16—C17—H17B	109.5
C8—N1—Sn1	1159(3)	H17A—C17—H17B	108.1
C1 = O1 = Sn1	127.2(3)	C_{17} C_{18} C_{13}	1120(4)
$C_{1}^{0} O_{2}^{0} S_{n1}^{1}$	127.2(5) 1204(3)	C_{17} C_{18} H_{18A}	100.2
01 - C1 - C2	120.4(5) 1101(4)	C_{13} C_{18} H_{18A}	109.2
01 - 01 - 02	119.1(4) 123.4(4)	C17 C18 H18P	109.2
$C_{1} = C_{1} = C_{0}$	123.4(4)	$C_{12} = C_{10} = H_{10} = H_{10}$	109.2
$C_2 = C_1 = C_0$	11/.4(4)		109.2
$C_3 = C_2 = C_1$	121.8 (5)	H18A - C18 - H18B	107.9
$C_3 = C_2 = H_2$	119.1	$C_{20} = C_{19} = C_{24}$	112.4 (5)
C1 = C2 = H2	119.1	C20—C19—Sn1	116.2 (4)
C2—C3—C4	119.7 (5)	C24—C19—Sn1	111.7 (4)
С2—С3—Н3	120.2	С20—С19—Н19А	105.1
C4—C3—H3	120.2	С24—С19—Н19А	105.1
C5—C4—C3	121.2 (4)	Sn1—C19—H19A	105.1
C5—C4—Cl1	120.2 (4)	C19—C20—C21	113.2 (6)
C3—C4—Cl1	118.6 (4)	C19—C20—H20A	108.9
C4—C5—C6	120.0 (5)	C21—C20—H20A	108.9
C4—C5—H5	120.0	C19—C20—H20B	108.9
С6—С5—Н5	120.0	C21—C20—H20B	108.9
C5—C6—C1	120.0 (4)	H20A—C20—H20B	107.8
C5—C6—C7	117.0 (4)	C22—C21—C20	111.8 (7)
C1—C6—C7	122.9 (4)	C22—C21—H21A	109.2
N1—C7—C6	126.9 (4)	C20—C21—H21A	109.2
N1—C7—H7	116.6	C22—C21—H21B	109.2
С6—С7—Н7	116.6	C20—C21—H21B	109.2
N1—C8—C9	109.1 (4)	H21A—C21—H21B	107.9
N1-C8-C10	111.7 (4)	C21—C22—C23	113.9 (7)
C9—C8—C10	111.2 (4)	C21—C22—H22A	108.8
N1—C8—H8	108.3	C23—C22—H22A	108.8
C9—C8—H8	108.3	C21—C22—H22B	108.8
C10—C8—H8	108.3	C23—C22—H22B	108.8
03 - C9 - 02	124 6 (4)	H22A - C22 - H22B	107.7
03 - C9 - C8	121.0(1) 1186(4)	C^{22} C^{23} C^{24}	1127(7)
02 - C9 - C8	116.8 (4)	$C_{22} = C_{23} = C_{23} = H_{23} \Delta$	109.1
C_{11} C_{10} C_{12}	110.0(4) 110.4(4)	$C_{22} = C_{23} = H_{23} A$	109.1
$C_{11} = C_{10} = C_{12}$	113 4 (4)	C^{22} C^{23} H^{23} H	109.1
$C_{11} = C_{10} = C_{0}$	111.6 (1)	$C_{22} = C_{23} = H_{23}B$	109.1
$C_{12} = C_{10} = C_{0}$	107.1	$U_{24} = U_{23} = U$	107.1
$C_{11} = C_{10} = H_{10}$	107.1	$\frac{1125A}{C23} = \frac{C23}{C10} $	107.0
C_{12} C_{10} H_{10}	107.1	$C_{23} = C_{24} = C_{19}$	112.9 (0)
	10/.1	$C_{23} = C_{24} = \Pi_{24} A$	109.0
UIU-UII-HIIA	109.3	U19—U24—H24A	109.0

C10—C11—H11B	109.5	C23—C24—H24B	109.0
H11A—C11—H11B	109.5	C19—C24—H24B	109.0
C10—C11—H11C	109.5	H24A—C24—H24B	107.8
H11A—C11—H11C	109.5	C21′—C20′—H20C	108.8
H11B—C11—H11C	109.5	C21′—C20′—H20D	108.8
C10—C12—H12A	109.5	H20C—C20′—H20D	107.7
C10—C12—H12B	109.5	C22'—C21'—C20'	110.9 (12)
H12A—C12—H12B	109.5	C22'—C21'—H21C	109.5
C10—C12—H12C	109.5	C20′—C21′—H21C	109.5
H12A—C12—H12C	109.5	C22'—C21'—H21D	109.5
H12B-C12-H12C	109.5	C20'—C21'—H21D	109.5
C18 - C13 - C14	110.0 (4)	$H_{21}C - C_{21}' - H_{21}D$	108.0
C18 - C13 - Sn1	110.8 (3)	$C_{23'} - C_{22'} - C_{21'}$	112.4 (14)
C14-C13-Sn1	112.6 (3)	$C_{23}' - C_{22}' - H_{22}C$	109.1
C18—C13—H13	107.8	C21'-C22'-H22C	109.1
C14 - C13 - H13	107.8	$C_{23'} - C_{22'} - H_{22D}$	109.1
Sn1_C13_H13	107.8	$C_{21}' - C_{22}' - H_{22D}$	109.1
C_{15} C_{14} C_{13}	111 0 (4)	$H_{22} = C_{22} = H_{22}$	107.9
$C_{15} = C_{14} = C_{15}$	100 /	$C_{22}' = C_{22}' = C_{24}'$	107.9 112.4(13)
$C_{13} = C_{14} = H_{14A}$	109.4	$C_{22} = C_{23} = C_{24}$	100.1
C15 - C14 - H14R	109.4	$C_{22} = C_{23} = H_{23}C_{23}$	109.1
$C_{13} = C_{14} = H_{14}B$	109.4	$C_{24} = C_{23} = 1123C$	109.1
H_{14} C_{14} H_{14} H_{14}	109.4	$C_{22} = C_{23} = H_{23}D$	109.1
$n_{14} - c_{14} - n_{14} - n_{14}$	100.0	$C_{24} = C_{23} = H_{23}D$	107.8
C16 - C15 - C14	111.3 (4)	1230 - 023 - 1230	107.8
C10 - C15 - H15A	109.5	$C_{23} = C_{24} = H_{24}C_{23}$	109.1
CI4—CI5—HI5A	109.5	$C_{23} = C_{24} = H_{24}D$	109.1
C14 C15 H15D	109.5	H24C—C24 H24D	107.8
С14—С15—Н15В	109.5		
O1—Sn1—N1—C7	-31.2 (3)	C10—C8—C9—O3	-70.2 (5)
C19—Sn1—N1—C7	64.1 (4)	N1-C8-C9-O2	-14.2 (5)
C13—Sn1—N1—C7	-121.4 (3)	C10—C8—C9—O2	109.4 (5)
O2—Sn1—N1—C7	150.7 (4)	N1-C8-C10-C11	58.1 (5)
O1—Sn1—N1—C8	161.1 (3)	C9—C8—C10—C11	-64.0 (5)
C19—Sn1—N1—C8	-103.5 (3)	N1-C8-C10-C12	-67.3 (5)
C13—Sn1—N1—C8	71.0 (3)	C9—C8—C10—C12	170.6 (4)
O2—Sn1—N1—C8	-17.0 (3)	O1—Sn1—C13—C18	56.4 (3)
C19—Sn1—O1—C1	-75.0 (4)	C19—Sn1—C13—C18	-46.4 (4)
C13—Sn1—O1—C1	161.0 (4)	O2—Sn1—C13—C18	-145.1 (3)
O2—Sn1—O1—C1	43.2 (6)	N1—Sn1—C13—C18	139.5 (3)
N1—Sn1—O1—C1	38.8 (4)	O1—Sn1—C13—C14	180.0 (3)
O1—Sn1—O2—C9	4.6 (5)	C19—Sn1—C13—C14	77.2 (4)
C19—Sn1—O2—C9	123.7 (4)	O2—Sn1—C13—C14	-21.5(3)
C13—Sn1—O2—C9	-112.7 (3)	N1—Sn1—C13—C14	-96.9 (3)
N1—Sn1—O2—C9	9.2 (3)	C18—C13—C14—C15	-55.4 (5)
Sn1—O1—C1—C2	150.7 (3)	Sn1—C13—C14—C15	-179.5 (4)
Sn1—O1—C1—C6	-30.9 (6)	C13—C14—C15—C16	56.0 (6)
O1—C1—C2—C3	178.3 (4)	C14—C15—C16—C17	-55.6 (7)

C6—C1—C2—C3	-0.2 (7)	C15—C16—C17—C18	54.9 (7)
C1—C2—C3—C4	-0.5 (8)	C16—C17—C18—C13	-55.4 (6)
C2—C3—C4—C5	0.1 (8)	C14—C13—C18—C17	55.8 (6)
C2—C3—C4—Cl1	-179.8 (4)	Sn1—C13—C18—C17	-179.1 (4)
C3—C4—C5—C6	0.8 (7)	O1—Sn1—C19—C20	90.7 (5)
Cl1—C4—C5—C6	-179.2 (4)	C13—Sn1—C19—C20	-168.5 (5)
C4—C5—C6—C1	-1.5 (7)	O2—Sn1—C19—C20	-68.0 (5)
C4—C5—C6—C7	-178.3 (4)	N1—Sn1—C19—C20	6.0 (6)
O1—C1—C6—C5	-177.2 (4)	O1—Sn1—C19—C24	-40.1 (6)
C2—C1—C6—C5	1.2 (6)	C13—Sn1—C19—C24	60.7 (6)
O1—C1—C6—C7	-0.6 (7)	O2—Sn1—C19—C24	161.2 (6)
C2—C1—C6—C7	177.8 (4)	N1—Sn1—C19—C24	-124.8 (6)
C8—N1—C7—C6	-175.4 (4)	C24—C19—C20—C21	-51.9 (9)
Sn1—N1—C7—C6	17.3 (6)	Sn1-C19-C20-C21	177.6 (5)
C5—C6—C7—N1	-176.5 (4)	C19—C20—C21—C22	52.2 (11)
C1—C6—C7—N1	6.8 (7)	C20—C21—C22—C23	-51.0 (14)
C7—N1—C8—C9	-146.8 (4)	C21—C22—C23—C24	50.0 (14)
Sn1—N1—C8—C9	21.6 (4)	C22—C23—C24—C19	-48.9 (11)
C7—N1—C8—C10	89.9 (5)	C20—C19—C24—C23	50.3 (9)
Sn1—N1—C8—C10	-101.7 (3)	Sn1—C19—C24—C23	-177.0 (6)
Sn1—O2—C9—O3	179.7 (4)	C20'—C21'—C22'—C23'	-53 (3)
Sn1—O2—C9—C8	0.1 (5)	C21'—C22'—C23'—C24'	54 (3)
N1—C8—C9—O3	166.2 (4)		